Skip to main content

Resonant Charge Exchange in Ion-Parent–Atom Collisions: The Inelastic Contribution to Odd-Order Collision Integrals

  • Chapter
  • First Online:
Fundamental Aspects of Plasma Chemical Physics

Abstract

Resonant charge-exchange cross sections are of paramount importance in affecting the diffusion-type, or more exactly the odd-order, collision integrals of ion-parent–atom collisional pairs. This process can be considered as an inelastic channel, however characterized by very high values of the cross section and therefore not negligible in the calculation of transport properties of thermal plasmas. Other kind of inelastic processes have been discussed in Chap. 1, their role being usually negligible at low temperatures (see also Chap. 10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen A, Thulstrup EW (1973) Configuration interaction studies of the low-lying quartet states of N2  + . J Phys B: At Mol Phys 6(8):L211

    Article  ADS  Google Scholar 

  • Bates DR, Massey HSW, Stewart AL (1953) Inelastic collisions between atoms. I. General theoretical considerations. Proc R Soc Lond A 216:437–458

    Article  MATH  ADS  Google Scholar 

  • Belyaev YN, Brezhnev BG, Erastov EM (1968) Resonant charge transfer of low energy carbon and nitrogen ions. Sov Phys JETP 27(6):924

    ADS  Google Scholar 

  • Berry HW (1948) Secondary electron emission by fast neutral molecules and neutralization of positive ions. Phys Rev 74:848–849

    Article  ADS  Google Scholar 

  • Capitelli M, Devoto RS (1973) Transport coefficients of high-temperature nitrogen. Phys Fluids 16(11):1835

    Article  ADS  Google Scholar 

  • Capitelli M, Gorse C, Fauchais P (1977a) Transport coefficients of high temperature N2-H2 mixtures. J Phys 38(6):653

    Article  Google Scholar 

  • Capitelli M, Lamanna UT, Guidotti C, Arrighini GP (1977b) The gerade-ungerade splitting of N2  +  potentials: effects on the resonant charge transfer cross sections of nitrogen atoms. Chem Phys 19:269

    Article  Google Scholar 

  • Capitelli M, Gorse C, Longo S, Giordano D (2000) Collision integrals of high-temperature air species. J Thermophys Heat Transf 14(2):259–268

    Article  Google Scholar 

  • Cartwright DC, Dunning TH Jr (1975) New electronic states of N2  + . J Phys B: At Mol Phys 8(6):L100

    Article  ADS  Google Scholar 

  • Cohen JS, Schneider B (1975) Collisions of Ne ∗ (3s) and Ne +  with Ne: Excitation and charge transfer, elastic scattering, and diffusion. Phys Rev A 11:884–892

    Article  ADS  Google Scholar 

  • Devoto RS (1967) Transport coefficients of partially ionized argon. Phys Fluids 10(2):354–364

    Article  ADS  Google Scholar 

  • Duman EL, Smirnov BM (1974) Teplofizika Vysokikh Temperatur 12:502

    Google Scholar 

  • Duman EL, Yevseyev AV, Eletskii AV, Radtsig AA, Smirnov BM (1982) Charge exchange processes, vol 3532/12. I. V. Kurchatov Atomic Energy Institute, Moscow

    Google Scholar 

  • Eletskii AV, Capitelli M, Celiberto R, Laricchiuta A (2004) Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms. Phys Rev A 69(4):042718/1–8

    Google Scholar 

  • Firsov OB (1951) JETP (in russian) 21:1001

    Google Scholar 

  • Flaks IP, Filippenko LG (1960) Sov Phys JETP 4:1005–1013

    Google Scholar 

  • Flaks IP, Solv’ev ES (1958) Sov Phys JETP 3:564–576

    Google Scholar 

  • Flannery MR, Cosby PC, Moran TF (1973) Molecular charge transfer: Experimental and theoretical investigation of the role of incident-ion vibrational states in N2  + -N2 and CO + -CO collisions. J Chem Phys 59(10):5494–5510

    Article  ADS  Google Scholar 

  • Kaneko Y, Iwai T, Ohtani S, Okuno K, Kobayashi N, Tsurubuchi S, Kimura M, Tawara H (1981) Symmetric resonance multiple charge transfer of Neq +  and Arq +  (q ≤ 4). J Phys B: At Mol Phys 14(5):881

    Article  ADS  Google Scholar 

  • Knof H, Mason EA, Vanderslice JT (1964) Interaction energies, charge exchange cross sections, and diffusion cross sections for N + -N and O + -O collisions. J Chem Phys 40(12):3548–3553

    Article  ADS  Google Scholar 

  • Kobayashi N (1975) Low energy ion-neutral reactions. VI. Ar +  + Ar, N2  +  + N2, O2  +  + O2 and CO +  + CO. J Phys Soc Japan 38(2):519–523

    Article  ADS  Google Scholar 

  • Kosarim AV, Smirnov BM (2005) Electron terms and resonant charge exchange involving oxygen atoms and ions. J Exp Theor Phys 101(4):611–627

