Skip to main content

Electronic Excitation and Thermodynamic Properties of Thermal Plasmas

  • Chapter
  • First Online:
Fundamental Aspects of Plasma Chemical Physics

Abstract

In this chapter, we will show the importance of electronic excitation in deriving partition functions, their first and second derivatives, as well as the thermodynamic properties of single atomic species and of plasma mixture. Recent results obtained by using different cutoff criteria are discussed and compared with the so-called ground state method, i.e., by inserting in the electronic partition function only the ground electronic state of the atomic species. The results obtained by a self-consistent calculation of partition function, equilibrium composition and thermodynamic properties will be rationalized taking into account the qualitative considerations reported in Chap. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    z s  = 0 for neutrals, \({z}_{e} = -1\) for electrons, z s  = 1 for single ionized atoms and so on.

  2. 2.

    This boundary condition is completely different from that one considered for the not confined atom, i.e., \(\mathcal{R}(r = \infty ) = 0\).

  3. 3.

    Note that the preexponential term reports the calculated electron partition function to the counting of electronic levels from the ground state

References

  • Capitelli M, Ferraro G (1976) Cut–off criteria of electronic partition functions: effects on spectroscopic quantities. Spectrochimica Acta 31B:323–326

    ADS  Google Scholar 

  • Capitelli M, Ficocelli E (1970) Frozen properties and cut–off criteria of high temperature gases. Zeitschrift für Naturforschung A 25a(6):977–979

    Google Scholar 

  • Capitelli M, Ficocelli E (1971) The contribution of electronic excitation to the total specific heat of high temperature gases: a misinterpreted absence. Journal of Plasma Physics 5(1):115–121

    Article  ADS  Google Scholar 

  • Capitelli M, Ficocelli E (1977) Thermodynamic properties of Ar − H 2. Revue Internationale des Hautes Temperatures et des Refractaires 14:195–200

    Google Scholar 

  • Capitelli M, Giordano D (2009) Energy levels of atomic hydrogen in a closed box: A natural cutoff criterion of the electronic partition function. Physical Review A 80(3):032,113

    Google Scholar 

  • Capitelli M, Molinari E (1970) Problems of determination of high temperature thermodynamic properties of rare gases with application to mixtures. Journal of Plasma Physics 4(2):335–355

    Article  ADS  Google Scholar 

  • Capitelli M, Ficocelli E, Molinari E (1970a) Equilibrium composition and thermodynamic properties of mixed plasmas. II argon–oxygen plasmas at 10 − 2 - 10 atmospheres, between 2000 K and 35000 K. Adriatica Editrice, Bari, Italy

    Google Scholar 

  • Capitelli M, Ficocelli E, Molinari E (1971) Electronic excitation and thermodynamic properties of high temperature gases. Zeitschrift für Naturforschung A 26a(4):672–683

    Google Scholar 

  • Capitelli M, Colonna G, Giordano D, Marraffa L, Casavola A, Minnelli D P ad Pagano, Pietanza LD, Taccogna F (2005a) Tables of internal partition functions and thermodynamic properties of high–temperature Mars–atmosphere species from 50 K to 50000 K. Tech. Rep. STR-246, European Space Agency

    Google Scholar 

  • Capitelli M, Giordano D, Colonna G (2008) The role of Debye–Hückel electronic energy levels on the thermodynamic properties of hydrogen plasmas including isentropic coefficients. Physics of Plasmas 15:082,115

    Google Scholar 

  • Capitelli M, Bruno D, Colonna G, D’Ammando G, D’Angola A, Giordano D, Gorse C, Laricchiuta A, Longo S (2011a) Thermodynamic properties of gases behind shock waves. In: Brun R (ed) Encyclopaedia of Shock Waves, vol 7, Springer

    Google Scholar 

  • Ecker G, Weizel W (1956) Zustandssumme und effektive lonisierungsspannung eines atoms im innern des plasmas. Annalen der Physik 17(2–3):126–140

    Article  ADS  MATH  Google Scholar 

  • Giordano D, Capitelli M, Colonna G, Gorse C (1994) Tables of internal partition functions and thermodynamic properties of high–temperature air species from 50 K to 10000 K. Tech. Rep. STR-237, European Space Agency

    Google Scholar 

  • Gordon S, McBride B (1994) Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311, NASA

    Google Scholar 

  • Griem HR (1962) High-density corrections in plasma spectroscopy. Physical Review 128: 997–1003

    Article  ADS  Google Scholar 

  • Gurvich L, Veyts I (1989) Thermodynamic Properties of Individual Substances, vol 1–4. Hemisphere Publishing Corporation

    Google Scholar 

  • Hummer D, Mihalas D (1988) The equation of state for stellar envelopes. i. an occupation probability formalism for the truncation of internal partition functions. The Astrophysical Journal 331:794–814

    Article  ADS  Google Scholar 

  • Kremp D, Schlanges M, Kraeft WD (2005) Quantum Statistics of Nonideal Plasmas. Atomic, Optical and Plasma Physics, Springer

    Google Scholar 

  • Margenau H, Lewis M (1959) Structure of spectral lines from plasmas. Reviews of Modern Physics 31(3):569–615

    Article  ADS  MATH  Google Scholar 

  • Moore CE (1949) Selected tables of atomic spectra. Nbs-467, National Bureau of Standards

    Google Scholar 

  • NIST (2009) URL http://www.nist.gov/srd/index.htm

  • Roussel KM, O’Connell RF (1974) Variational solution of Schrödinger equation for the static screened Coulomb potential. Physical Review A 9:52–56

    Article  ADS  Google Scholar 

  • Singh K, Singh G, Sharma R (2010) Role of electronic excitation on thermodynamic and transport properties of argon and argon–hydrogen plasma. Physics of Plasmas 17(7):072,309

    Google Scholar 

  • Smith CR (1964) Bound states in a Debye–Hückel potential. Physical Review 134(5A): A1235–A1237

    Google Scholar 

  • Vorob’ev V, Mulenko I, Khomkin A (2000) The importance of excited states in the thermodynamics of partially ionized plasma. High Temperature 38(4):509–514

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Capitelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Capitelli, M., Colonna, G., D’Angola, A. (2012). Electronic Excitation and Thermodynamic Properties of Thermal Plasmas. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 66. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8182-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8182-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8181-3

  • Online ISBN: 978-1-4419-8182-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics