Advertisement

Electronic Excitation and Thermodynamic Properties of Thermal Plasmas

  • Mario CapitelliEmail author
  • Gianpiero Colonna
  • Antonio D’Angola
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 66)

Abstract

In this chapter, we will show the importance of electronic excitation in deriving partition functions, their first and second derivatives, as well as the thermodynamic properties of single atomic species and of plasma mixture. Recent results obtained by using different cutoff criteria are discussed and compared with the so-called ground state method, i.e., by inserting in the electronic partition function only the ground electronic state of the atomic species. The results obtained by a self-consistent calculation of partition function, equilibrium composition and thermodynamic properties will be rationalized taking into account the qualitative considerations reported in Chap. 1.

Keywords

Partition Function Electronic Excitation Debye Length Logarithmic Derivative Cutoff Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Capitelli M, Ferraro G (1976) Cut–off criteria of electronic partition functions: effects on spectroscopic quantities. Spectrochimica Acta 31B:323–326ADSGoogle Scholar
  2. Capitelli M, Ficocelli E (1970) Frozen properties and cut–off criteria of high temperature gases. Zeitschrift für Naturforschung A 25a(6):977–979Google Scholar
  3. Capitelli M, Ficocelli E (1971) The contribution of electronic excitation to the total specific heat of high temperature gases: a misinterpreted absence. Journal of Plasma Physics 5(1):115–121ADSCrossRefGoogle Scholar
  4. Capitelli M, Ficocelli E (1977) Thermodynamic properties of Ar − H 2. Revue Internationale des Hautes Temperatures et des Refractaires 14:195–200Google Scholar
  5. Capitelli M, Giordano D (2009) Energy levels of atomic hydrogen in a closed box: A natural cutoff criterion of the electronic partition function. Physical Review A 80(3):032,113Google Scholar
  6. Capitelli M, Molinari E (1970) Problems of determination of high temperature thermodynamic properties of rare gases with application to mixtures. Journal of Plasma Physics 4(2):335–355ADSCrossRefGoogle Scholar
  7. Capitelli M, Ficocelli E, Molinari E (1970a) Equilibrium composition and thermodynamic properties of mixed plasmas. II argon–oxygen plasmas at 10 − 2 - 10 atmospheres, between 2000 K and 35000 K. Adriatica Editrice, Bari, ItalyGoogle Scholar
  8. Capitelli M, Ficocelli E, Molinari E (1971) Electronic excitation and thermodynamic properties of high temperature gases. Zeitschrift für Naturforschung A 26a(4):672–683Google Scholar
  9. Capitelli M, Colonna G, Giordano D, Marraffa L, Casavola A, Minnelli D P ad Pagano, Pietanza LD, Taccogna F (2005a) Tables of internal partition functions and thermodynamic properties of high–temperature Mars–atmosphere species from 50 K to 50000 K. Tech. Rep. STR-246, European Space AgencyGoogle Scholar
  10. Capitelli M, Giordano D, Colonna G (2008) The role of Debye–Hückel electronic energy levels on the thermodynamic properties of hydrogen plasmas including isentropic coefficients. Physics of Plasmas 15:082,115Google Scholar
  11. Capitelli M, Bruno D, Colonna G, D’Ammando G, D’Angola A, Giordano D, Gorse C, Laricchiuta A, Longo S (2011a) Thermodynamic properties of gases behind shock waves. In: Brun R (ed) Encyclopaedia of Shock Waves, vol 7, SpringerGoogle Scholar
  12. Ecker G, Weizel W (1956) Zustandssumme und effektive lonisierungsspannung eines atoms im innern des plasmas. Annalen der Physik 17(2–3):126–140ADSzbMATHCrossRefGoogle Scholar
  13. Giordano D, Capitelli M, Colonna G, Gorse C (1994) Tables of internal partition functions and thermodynamic properties of high–temperature air species from 50 K to 10000 K. Tech. Rep. STR-237, European Space AgencyGoogle Scholar
  14. Gordon S, McBride B (1994) Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311, NASAGoogle Scholar
  15. Griem HR (1962) High-density corrections in plasma spectroscopy. Physical Review 128: 997–1003ADSCrossRefGoogle Scholar
  16. Gurvich L, Veyts I (1989) Thermodynamic Properties of Individual Substances, vol 1–4. Hemisphere Publishing CorporationGoogle Scholar
  17. Hummer D, Mihalas D (1988) The equation of state for stellar envelopes. i. an occupation probability formalism for the truncation of internal partition functions. The Astrophysical Journal 331:794–814ADSCrossRefGoogle Scholar
  18. Kremp D, Schlanges M, Kraeft WD (2005) Quantum Statistics of Nonideal Plasmas. Atomic, Optical and Plasma Physics, SpringerGoogle Scholar
  19. Margenau H, Lewis M (1959) Structure of spectral lines from plasmas. Reviews of Modern Physics 31(3):569–615ADSzbMATHCrossRefGoogle Scholar
  20. Moore CE (1949) Selected tables of atomic spectra. Nbs-467, National Bureau of StandardsGoogle Scholar
  21. Roussel KM, O’Connell RF (1974) Variational solution of Schrödinger equation for the static screened Coulomb potential. Physical Review A 9:52–56ADSCrossRefGoogle Scholar
  22. Singh K, Singh G, Sharma R (2010) Role of electronic excitation on thermodynamic and transport properties of argon and argon–hydrogen plasma. Physics of Plasmas 17(7):072,309Google Scholar
  23. Smith CR (1964) Bound states in a Debye–Hückel potential. Physical Review 134(5A): A1235–A1237Google Scholar
  24. Vorob’ev V, Mulenko I, Khomkin A (2000) The importance of excited states in the thermodynamics of partially ionized plasma. High Temperature 38(4):509–514CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mario Capitelli
    • 1
    Email author
  • Gianpiero Colonna
    • 2
  • Antonio D’Angola
    • 3
  1. 1.Dipartimento di ChimicaUniversità di BariBariItaly
  2. 2.Istituto di Metodologie Inorganiche e dei Plasmi (IMIP) Consiglio Nazionale delle Ricerche (CNR)BariItaly
  3. 3.Dipartimento di Ingegneria e Fisica dell’Ambiente (DIFA)University of BasilicataPotenzaItaly

Personalised recommendations