    Article  ADS  Google Scholar 

  • Kosarim AV, Smirnov BM, Capitelli M, Celiberto R, Laricchiuta A (2006) Resonant charge exchange involving electronically excited states of nitrogen atoms and ions. Phys Rev A 74(6):062707

    Article  ADS  Google Scholar 

  • Krstic̀ PS, Schultz DR (1999) Elastic scattering and charge transfer in slow collisions: isotopes of H and H +  colliding with isotopes of H and with He. J Phys B: At Mol Phys 32(14):3485–3509

    Google Scholar 

  • Latypov ZZ, Fedorenko NV, Flaks IP, Shaporenko AA (1969) Symmetric resonance, charge exchange of multichanged ions. Sov Phys JETP 28(3):439–442

    ADS  Google Scholar 

  • Lindsay BG, Stebbings RF (2005) Charge transfer cross sections for energetic neutral atom data analysis. J Geophys Res 110(A12):A12213

    Article  ADS  Google Scholar 

  • Lindsay BG, Sieglaff DR, Smith KA, Stebbings RF (2001) Charge transfer of keV O +  ions with atomic oxygen. J Geophys Res 106(A5):8197–8203

    Article  ADS  Google Scholar 

  • Mason EA, Vanderslice JT, Yos JM (1959) Transport properties of high-temperature multicomponent gas mixtures. Phys Fluids 2(6):688–694

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • McWeeny R, Sutcliffe BT (1969) Methods of molecular quantum mechanics. Academic, London

    Google Scholar 

  • Miller JS, Pullins S, Lavandier DJ, hui Chiu Y, Dressler RA (2002) Xenon charge exchange cross sections for electrostatic thruster models. J Appl Phys 91(3):984–991

    Google Scholar 

  • Moran TF, Flannery MR, Cosby PC (1974) Molecular charge transfer. II. Experimental and theoretical investigation of the role of incident-ion vibrational states in O2  + -O2 and NO + -NO collisions. J Chem Phys 61(4):1261–1273

    Article  ADS  Google Scholar 

  • Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma P 15(2):279

    Article  Google Scholar 

  • Nikitin EE, Smirnov BM (1978) Quasiresonant processes in slow collisions. Sov Phys Uspekhi 21(2):95–116

    Article  ADS  Google Scholar 

  • Okuno K, Koizumi T, Kaneko Y (1978) Symmetric resonance double charge transfer in Kr + + +Kr and Xe + + +Xe systems. Phys Rev Lett 40(26):1708–1710

    Article  ADS  Google Scholar 

  • Rutherford JA, Vroom DA (1974) The reaction of atomic oxygen with several atmospheric ions. J Chem Phys 61(7):2514–2519

    Article  ADS  Google Scholar 

  • Smirnov BM (1973) Asymptotic methods in theory of atomic collisions. Atomizdat, Moskva (in russian)

    Google Scholar 

  • Smirnov BM (2001) Atomic structure and the resonant charge exchange process. Phys Usp 44(3):221–253

    Article  ADS  Google Scholar 

  • Stallcop JR (1971) N2  +  potential-energy curves. J Chem Phys 54(6):2602–2605

    Article  ADS  Google Scholar 

  • Stallcop J, Partridge H, Levin E (1985) N + -N long-range interaction energies and resonant charge exchange. Phys Rev A 32(1):639–642

    Article  ADS  Google Scholar 

  • Stallcop JR, Partridge H, Levin E (1991) Resonance charge transfer, transport cross sections, and collision integrals for N + (3P)-N(4S) and O + (4S)-O(3P) interactions. J Chem Phys 95(9):6429–6439

    Article  ADS  Google Scholar 

  • Stebbings RF, Turner BR, Smith ACH (1963) Charge transfer in oxygen, nitrogen, and nitric oxide. J Chem Phys 38(9):2277–2279

    Article  ADS  Google Scholar 

  • Szabó A, Ostlund NS (1996) Modern quantum chemistry: Introduction to advanced electronic structure theory. Dover, New York

    Google Scholar 

  • Thulstrup EW, Andersen A (1975) Configuration interaction studies of bound, low-lying states of N2  − , N2, N2  +  and N2 2 + . J Phys B: At Mol Phys 8(6):965

    Article  ADS  Google Scholar 

  • Yevseyev AV, Radtsig AA, Smirnov BM (1982) The asymptotic theory of resonance charge exchange between diatomics. J Phys B: At Mol Phys 15(23):4437–4452

    Article  ADS  Google Scholar 

  • Yos JM (1965) vol RAD-TF 65-7. AVCO Corporation, Wilmington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Capitelli, M., Bruno, D., Laricchiuta, A. (2013). Resonant Charge Exchange in Ion-Parent–Atom Collisions: The Inelastic Contribution to Odd-Order Collision Integrals. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8172-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8172-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8171-4

  • Online ISBN: 978-1-4419-8172-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics