Advertisement

Non Equilibrium Plasma in High Enthalpy Flows

  • Mario Capitelli
  • Roberto Celiberto
  • Gianpiero Colonna
  • Fabrizio Esposito
  • Claudine Gorse
  • Khaled Hassouni
  • Annarita Laricchiuta
  • Savino Longo
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 85)

Abstract

In this Chapter high enthalpy shock wave and nozzle expanding flows related to the entry of a space vehicle in planetary atmosphere (Earth and Jupiter) are presented and discussed. The strong non-equilibrium conditions of these flows are the ideal room for the application of the state to state kinetics linked to the Boltzmann equation for the electron energy distribution function. Non-Boltzmann vibrational and free electron distributions are such to create non Arrhenius behavior of the relevant rates as a function of gas temperature. Moreover the self-consistent kinetics is coupled to a radiation transfer module and inserted in an Euler code to study the effect of radiation reabsorption on eedf.

Keywords

Shock Tube Electron Energy Distribution Function Vibrational Temperature Nozzle Throat Atomic Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson JD (2000) Hypersonic and high temperature gas dynamics. AIAA, RestonGoogle Scholar
  2. Armenise I, Capitelli M, Gorse C (1996) Nonequilibrium vibrational kinetics in the boundary layer of re-entering bodies. J Thermophys Heat Transf 10(3):397–405CrossRefGoogle Scholar
  3. Arsentiev I, Loukhovitski B, Starik A (2012) Application of state-to-state approach in estimation of thermally nonequilibrium reaction rate constants in mode approximation. Chem Phys 398:73–80ADSCrossRefGoogle Scholar
  4. Bose D, Candler GV (1996) Thermal rate constants of the N2+O → NO+N reaction using ab initio \(^{3}A^{{\prime\prime}}\) and \(^{3}A^{{\prime}}\) potential energy surfaces. J Chem Phys 104(8):2825–2833Google Scholar
  5. Bose D, Candler GV (1997) Thermal rate constants of the O2+N → NO+O reaction using ab initio \(^{2}A^{{\prime}}\) and \(^{4}A^{{\prime}}\) potential energy surfaces. J Chem Phys 107(16):6136–6145Google Scholar
  6. Capitelli M, Armenise I, Gorse C (1997) State-to-state approach in the kinetics of air components under re-entry conditions. J Thermophys Heat Transf 11(4):570–578CrossRefGoogle Scholar
  7. Capitelli M, Colonna G, Esposito F (2004) On the coupling of vibrational relaxation with the Dissociation-Recombination kinetics: from dynamics to aerospace applications. J Phys Chem A 108(41):8930–8934CrossRefGoogle Scholar
  8. Capitelli M, Colonna G, Pietanza LD, D’Ammando G (2013) Coupling of radiation, excited states and electron energy distribution function in non equilibrium hydrogen plasmas. Spectrochim Acta Part B 83–84:1–13CrossRefGoogle Scholar
  9. Chaban G, Jaffe R, Schwenke D, Huo W (2008) Dissociation cross sections and rate coefficients for nitrogen from accurate theoretical calculations. 46th AIAA aerospace sciences meeting and exhibit, aerospace sciences meetings, Reno. American Institute of Aeronautics and Astronautics AIAA paper 2008–1209Google Scholar
  10. Colonna G, Capitelli M (1996) Electron and vibrational kinetics in the boundary layer of hypersonic flow. J Thermophys Heat Transf 10(3):406–412CrossRefGoogle Scholar
  11. Colonna G, Capitelli M (2001a) The influence of atomic and molecular metastable states in high-enthalpy nozzle expansion nitrogen flows. J Phys D Appl Phys 34(12):1812ADSCrossRefGoogle Scholar
  12. Colonna G, Capitelli M (2001b) Self-consistent model of chemical, vibrational, electron kinetics in nozzle expansion. J Thermophys Heat Transf 15(3):308–316CrossRefGoogle Scholar
  13. Colonna G, Capitelli M (2008) Boltzmann and master equations for magnetohydrodynamics in weakly ionized gases. J Thermophys Heat Transf 22(3):414–423CrossRefGoogle Scholar
  14. Colonna G, Tuttafesta M, Capitelli M, Giordano D (1998) NO formation in one dimensional nozzle air flow with state-to-state non-equilibrium vibrational kinetics. AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AlbuquerqueGoogle Scholar
  15. Colonna G, Tuttafesta M, Capitelli M, Giordano D (1999a) NO formation in one dimensional air nozzle flow with state-to-state vibrational kinetics- the influence of O2(v)+N → NO + O reaction. AIAA paper 99–3685Google Scholar
  16. Colonna G, Tuttafesta M, Capitelli M, Giordano D (1999b) Non-Arrhenius NO formation rate in one-dimensional nozzle airflow. J Thermophys Heat Transf 13(3):372–375CrossRefGoogle Scholar
  17. Colonna G, Armenise I, Catella M, Capitelli M (2000a) Non equilibrium effects in plasma expansion flows. J Tech Phys 41(1):203–214Google Scholar
  18. Colonna G, Tuttafesta M, Capitelli M, Giordano D (2000b) Influence of O2(v)+N → NO+O on NO formation in one-dimensional air nozzle flow. J Thermophys Heat Transf 14(3):455–456Google Scholar
  19. Colonna G, Tuttafesta M, Giordano D (2001) Numerical methods to solve Euler equations in one-dimensional steady nozzle flow. Comput Phys Commun 138(3):213–221ADSCrossRefMATHGoogle Scholar
  20. Colonna G, Armenise I, Bruno D, Capitelli M (2006) Reduction of state-to-state kinetics to macroscopic models in hypersonic flows. J Thermophys Heat Transf 20(3):477–486CrossRefGoogle Scholar
  21. Colonna G, Pietanza LD, Capitelli M (2008) Recombination-assisted nitrogen dissociation rates under nonequilibrium conditions. J Thermophys Heat Transf 22(3):399–406CrossRefGoogle Scholar
  22. Colonna G, Pietanza LD, D’Ammando G (2012) Self-consistent collisional-radiative model for hydrogen atoms: atom-atom interaction and radiation transport. Chem Phys 398:37–45ADSCrossRefGoogle Scholar
  23. Colonna G, D’Ammando G, Dikalyuk A, Panesi M, Pietanza LD, Surzhikov ST (2014) Advanced models in shock waves. Open Plasma Phys J 7(Suppl 1:M1):101–113Google Scholar
  24. Colonna G, D’Ammando G, Pietanza LD, Capitelli M (2015) Excited-state kinetics and radiation transport in low-temperature plasmas. Plasma Phys Control Fusion 57(1):014009ADSCrossRefGoogle Scholar
  25. Cutrone L, Tuttafesta M, Capitelli M, Schettino A, Pascazio G, Colonna G (2014) 3D nozzle flow simulations including state-to-state kinetics calculation. In: Proceedings of the XXIX international symposium on rarefied gas dynamics, AIP Conf. Proc. 1628:1154Google Scholar
  26. D’Ammando G, Pietanza LD, Colonna G, Longo S, Capitelli M (2010) Modelling spectral properties of nonequilibrium atomic hydrogen plasma. Spectrochim Acta B 65(2):120–129ADSCrossRefGoogle Scholar
  27. Esposito F, Armenise I, Capitelli M (2006) N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations. Chem Phys 331(1):1–8ADSCrossRefGoogle Scholar
  28. Giordano D, Bellucci V, Colonna G, Capitelli M, Armenise I, Bruno C (1997) Vibrationally relaxing flow of N2 past an infinite cylinder. J Thermophys Heat Transf 11(1):27–35CrossRefGoogle Scholar
  29. Guy A, Bourdon A, Perrin MY (2013) Consistent multi-internal-temperatures models for nonequilibrium nozzle flows. Chem Phys 420:15–24ADSCrossRefGoogle Scholar
  30. Jaffe R, Schwenke D, Chaban G, Huo W (2008) Vibrational and rotational excitation and relaxation of nitrogen from accurate theoretical calculations. 46th AIAA aerospace sciences meeting and exhibit, aerospace sciences meetings, Reno. American Institute of Aeronautics and Astronautics AIAA paper 2008–1208Google Scholar
  31. Jaffe R, Schwenke D, Chaban G (2009) Theoretical analysis of N2 collisional dissociation and rotation-vibration energy transfer. 47th AIAA aerospace sciences meeting including The New Horizons forum and aerospace exposition, aerospace sciences meetings, Orlando. American Institute of Aeronautics and Astronautics AIAA paper 2009–1569Google Scholar
  32. Kadochnikov IN, Loukhovitski BI, Starik AM (2013) Kinetics of plasmachemical processes in the expanding flow of nitrogen plasma. Physica Scripta 88(5):058306ADSCrossRefGoogle Scholar
  33. Laux CO, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12:125ADSCrossRefGoogle Scholar
  34. Laux CO, Pierrot L, Gessman RJ (2012) State-to-state modeling of a recombining nitrogen plasma experiment. Chem Phys 398:46–55ADSCrossRefGoogle Scholar
  35. Loukhovitski B, Starik A (2009) Modeling of vibration–electronic-chemistry coupling in the atomic-molecular oxygen system Chem Phys 360(1–3):18–26ADSCrossRefGoogle Scholar
  36. Mihalas D, Weibel Mihalas B (1984) Foundations of radiation hydrodynamics. Oxford University Press, New YorkMATHGoogle Scholar
  37. Milos FS (1999) Analysis of Galileo probe heatshield ablation and temperature data. J Spacecr Rockets 36(3):298–306ADSCrossRefGoogle Scholar
  38. Modest MF (2003) Radiative heat transfer. Academic Press, Amsterdam London New YorkMATHGoogle Scholar
  39. Monat JP, Hanson RK, Kruger CH (1978) Shock tube determination of the rate coefficient for the reaction N2+O → NO+N. In: Proceedings of 17th symposium (international) on combustion, Combustion Inst., University of Leeds, Leeds, pp 543–552Google Scholar
  40. Munafò A, Panesi M, Jaffe RL, Colonna G, Bourdon A, Magin TE (2012) QCT-based vibrational collisional models applied to nonequilibrium nozzle flows. Eur Phys J D 66(7):188ADSCrossRefGoogle Scholar
  41. Nagnibeda E, Kustova E (2009) Non-equilibrium reacting gas flows: kinetic theory of transport and relaxation processes. Springer series heat and mass transfer. Springer, Berlin/HeidelbergCrossRefMATHGoogle Scholar
  42. Park C (ed) (2012) Nonequilibrium hypersonic aerothermodynamics. Wiley-Interscience, John Wiley & Sons, New YorkGoogle Scholar
  43. Schwenke DW (2008) Dissociation cross-sections and rates for nitrogen. In: Non-equilibrium gas dynamics: from physical models to hypersonic flights. von Karman institute for fluid dynamics lecture series. RTO-EN-AVT-162. Rhode St. Genèse, BelgiumGoogle Scholar
  44. Shizgal BD, Lordet F (1996) Vibrational nonequilibrium in a supersonic expansion with reaction: application to O2-O. J Chem Phys 104(10):3579–3597ADSCrossRefGoogle Scholar
  45. Starik AM, Titova NS, Arsentiev IV (2010) Comprehensive analysis of the effect of atomic and molecular metastable state excitation on air plasma composition behind strong shock waves. Plasma Sources Sci Technol 19(1):015007ADSCrossRefGoogle Scholar
  46. Surzhikov ST (2004) Radiative-gasdynamic model of martian descent space vehicle AIAA paper 2004–1355Google Scholar
  47. Surzhikov ST (2008) A study of the influence of kinetic models on calculations of the radiation-convective heating of a space vehicle in Fire-II flight experiment. Russ J Phys Chem B 2(5):814–826CrossRefGoogle Scholar
  48. Surzhikov ST (2010) Coupled radiation-gasdynamic model for sturdust aerothermodynamic data AIAA paper 2010–4521Google Scholar
  49. Tuttafesta M (2014) Theoretical aspects of reactive gas dynamics aided by massive parallel computing. PhD thesis, PhD School of Physics, Bari UniversityGoogle Scholar
  50. Walpot L, Simeonides G, Muylaert J, Bakker P (1996) High enthalpy nozzle flow sensitivity study and effects on heat transfer. Shock Waves 6(4):197–204ADSCrossRefGoogle Scholar
  51. Zel’dovich YB, Raizer YP (1966) Physics of shock waves and high-temperature hydrodynamic phenomena, vol 1. Academic Press, New York and LondonGoogle Scholar

Copyright information

© Springer New York 2016

Authors and Affiliations

  • Mario Capitelli
    • 1
  • Roberto Celiberto
    • 2
  • Gianpiero Colonna
    • 3
  • Fabrizio Esposito
    • 3
  • Claudine Gorse
    • 1
  • Khaled Hassouni
    • 4
  • Annarita Laricchiuta
    • 3
  • Savino Longo
    • 1
  1. 1.University of Bari and CNRBariItaly
  2. 2.Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh)Polytechnic of BariBariItaly
  3. 3.CNRBariItaly
  4. 4.Laboratoire des Sciences des Procédés et des Matériaux, CNRS-INSISParisFrance

Personalised recommendations