Skip to main content

Real Effects: II. Virial Corrections

  • Chapter
  • First Online:
Fundamental Aspects of Plasma Chemical Physics

Abstract

This chapter starts defining statistical ensembles and the relative partition functions which are the starting point to completely characterize the thermodynamic properties of a system. It must be noted that the partition functions can be determined in the framework of the classical or quantum theory, considering the proper statistics. In this book, we consider mainly nondegenerate plasmas, where the effects of Pauli exclusion principle (Bose/Einstein or Fermi/Dirac distributions) are not relevant, and the Boltzmann statistics can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     An exception to this assumption can be found in Chap. 5 for the ortho–para effect in the rotation of light diatomic molecules.

  2. 2.

     If the particles have internal structure, as excited states or angular momentum, variables to consider internal states must be added.

  3. 3.

     The Dirac function can be calculated as the limit for d → 0 of a square function of unitary surface and width d, i.e., \(\delta (x) = \left \{\begin{array}{ll} 0 & x\neq 0\\ \infty &x = 0 \end{array} \right..\)

  4. 4.

    \({\sum }_{n=0}^{\infty }\frac{{x}^{n}} {n!} ={ \mathrm{e}}^{x}.\)

  5. 5.

     In this theory, interaction potentials depend only on positions \(\left \{{\mathbf{r}}_{i}\right \}\) and not on the velocities \(\left \{{\mathbf{p}}_{i}\right \}\) as it can happen in the presence of magnetic fields.

  6. 6.

     Considering forces which involve multi-particle interactions is possible but the theory becomes much more complicated.

  7. 7.

     The potential here is considered spherical symmetric. The theory must be extended to consider potentials depending on the relative orientation of molecules. These effects can be important for large molecules.

  8. 8.

     Even if the virial expansion can be applied for a generic multi-particle potential (Landau and Lifshitz 1986), a closed expression that relates the virial coefficients to the gas composition can be obtained only under the approximation of binary collisions.

  9. 9.

     In principle, no completely repulsive state exists due to the presence of very small depth due to Van der Waals forces.

  10. 10.

     Here, exact means that all the terms in the Debye–Hückel theory and infinite virial expansions are considered.

  11. 11.

     The Debye–Hückel theory introduces the lowering of ionization potential and the correction to pressure and to all the thermodynamic functions. It results in a correlation between the configuration integral and the internal partition function.

References

  • Allen MP, Tildesley DJ (1989) Computer Simulation of Liquids. 2nd ed. Oxford University Press, USA

    Google Scholar 

  • Biolsi L, Holland PM (1996) Thermodynamic properties of oxygen molecules at high temperatures. International Journal of Thermophysics 17(1):191–200

    Article  ADS  Google Scholar 

  • Capitelli M, Ficocelli E (1977) Thermodynamic properties of Ar − H 2. Revue Internationale des Hautes Temperatures et des Refractaires 14:195–200

    Google Scholar 

  • Capitelli M, Lamanna UT (1976) Second virial coefficients of oxygen–oxygen and carbon–oxygen interactions in different electronic states. Chemical Physics 14:261–266

    Article  ADS  Google Scholar 

  • D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. European Physical Journal D 46:129–150

    Article  ADS  Google Scholar 

  • Fisher BB (1966) Calculation of the thermal properties of hydrogen. Tech. Rep. LA–3364, Los Alamos Scientific Laboratory

    Google Scholar 

  • Frenkel D, Smit B (2002) Understanding molecular simulation : from algorithms to applications, 2nd edn. Academic Press

    Google Scholar 

  • Guidotti C, Arrighini G, Capitelli M, Lamanna UT (1976) Second virial coefficients of ground state nitrogen atom. Zeitschrift für Naturforschung 31a:1722–1724

    Google Scholar 

  • Hill TL (1955) Molecular clusters in imperfect gases. Journal Chemical Physics 23(4):617–623

    Article  Google Scholar 

  • Hilsenrath J, Klein M (1965) Tables of thermodynamic properties of air in chemical equilibrium including second virial corrections from 1500 K to 15000 K. Tech. Rep. AEDC–TR–65–58, AEDC

    Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1966) Molecular Theory of Gases and Liquids, 2nd edn. Structure of Matter Series, John Wiley & Sons

    Google Scholar 

  • Huang K (1987) Statistical Mechanics. John Wiley & Sons

    Google Scholar 

  • Johnson JH, Panagiotopoulos AZ, Gubbins KE (1994) Reactive canonical Monte Carlo - a new simulation technique for reacting or associating fluids. Molecular Physics 81(3):717–733

    Article  ADS  Google Scholar 

  • Landau D, Lifshitz E (1986) Statistical Physics. Pergamon Press, Oxford

    Google Scholar 

  • Lisal M, Smith W, Nezbeda I (2000) Computer simulation of the thermodynamic properties of high–temperature chemically–reacting plasmas. Journal of Chemical Physics 113(12): 4885–4895

    Article  ADS  Google Scholar 

  • Lisal M, Smith W, Bures M, Vacek V, Navratil J (2002) REMC computer simulations of the thermodynamic properties of argon and air plasmas. Molecular Physics 100:2487–2497

    Article  ADS  Google Scholar 

  • NIST (2009) URL http://www.nist.gov/srd/index.htm

  • Pagano D, Casavola A, Pietanza LD, Colonna G, Giordano D, Capitelli M (2008) Thermodynamic properties of high-temperature jupiter-atmosphere components. Journal of Thermophysics and Heat Transfer 22(3):8

    Article  Google Scholar 

  • Pagano D, Casavola A, Pietanza LD, Capitelli M, Colonna G, Giordano D, Marraffa L (2009) Internal partition functions and thermodynamic properties of high-temperature jupiter-atmosphere species from 50 K to 50,000 K. Tech. Rep. STR-257

    Google Scholar 

  • Pirani F, Albertí M, Castro A, Teixidor MM, Cappelletti D (2004) Atom–bond pairwise additive representation for intermolecular potential energy surfaces. Chemical Physics Letters 394 (1–3):37–44

    Article  ADS  Google Scholar 

  • Ree FH (1983) Solubility of hydrogen-helium mixtures in fluid phases to 1 GPa. The Journal of Physical Chemistry 87(15):2846–2852

    Article  Google Scholar 

  • Smith W, Lisal M, Nezbeda I (2006) Molecular-level Monte Carlo simulation at fixed entropy. Chemical Physics Letters 426(4-6):436–440

    Article  ADS  Google Scholar 

  • Smith WR, Triska B (1994) The reaction ensemble method for the computer simulation of chemical and phase equilibria. i. theory and basic examples. The Journal of Chemical Physics 100(4):3019–3027

    Google Scholar 

  • Turner H, Brennan J, Lisal M, Smith W, Johnson J, Gubbins K (2008) Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a review. Molecular Simulation 34:119–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Capitelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Capitelli, M., Colonna, G., D’Angola, A. (2012). Real Effects: II. Virial Corrections. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 66. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8182-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8182-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8181-3

  • Online ISBN: 978-1-4419-8182-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics