Skip to main content

Abstract

The production of negative H/D ions in cold plasmas is an important topics for fusion research. The Chapter deals with the mechanisms for the creation of negative ions including dissociative attachment from vibrationally excited H2/D2 molecules as well as from Rydberg states. Models based on the coupling of electron energy distribution function, vibrational kinetics and plasma chemistry in multipole magnetic plasmas are used and their results are validated against sophisticated experiments. Advanced particle models for the transport and extraction of negative ions from high power RF plasmas are then developed for fusion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The resonant vibrational excitation processes, known as eV processes in the plasma modeling community, correspond to RVE discussed in Chap. 1

References

  • Bacal M (2006) Physics aspects of negative ion sources. Nucl Fusion 46(6):S250–S259

    Article  ADS  Google Scholar 

  • Bacal M, Hamilton GW (1979) H and D production in plasmas. Phys Rev Lett 42(23):1538

    Article  ADS  Google Scholar 

  • Bacal M, Bruneteau AM, Nachman M (1984) Negative ion production in hydrogen plasmas confined by a multicusp magnetic field. J Appl Phys 55(1):15–24

    Article  ADS  Google Scholar 

  • Bacal M, Baksht F, Ivanov V (1999) Increase of the effective rate constant of the dissociative attachment of electrons to hydrogen molecules due to the H2 vibrational excitation in a hydrogen stream flowing in the channel. J Phys D Appl Phys 32(22):2886–2889

    Article  ADS  Google Scholar 

  • Baksht FG, Ivanov VG, Shkol’nik SM, Bacal M (2005) Volume production of high negative hydrogen ion density in low-voltage caesium-hydrogen discharge. AIP Conf Proc 763(1):138–142

    Article  ADS  Google Scholar 

  • Bandyopadhyay M (2004) Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments. PhD thesis Technische Universitat München, Max-Planck-Institut für Plasmaphysik, Garching

    Google Scholar 

  • Béchu S, Soum-Glaude A, Bès A, Lacoste A, Svarnas P, Aleiferis S, Ivanov AA, Bacal M (2013) Multi-dipolar microwave plasmas and their application to negative ion production. Phys Plasmas (1994-present) 20(10):101601

    Google Scholar 

  • Benmeziane K, Ferdinand R, Gobin R, Gousset G, Sherman JD (2005) 2D PIC-MCC code for Electron-Hydrogen gas interaction study in H ion sources. AIP Conf Proc 763:107–121

    Article  ADS  Google Scholar 

  • Blackwell DD, Chen FF (2001) Time-resolved measurements of the electron energy distribution function in a helicon plasma. Plasma Sources Sci Technol 10(2):226

    Article  ADS  Google Scholar 

  • Boeuf J, Chaudhury B, Garrigues L (2012) Physics of a magnetic filter for negative ion sources. I. Collisional transport across the filter in an ideal, 1D filter. Phys Plasmas 19(11):113509

    Google Scholar 

  • Bogaerts A, Gijbels R, Vlcek J (1998) Collisional-radiative model for an argon glow discharge. J Appl Phys 84(1):121–136

    Article  ADS  Google Scholar 

  • Bowers MT, Elleman DD, King J (1969) Analysis of the Ion-Molecule reactions in gaseous H2, D2, and HD by ion cyclotron resonance techniques. J Chem Phys 50(11):4787–4804

    Article  ADS  Google Scholar 

  • Bretagne J, Delouya G, Gorse C, Capitelli M, Bacal M (1985) Electron energy distribution functions in electron-beam-sustained discharges: application to magnetic multicusp hydrogen discharges. J Phys D Appl Phys 18(5):811

    Article  ADS  Google Scholar 

  • Bretagne J, Delouya G, Capitelli M, Gorse C, Bacal M (1986) On electron energy distribution functions in low-pressure magnetic multicusp hydrogen discharges. J Phys D Appl Phys 19(7):1197

    Article  ADS  Google Scholar 

  • Bretagne J, Graham WG, Hopkins MB (1991) A comparison of experimental and theoretical electron energy distribution functions in a multicusp ion source. J Phys D Appl Phys 24(5):668

    Article  ADS  Google Scholar 

  • Cacciatore M, Capitelli M, Billing GD (1989) Vibration-to-translation energy exchanges in H2 colliding with highly vibrationally excited H2 molecules. Chem Phys Lett 157(4):305–308

    Article  ADS  Google Scholar 

  • Capitelli M (2005) Twenty five years of vibrational kinetics and negative ion production in H2 plasmas: modelling aspects. AIP Conf Proc 763:66–80

    Article  ADS  Google Scholar 

  • Capitelli M, Gorse C (2005) Open problems in the physics of volume H-D sources. IEEE Trans Plasma Sci 33(6):1832–1844

    Article  ADS  Google Scholar 

  • Capitelli M, Celiberto R, Eletskii A, Laricchiuta A (2001) Electron-molecule dissociation cross-sections of H2, N2 and O2 in different vibrational levels. Atomic Plasma-Mater Interact Data Fusion (APID) 9:47–64

    Google Scholar 

  • Capitelli M, Celiberto R, Esposito F, Laricchiuta A, Hassouni K, Longo S (2002) Elementary processes and kinetics of H2 plasmas for different technological applications. Plasma Sources Sci Technol 11(3A):A7

    Article  ADS  Google Scholar 

  • Capitelli M, Cacciatore M, Celiberto R, De Pascale O, Diomede P, Esposito F, Gicquel A, Gorse C, Hassouni K, Laricchiuta A, Longo S, Pagano D, Rutigliano M (2006) Vibrational kinetics, electron dynamics and elementary processes in H2 and D2 plasmas for negative ion production: modelling aspects. Nucl Fusion 46(6):S260–S274

    Article  ADS  Google Scholar 

  • Capitelli M, Celiberto R, Colonna G, D’Ammando G, De Pascale O, Diomede P, Esposito F, Gorse C, Laricchiuta A, Longo S, Pietanza LD, Taccogna F (2011) Plasma kinetics in molecular plasmas and modeling of reentry plasmas. Plasma Phys Control Fusion 53(12):124007

    Article  ADS  Google Scholar 

  • Celiberto R, Janev R, Laricchiuta A, Capitelli M, Wadehra J, Atems D (2001) Cross section data for electron-impact inelastic processes of vibrationally excited molecules of hydrogen and its isotopes. Atomic Data Nucl Data Tables 77(2):161–213

    Article  ADS  Google Scholar 

  • Celiberto R, Capitelli M, Laricchiuta A (2002) Towards a cross section database of excited atomic and molecular hydrogen. Phys Scr 2002(T96):32

    Article  Google Scholar 

  • Chibisov MI, Mitchell JBA, Van der Donk PJT, Yousif FB, Morgan TJ (1997) Dissociative recombination of vibrationally excited H2 + ions: high-Rydberg-state formation. Phys Rev A 56:443–456

    Article  ADS  Google Scholar 

  • Datskos PG, Pinnaduwage LA, Kielkopf JF (1997) Photophysical and electron attachment properties of ArF-excimer-laser irradiated H2. Phys Rev A 55(6):4131–4142

    Article  ADS  Google Scholar 

  • Diomede P, Longo S (2008) Velocity distribution of H ions in low temperature hydrogen plasma. IEEE Trans Plasma Sci 36(4):1600–1606

    Article  ADS  Google Scholar 

  • Diomede P, Longo S (2010) Monte Carlo Cs+ transport from a point source in negative ion sources: effect of the deuterium flow. Plasma Sources Sci Technol 19(1):015019

    Article  ADS  Google Scholar 

  • Diomede P, Longo S, Capitelli M (2005) Vibrational excitation and negative ion production in radio frequency parallel plate H2 plasmas. Eur Phys J D 33(2):243–251

    Article  ADS  Google Scholar 

  • Diomede P, Longo S, Capitelli M (2006) Charged particle dynamics and molecular kinetics in the hydrogen postdischarge plasma. Phys Plasmas 13(11):113505

    Article  ADS  Google Scholar 

  • Diomede P, Hassouni K, Longo S, Capitelli M (2007) Self-consistent modeling of the effect of wall-neutral reactions on parallel plate radio frequency discharge plasma in pure hydrogen. IEEE Trans Plasma Sci 35(5):1241–1246

    Article  ADS  Google Scholar 

  • Eenshuistra PJ, Bonnie JHM, Los J, Hopman HJ (1988) Observation of exceptionally high vibrational excitation of hydrogen molecules formed by wall recombination. Phys Rev Lett 60:341–344

    Article  ADS  Google Scholar 

  • Fantz U, Falter H, Franzen P, Wünderlich D, Berger M, Lorenz A, Kraus W, McNeely P, Riedl R, Speth E (2006a) Spectroscopy–a powerful diagnostic tool in source development. Nucl Fusion 46(6):S297

    Article  ADS  Google Scholar 

  • Fantz U, Falter HD, Franzen P, Speth E, Hemsworth R, Boilson D, Krylov A (2006b) Plasma diagnostic tools for optimizing negative hydrogen ion sources. Rev Sci Instrum 77(3):03A516

    Google Scholar 

  • Fubiani G, Boeuf JP (2013) Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source–Insights from a three dimensional particle-in-cell Monte Carlo collisions model. Phys Plasmas 20(11):113511

    Article  ADS  Google Scholar 

  • Fukumasa O (1989) Numerical studies on the optimisation of volume-produced H ions in the single-chamber system. J Phys D Appl Phys 22(11):1668

    Article  ADS  Google Scholar 

  • Fukumasa O, Mori S (2005) Isotope effect of H/D volume production in Low-Pressure H2/D2 plasmas – negative ion densities versus plasma parameters. AIP Conf Proc 763:57–65

    Article  ADS  Google Scholar 

  • Fukumasa O, Shinoda M (1998) Pulse modulation for plasma parameter control and optimization of volume H ion source. Rev Sci Instrum 69(2):938–940

    Article  ADS  Google Scholar 

  • Fukumasa O, Nakano T, Mori S, Oohara W, Tsumori K, Takeiri Y, Surrey E, Simonin A (2009) Enhancement of D negative ion volume production in pure deuterium plasmas. AIP Conf Proc 1097:118–126

    Article  ADS  Google Scholar 

  • Gaboriau F, Boeuf JP (2014) Chemical kinetics of low pressure high density hydrogen plasmas: application to negative ion sources for ITER. Plasma Sources Sci Technol 23(6):065032

    Article  ADS  Google Scholar 

  • Garscadden A, Nagpal R (1995) Non-equilibrium electronic and vibrational kinetics in H2-N2 and H2 discharges. Plasma Sources Sci Technol 4(2):268

    Article  ADS  Google Scholar 

  • Goretsky VP, Ryabtsev AV, Soloshenko IA, Shchedrin AI (2007) Research of the negative ion source based on reflective discharge with and without addition of cesium. AIP Conf Proc 925:58–68

    Article  ADS  Google Scholar 

  • Gorse C, Capitelli M (1992) Enhanced production of negative ions in low-pressure hydrogen and deuterium pulsed discharges: theoretical calculations. Phys Rev A 46(4):2176–2177

    Article  ADS  Google Scholar 

  • Gorse C, Capitelli M, Bretagne J, Bacal M (1985) Vibrational excitation and negative-ion production in magnetic multicusp hydrogen discharges. Chem Phys 93(1):1–12

    Article  ADS  Google Scholar 

  • Gorse C, Capitelli M, Bacal M, Bretagne J, Laganà A (1987) Progress in the non-equilibrium vibrational kinetics of hydrogen in magnetic multicusp H ion sources. Chem Phys 117(2):177–195

    Article  ADS  Google Scholar 

  • Gorse C, Celiberto R, Cacciatore M, Laganà A, Capitelli M (1992) From dynamics to modeling of plasma complex systems: negative ion (H) sources. Chem Phys 161(1–2):211–227

    Article  ADS  Google Scholar 

  • Gorse C, Capitelli M, Celiberto R, Iasillo D, Longo S (1996) Recent advances in H2/D2 plasma kinetics. AIP Conf Proc 380:109–117

    Article  ADS  Google Scholar 

  • Hall RI, Čadež I, Landau M, Pichou F, Schermann C (1988) Vibrational excitation of hydrogen via recombinative desorption of atomic hydrogen gas on a metal surface. Phys Rev Lett 60:337–340

    Article  ADS  Google Scholar 

  • Hassouni K, Gicquel A, Capitelli M (1998) The role of dissociative attachment from Rydberg states in enhancing H concentration in moderate- and low-pressure H2 plasma sources. Chem Phys Lett 290(4–6):502–508

    Article  ADS  Google Scholar 

  • Hassouni K, Gicquel A, Capitelli M, Loureiro J (1999) Chemical kinetics and energy transfer in moderate pressure H2 plasmas used in diamond MPACVD processes. Plasma Sources Sci Technol 8(3):494

    Article  ADS  Google Scholar 

  • Hassouni K, Silva F, Gicquel A (2010) Modelling of diamond deposition microwave cavity generated plasmas. J Phys D Appl Phys 43(15):153001

    Article  ADS  Google Scholar 

  • Hatayama A, Makino K, Sakurabayasi T, Miyamoto K, Ogasawara M, Bacal M (2004) Numerical analysis of negative ion temperature in a negative ion source. Rev Sci Instrum 75(5):1650–1652

    Article  ADS  Google Scholar 

  • Hiskes JR (1980) Cross sections for the vibrational excitation of the H2(\(X^{1}\varSigma _{g}^{+}\)) state via electron collisional excitation of the higher singlet states. J Appl Phys 51(9):4592–4594

    Article  ADS  Google Scholar 

  • Hiskes JR (1996a) Molecular Rydberg states in hydrogen negative ion discharges. Appl Phys Lett 69(6):755

    Article  ADS  Google Scholar 

  • Hiskes JR (1996b) The role of high Rydberg states in the generation of negative ions in negative-ion discharges. AIP Conf Proc 380:61–75

    Article  ADS  Google Scholar 

  • Hiskes JR, Karo AM (1984) Generation of negative ions in tandem high-density hydrogen discharges. J Appl Phys 56(7):1927–1938

    Article  ADS  Google Scholar 

  • Hiskes JR, Karo AM (1989) Analysis of the H2 vibrational distribution in a hydrogen discharge. Appl Phys Lett 54(6):508–510

    Article  ADS  Google Scholar 

  • Hiskes JR, Karo AM, Willmann PA (1985) Optimum extracted negative-ion current densities from tandem high-density systems. J Appl Phys 58(5):1759–1764

    Article  ADS  Google Scholar 

  • Hopkins MB, Mellon KN (1991) Enhanced production of negative ions in low-pressure hydrogen and deuterium discharges. Phys Rev Lett 67(4):449–452

    Article  ADS  Google Scholar 

  • Hopkins MB, Bacal M, Graham WG (1991) Enhanced volume production of negative ions in the post discharge of a multicusp hydrogen discharge. J Appl Phys 70(4):2009–2014

    Article  ADS  Google Scholar 

  • Hopman H, Heeren R (1992) Negative ion source technology. In: Capitelli M, Gorse C (eds) Plasma technology. Springer US, pp 185–201

    Google Scholar 

  • Huh SR, Kim NK, Jung BK, Chung KJ, Hwang YS, Kim GH (2015) Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-maxwellian electron energy distributions. Phys Plasmas 22(3):033506

    Article  ADS  Google Scholar 

  • IAEA (2013) Atomic and Molecular Data Unit. www-amdis.iaea.org

  • Ichihara A, Iwamoto O, Janev RK (2000) Cross sections for the reaction H+ + H2(v=0-14) → H+H2 + at low collision energies. J Phys B Atomic Mol Opt Phys 33(21):4747

    Article  ADS  Google Scholar 

  • Janev RK, Reiter D, Samm U (2003) Collisional processes in low temperature hydrogen plasmas. Institut für Plasmaphysik, Jülich, Germany Forschungszentrum Jülich Rep. 4105

    Google Scholar 

  • Ji-Zhong S, Xian-Tao L, Jing B, De-Zhen W (2012) Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge. Chin Phys B 21(5):055205

    Article  ADS  Google Scholar 

  • Karpas Z, Anicich V, Huntress WT (1979) An ion cyclotron resonance study of reactions of ions with hydrogen atoms. J Chem Phys 70(6):2877–2881

    Article  ADS  Google Scholar 

  • Kim YK, Rudd ME (1994) Binary-encounter-dipole model for electron-impact ionization. Phys Rev A 50(5):3954–3967

    Article  ADS  Google Scholar 

  • Kramers HA (1923) XCIII. On the theory of x-ray absorption and of the continuous x-ray spectrum. Philosophical Magazine Series 6 46(275):836–871

    Article  Google Scholar 

  • Laricchiuta A, Celiberto R, Esposito F, Capitelli M (2006) State-to-state cross sections for H2 and its isotopic variants. Plasma Sources Sci Technol 15(2):S62

    Article  ADS  Google Scholar 

  • Longo S (2000) Monte Carlo models of electron and ion transport in non-equilibrium plasmas. Plasma Sources Sci Technol 9(4):468

    Article  ADS  MathSciNet  Google Scholar 

  • Matveyev AA, Silakov VP (1995) Kinetic processes in a highly-ionized non-equilibrium hydrogen plasma. Plasma Sources Sci Technol 4(4):606

    Article  ADS  Google Scholar 

  • Mosbach T (2002) Do hydrogenic Rydberg molecules represent an efficient channel for the production of H ions in low temperature plasmas? Conference paper 16th European conference on atomic and molecular physics of ionized gases (ESCAMPIG16), Grenoble, France pp 231–232

    Google Scholar 

  • Mosbach T (2005) Population dynamics of molecular hydrogen and formation of negative hydrogen ions in a magnetically confined low temperature plasma. Plasma Sources Sci Technol 14(3):610

    Article  ADS  Google Scholar 

  • Mosbach T, Katsch HM, Döbele HF (1998) Temporal behaviour of the H density in a pulsed multipole discharge investigated by the photodetachment technique. Plasma Sources Sci Technol 7(1):75

    Article  ADS  Google Scholar 

  • Mosbach T, Katsch HM, Döbele HF (2000) In situ diagnostics in plasmas of electronic-ground-state hydrogen molecules in high vibrational and rotational states by laser-induced fluorescence with vacuum-ultraviolet radiation. Phys Rev Lett 85(16):3420

    Article  ADS  Google Scholar 

  • NIST (2013) Atomic spectra database and lines. physics.nist.gov/cgi-bin/AtData/lines_form

  • Pagano D, Gorse C, Capitelli M (2006) Atomic wall recombination and volume negative ion production. Rev Sci Instrum 77(3):03A505

    Google Scholar 

  • Pagano D, Gorse C, Capitelli M (2007) Modeling multicusp negative-ion sources. IEEE Trans Plasma Sci 35(5):1247–1259

    Article  ADS  Google Scholar 

  • Pinnaduwage LA, Christophorou LG (1993) H formation in laser-excited molecular hydrogen. Phys Rev Lett 70(6):754–757

    Article  ADS  Google Scholar 

  • Pinnaduwage LA, Ding WX, McCorkle DL, Lin SH, Mebel AM, Garscadden A (1999) Enhanced electron attachment to Rydberg states in molecular hydrogen volume discharges. J Appl Phys 85(10):7064–7069

    Article  ADS  Google Scholar 

  • Shakhatov V, Lebedev Y (2011) Collisional-radiative model of hydrogen low-temperature plasma: processes and cross sections of electron-molecule collisions. High Temp 49(2):257–302

    Article  Google Scholar 

  • Shibata T, Kashiwagi M, Inoue T, Hatayama A, Hanada M (2013) Numerical study of atomic production rate in hydrogen negative ion sources with the effect of non-equilibrium electron energy distribution function. J Appl Phys 114(14):143301

    Article  ADS  Google Scholar 

  • Svarnas P, Breton J, Bacal M, Mosbach T (2006) Pressure optimization for H ion production in an electron cyclotron resonance-driven and a filamented source. Rev Sci Instrum 77(3):03A532

    Google Scholar 

  • Taccogna F, Schneider R, Longo S, Capitelli M (2007) Modeling of a negative ion source. I. Gas kinetics and dynamics in the expansion region. Phys Plasmas 14(7):073503

    Google Scholar 

  • Taccogna F, Longo S, Capitelli M, Schneider R (2008a) Negative-ion-source modeling: from expansion to extraction region. IEEE Trans Plasma Sci 36(4):1589–1599

    Article  ADS  Google Scholar 

  • Taccogna F, Schneider R, Longo S, Capitelli M (2008b) Modeling of a negative ion source. II. Plasma-gas coupling in the extraction region. Phys Plasmas 15(10):103502

    Google Scholar 

  • Taccogna F, Minelli P, Longo S, Capitelli M, Schneider R (2010) Modeling of a negative ion source. III. Two-dimensional structure of the extraction region. Phys Plasmas 17(6):063502

    Google Scholar 

  • Taccogna F, Minelli P, Diomede P, Longo S, Capitelli M, Schneider R (2011) Particle modelling of the hybrid negative ion source. Plasma Sources Sci Technol 20(2):024009

    Article  ADS  Google Scholar 

  • Taccogna F, Minelli P, Longo S (2013) Three-dimensional structure of the extraction region of a hybrid negative ion source. Plasma Sources Sci Technol 22(4):045019

    Article  ADS  Google Scholar 

  • Tawara H, Itikawa Y, Nishimura H, Yoshino M (1990) Cross sections and related data for electron collisions with hydrogen molecules and molecular ions. J Phys Chem Ref Data 19(3):617–636

    Article  ADS  Google Scholar 

  • Toader EI (2004) Production of negative hydrogen ions using a low-pressure reflex discharge source. Nukleonika 51(1):29–35

    Google Scholar 

  • Velasco AJC, Dougar-Jabon V (2004) Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production. 12th International congress on plasma physics, 25–29 Oct 2004, Nice, arXiv:physics/0411128

    Google Scholar 

  • Zorat R, Goss J, Boilson D, Vender D (2000) Global model of a radiofrequency H2 plasma in DENISE. Plasma Sources Sci Technol 9(2):161

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Capitelli, M. et al. (2016). Negative Ion H Kinetics for Fusion. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8185-1_10

Download citation

Publish with us

Policies and ethics