Electron-Molecule Collision Cross Sections and Rate Coefficients for Processes Involving Excited States

  • Mario Capitelli
  • Roberto Celiberto
  • Gianpiero Colonna
  • Fabrizio Esposito
  • Claudine Gorse
  • Khaled Hassouni
  • Annarita Laricchiuta
  • Savino Longo
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 85)


This Chapter deals with internal transitions, induced by electron impact, of diatomic molecules initially in a given quantum state, with particular emphasis on the vibrational excitations, which play a prominent role in the energy balance of the molecular plasmas (Capitelli et al. 2011). An efficient process for the activation of the vibrational degrees of freedom is represented by the resonant collisions whose mechanism involves the capture from the molecule of the incident electron, with the concomitant formation of a molecular anion. This is a transient species, better described as a resonant state, which can either decay, by electron emission, back into some excited vibrational level of the neutral molecule, giving rise to the so-called resonant vibrational excitation (RVE), or can dissociate by production of a neutral atom and a negative atomic ion. This last process, known as dissociative electron attachment (DEA), can occur if the atomic negative ion exists in a stable state. Unlike the direct inelastic vibrational excitation, which is an inefficient process usually involving few vibrational levels, particularly for homonuclear molecules owing no permanent dipole moment, multi-quantum vibrational transitions can occur, on the contrary, through the above resonant mechanism which can promote effectively the activation of high vibrational levels.


Rate Coefficient Vibrational Level Resonant State Transition Dipole Moment Electron Energy Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allan M (1985) Excitation of vibrational levels up to v=17 in N2 by electron impact in the 0–5 eV region. J Phys B At Mol Opt Phys 18(22):4511ADSCrossRefGoogle Scholar
  2. Allan M (1995) Measurement of absolute differential cross sections for vibrational excitation of O2 by electron impact. J Phys B At Mol Opt Phys 28(23):5163ADSCrossRefGoogle Scholar
  3. Allan M (2005) Electron collisions with NO: elastic scattering, vibrational excitation and \(^{2}\Pi _{1/2} \rightarrow ^{2}\Pi _{3/2}\) transitions. J Phys B At Mol Opt Phys 38(5):603ADSCrossRefGoogle Scholar
  4. Allan M (2010) Electron collisions with CO: elastic and vibrational excitation cross sections. Phys Rev A 81:042706ADSCrossRefGoogle Scholar
  5. Atems DE, Wadehra JM (1993) Resonant contributions to dissociation of H2 by low-energy electron impact. J Phys B At Mol Opt Phys 26(21):L759ADSCrossRefGoogle Scholar
  6. Bacal M (2012) Negative hydrogen ion production in fusion dedicated ion sources. Chem Phys 398:3ADSCrossRefGoogle Scholar
  7. Baluja KL, Msezane AZ (2001) Electron collisions with methylidyne (CH) radical using the R-matrix method. J Phys B At Mol Opt Phys 34:3157ADSCrossRefGoogle Scholar
  8. Bardsley JN, Mandl F (1968) Resonant scattering of electrons by molecules. Rep Prog Phys 31(2):471ADSCrossRefGoogle Scholar
  9. Cǎdez I, Gresteau F, Tronc M, Hall RI (1977) Resonant electron impact excitation of CO2 in the 4 e V region. J Phys B At Mol Phys 10(18):3821ADSCrossRefGoogle Scholar
  10. Capitelli M, Cacciatore M, Celiberto R, De Pascale O, Diomede P, Esposito F, Gicquel A, Gorse C, Hassouni K, Laricchiuta A, Longo S, Pagano D, Rutigliano M (2006) Vibrational kinetics, electron dynamics and elementary processes in H2 and D2 plasmas for negative ion production: modelling aspects. Nucl Fusion 46(6):S260–S274ADSCrossRefGoogle Scholar
  11. Capitelli M, Celiberto R, Esposito F, Laricchiuta A (2009) Molecular dynamics for state-to-state kinetics of non-equilibrium molecular plasmas: state of art and perspectives. Plasma Process Polym 6(5):279–294CrossRefGoogle Scholar
  12. Capitelli M, Celiberto R, Colonna G, D’Ammando G, De Pascale O, Diomede P, Esposito F, Gorse C, Laricchiuta A, Longo S, Pietanza LD, Taccogna F (2011) Plasma kinetics in molecular plasmas and modeling of reentry plasmas. Plasma Phys Control Fusion 53(12):124007ADSCrossRefGoogle Scholar
  13. Cederbaum LS, Domcke W (1981) Local against non-local complex potential in resonant electron-molecule scattering. J Phys B At Mol Phys 14:4665–4689ADSCrossRefGoogle Scholar
  14. Celiberto R, Janev RK, Wadehra JM, Laricchiuta A (2008) Cross sections for 11–14-eV e-H2 resonant collisions: vibrational excitation. Phys Rev A 77(1):012714ADSCrossRefGoogle Scholar
  15. Celiberto R, Janev RK, Reiter D (2009a) Basic molecular processes for hydrocarbon spectroscopy in fusion edge plasmas: vibrationally state-selective excitation of \(\mathrm{A}\ ^{2}\Delta\), \(\mathrm{B}^{2}\Sigma ^{-}\) and \(\mathrm{C}\ ^{2}\Sigma ^{+}\) states of CH by electron impact. Plasma Phys Control Fusion 51:085012ADSCrossRefGoogle Scholar
  16. Celiberto R, Janev RK, Wadehra JM, Laricchiuta A (2009b) Cross sections for 14-eV e-H2 resonant collisions: dissociative electron attachment. Phys Rev A 80:012712ADSCrossRefGoogle Scholar
  17. Celiberto R, Janev R, Wadehra J, Tennyson J (2012a) Dissociative electron attachment to vibrationally excited H2 molecules involving the resonant rydberg electronic state. Chem Phys 398(0):206–213ADSCrossRefGoogle Scholar
  18. Celiberto R, Janev RK, Reiter D (2012b) State-to-state electron impact cross sections for BeH+ molecular ions in ITER-like fusion edge plasmas with Be walls. Plasma Phys Control Fusion 54:035012ADSCrossRefGoogle Scholar
  19. Celiberto R, Baluja KL, Janev RK (2013a) Electron-impact state-to-state resolved cross sections and rate coefficients for the \(\mathrm{X}(v) \rightarrow \mathrm{ A}(v')\) excitation in BeH molecules. Plasma Sources Sci Technol 22:015008ADSCrossRefGoogle Scholar
  20. Celiberto R, Janev JK, Laporta V, Tennyson J, Wadehra JM (2013b) Electron-impact vibrational excitation of vibrationally excited H2 molecules involving the resonant \(^{2}\Sigma _{g}^{+}\) Rydberg-excited electronic state. Phys Rev A 88(6):062701ADSCrossRefGoogle Scholar
  21. Celiberto R, Laporta V, Laricchiuta A, Wadehra J, Tennyson J (2014) Molecular physics of elementary processes relevant to hypersonics: electron-molecule collisions. Open Plasma Phys J 7(Suppl 1: M1):33–47Google Scholar
  22. Chakrabarti K, Tennyson J (2012) Electron collisions with the BeH+ molecular ion in the R-matrix approach. Eur Phys J D 66(1):31ADSCrossRefGoogle Scholar
  23. Chu SI, Dalgarno A (1974) Rotational excitation of CH+ by electron impact. Phys Rev A 10:788ADSCrossRefGoogle Scholar
  24. Clark REH, Reiter D (eds) (2005) Nuclear fusion research: understanding plasma-surface interactions. Springer Series in Chemical Physics, vol 78. Springer HeidelbergGoogle Scholar
  25. Comer J, Read FH (1971) Potential curves and symmetries of some resonant states of H2 . J Phys B 4:368ADSCrossRefGoogle Scholar
  26. Dubé L, Herzenberg A (1979) Absolute cross sections from the “boomerang model” for resonant electron-molecule scattering. Phys Rev A 20(1):194–213ADSCrossRefGoogle Scholar
  27. Gilmore FR (1965) Potential energy curves for N2, NO, O2 and corresponding ions. J Quant Spectrosc Radiat Transf 5(2):369–389. IN1-IN3Google Scholar
  28. Huo WM, McCoy V, Lima MAP, Gibson TL (1986) Electron-nitrogen molecule collisions in high temperature nonequilibrium air. In: Moss JN, Scott CD (eds) Thermochemical aspects of re-entry flows. Progress in astronautics and aeronautics, vol 103. AIAA, New York, pp 152–196Google Scholar
  29. Huo WM, Gibson TL, Lima MAP, McKoy V (1987) Schwinger multichannel study of the \(^{2}\Pi _{g}\) shape resonance in N2. Phys Rev A 36(4):1632–1641ADSCrossRefGoogle Scholar
  30. Laporta V, Cassidy CM, Tennyson J, Celiberto R (2012a) Electron-impact resonant vibration excitation cross sections and rate coefficients for carbon monoxide. Plasma Sources Sci Technol 21(4):045005ADSCrossRefGoogle Scholar
  31. Laporta V, Celiberto R, Wadehra JM (2012b) Theoretical vibrational-excitation cross sections and rate coefficients for electron-impact resonant collisions involving rovibrationally excited N2 and NO molecules. Plasma Sources Sci Technol 21(5):055018ADSCrossRefGoogle Scholar
  32. Laporta V, Celiberto R, Tennyson J (2013) Resonant vibrational-excitation cross sections and rate constants for low-energy electron scattering by molecular oxygen. Plasma Sources Sci Technol 22(2):025001ADSCrossRefGoogle Scholar
  33. Laporta V, Little DA, Celiberto R, Tennyson J (2014) Electron-impact resonant vibrational excitation and dissociation processes involving vibrationally excited N2 molecules. Plasma Sources Sci Technol 23(6):065002ADSCrossRefGoogle Scholar
  34. Laporta V, Celiberto R, Tennyson J (2015) Dissociative electron attachment and electron-impact resonant dissociation of vibrationally excited O2 molecules. Phys Rev A 91:012701ADSCrossRefGoogle Scholar
  35. Le Roy RJ, Huang Y, Jary C (2006) An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data. J Chem Phys 125(16):164310ADSCrossRefGoogle Scholar
  36. Machado FBC, Ornellas R (1991) A theoretical investigation of the low-lying electronic states of the molecule BeH+. J Chem Phys 94:7237ADSCrossRefGoogle Scholar
  37. Morgan LA (1991) Low-energy electron scattering by CO. J Phys B At Mol Opt Phys 24(21):4649ADSCrossRefGoogle Scholar
  38. Mott NF, Massey HSW (1965) The theory of atomic collisions. Oxford University Press, OxfordMATHGoogle Scholar
  39. Noble CJ, Higgins K, Wöste G, Duddy P, Burke PG, Teubner PJO, Middleton AG, Brunger MJ (1996) Resonant mechanisms in the vibrational excitation of ground state O2. Phys Rev Lett 76(19):3534–3537ADSCrossRefGoogle Scholar
  40. Pitarch-Ruiz J, Sanchez-Marin J, Velasco AM, Martin I (2008) Full configuration interaction calculation of BeH adiabatic states. J Chem Phys 129:054310ADSCrossRefGoogle Scholar
  41. Rapp D, Sharp E, Briglia DD (1965) Large isotope effect in the formation of H od D by electron impact on H2, HD, and D2. Phys Rev Lett 14:533ADSCrossRefGoogle Scholar
  42. Rescigno TN, Isaacs WA, Orel AE, Meyer HD, McCurdy CW (2002) Theoretical study of resonant vibrational excitation of CO2 by electron impact. Phys Rev A 65:032716ADSCrossRefGoogle Scholar
  43. Schneider BI, Le Dourneuf M, Lan VK (1979) Resonant vibrational excitation of N2 by low-energy electrons: an ab initio R-matrix calculation. Phys Rev Lett 43(26):1926–1929ADSCrossRefGoogle Scholar
  44. Schulz GJ (1959) Formation of H ions by electron impact on H2. Phys Rev 113:816ADSCrossRefGoogle Scholar
  45. Stibbe DT, Tennyson J (1997a) Ab initio calculations of vibrationally resolved resonances in electron collisions with H2, HD, and D2. Phys Rev Lett 79:4116ADSCrossRefGoogle Scholar
  46. Stibbe DT, Tennyson J (1997b) Parent state swapping of resonances in electron-hydrogen molecule scattering. J Phys B At Mol Opt Phys 30:L301–L307ADSCrossRefGoogle Scholar
  47. Stibbe DT, Tennyson J (1998) Electron-H2 scattering resonances as a function of bond length. J Phys B At Mol Opt Phys 31:815–844ADSCrossRefGoogle Scholar
  48. Trevisan CS, Houfek K, Zhang Z, Orel AE, McCurdy CW, Rescigno TN (2005) Nonlocal model of dissociative electron attachment and vibrational excitation of NO. Phys Rev A 71(5):052714ADSCrossRefGoogle Scholar
  49. van Dishoeck EF (1987) Photodissociation processes in the CH molecule. J Chem Phys 86:196ADSCrossRefGoogle Scholar
  50. Wadehra JM (1979) Rates of dissociative attchment of electrons to excited H2 and D2. Appl Phys Lett 35:917ADSCrossRefGoogle Scholar
  51. Wadehra JM (1986) Vibrational excitation and dissociative attachment. In: Capitelli M. (ed) Non-equilibrium vibrational kinetics. Topics in Current Physics, vol 39, Springer Heidelberg, pp. 191–232.Google Scholar
  52. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M et al (2010) Molpro, version 2010.1, a package of ab initio programsGoogle Scholar
  53. Wong SF, Boness MJW, Schulz GJ (1973) Vibrational excitation of O2 by electron impact above 4 eV. Phys Rev Lett 31(16):969–972ADSCrossRefGoogle Scholar

Copyright information

© Springer New York 2016

Authors and Affiliations

  • Mario Capitelli
    • 1
  • Roberto Celiberto
    • 2
  • Gianpiero Colonna
    • 3
  • Fabrizio Esposito
    • 3
  • Claudine Gorse
    • 1
  • Khaled Hassouni
    • 4
  • Annarita Laricchiuta
    • 3
  • Savino Longo
    • 1
  1. 1.University of Bari and CNRBariItaly
  2. 2.Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh)Polytechnic of BariBariItaly
  3. 3.CNRBariItaly
  4. 4.Laboratoire des Sciences des Procédés et des Matériaux, CNRS-INSISParisFrance

Personalised recommendations