Skip to main content

Incorporating Arbitrarily Strong On-Site Correlations into Lattice Models

  • Chapter
  • First Online:
Quantum Phase Transitions in Cold Atoms and Low Temperature Solids

Part of the book series: Springer Theses ((Springer Theses))

  • 780 Accesses

Abstract

In Chapter 9 I described a protocol to efficiently generate small clusters of fractional quantum Hall states at sites of a deep optical lattice, in the limit where particles were unable to tunnel between sites on experimentally relevant timescales. One motivation for this chapter is to construct a theory of deep lattices that are nevertheless weak enough to allow particle tunneling between sites (analogous to the Bose-Hubbard limit of bosons in an optical lattice introduced in Chapter 2.). I construct a theory—specifically an effective lattice model—that captures the dominant behavior for bosons, and essentially identical techniques lead to a description of fermions. In the bosonic case, I construct an analog of the Gutzwiller mean field theory (introduced in Chapter 2) for this generalized model. I show that the resulting model has a phase diagram topologically the same as the Bose-Hubbard model: there are globally insulating phases with fractional quantum Hall puddles at each site and no coherence between them occupying “Mott lobes” in the chemical potential-lattice depth phase diagram, and a superfluid phase with coherence between the fractional quantum Halls states at each site.

This chapter was adapted from “On-site correlations in optical lattices: Band mixing to coupled quantum Hall puddles" by Kaden R.A. Hazzard and Erich J. Mueller, published in Physical Review A 81, 031602(R) (2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M. Girvin, A.H. MacDonald, Phys. Rev. Lett. 58, 1252 (1987)

    Article  ADS  Google Scholar 

  2. N. Read, Phys. Rev. Lett. 62, 8689 (1989)

    Google Scholar 

  3. E. Shimshoni, A. Auerbach, A. Kapitulnik, Phys. Rev. Lett. 80, 3352 (1998)

    Article  ADS  Google Scholar 

  4. S. Will, T. Best, U. Schneider, L. Hackermüler, D. Lühmann, I. Bloch, Nature 465, 197 (2010)

    Article  ADS  Google Scholar 

  5. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  6. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  7. G. Mazzarella, S.M. Giampaolo, F. Illuminati, Phys. Rev. A 73, 013625 (2006)

    Article  ADS  Google Scholar 

  8. A. Smerzi, A. Trombettoni, Phys. Rev. A 68, 023613 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  9. L. Li, J. Checkelsky, Y. Hor, C. Uher, A. Hebard, R. Cava, N. Ong, Science 321, 547 (2008)

    Article  ADS  Google Scholar 

  10. J. Larson, A. Collin, J. Martikainen, Phys. Rev. A 79, 033603 (2009)

    Article  ADS  Google Scholar 

  11. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phys. Rev. Lett. 95, 030405 (2005)

    Article  ADS  Google Scholar 

  12. P.R. Johnson, E. Tiesinga, J.V. Porto, C.J. Williams, New J. Phys. 11, 093022 (2009)

    Article  ADS  Google Scholar 

  13. C. Chin, private communication.

    Google Scholar 

  14. M. Popp, B. Paredes, J.I. Cirac, Phys. Rev. A 70, 053612 (2004)

    Article  ADS  Google Scholar 

  15. S.K. Baur, K.R.A. Hazzard, E.J. Mueller, Phys. Rev. A 78, 061608 (2008)

    Article  ADS  Google Scholar 

  16. P. Barmettler, A.M. Rey, E. Demler, M.D. Lukin, I. Bloch, V. Gritsev, Phys. Rev. A 78, 012330 (2008)

    Article  ADS  Google Scholar 

  17. L. Jiang, A.M. Rey, O. Romero-Isart, J.J. Garcá-Ripoll, A. Sanpera, M.D. Lukin, Phys. Rev. A 79, 022309 (2009)

    Article  ADS  Google Scholar 

  18. G.K. Campbell, J. Mun, M. Boyd, P. Medley, A.E. Leanhardt, L.G. Marcassa, D.E. Pritchard, W. Ketterle, Science 313, 649 (2006)

    Article  ADS  Google Scholar 

  19. A.J. Daley, J.M. Taylor, S. Diehl, M. Baranov, P. Zoller, Phys. Rev. Lett. 102, 040402 (2009)

    Article  ADS  Google Scholar 

  20. D.B.M. Dickerscheid, U.A. Khawaja, van D. Oosten, H.T.C. Stoof, Phys. Rev. A 71, 043604 (2005)

    Article  ADS  Google Scholar 

  21. T. Busch, B. Englert, K. Rzazewski, M. Wilkens, Found. Phys. 28, 549 (1998)

    Article  Google Scholar 

  22. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546570 (1989)

    Article  Google Scholar 

  23. B. Capogrosso-Sansone, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. B 75, 134302 (2007)

    Article  ADS  Google Scholar 

  24. R.B. Diener, T. Ho, Phys. Rev. Lett. 96, 010402 (2006)

    Article  ADS  Google Scholar 

  25. H. Zhai, T. Ho, Phys. Rev. Lett. 99, 100402 (2007)

    Article  ADS  Google Scholar 

  26. M. Köhl, H. Moritz, T. Stöferle, K. Günter, T. Esslinger, Phys. Rev. Lett. 94, 080403 (2005)

    Article  Google Scholar 

  27. L. Duan, Phys. Rev. Lett. 95, 243202 (2005)

    Article  ADS  Google Scholar 

  28. C. Mathy, D.A. Huse, Phys. Rev. A 79, 063412 (2009)

    Article  ADS  Google Scholar 

Download references

This material is based upon work supported by the National Science Foundation through grant No. PHY-0758104. We thank Stefan Baur, John Shumway, and Mukund Vengalattore for useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaden Richard Alan Hazzard .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hazzard, K.R.A. (2011). Incorporating Arbitrarily Strong On-Site Correlations into Lattice Models. In: Quantum Phase Transitions in Cold Atoms and Low Temperature Solids. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8179-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8179-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8178-3

  • Online ISBN: 978-1-4419-8179-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics