Skip to main content

Cross-Phase Modulation-Induced Nonlinear Phase Noise for Quadriphase-Shift-Keying Signals

  • Chapter
  • First Online:
Book cover Impact of Nonlinearities on Fiber Optic Communications

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 7))

  • 1329 Accesses

Abstract

For a quadriphase-shift keying (QPSK) or differential QPSK (DQPSK) signal in a wavelengthdivision- multiplexed (WDM) system, cross-phase modulation (XPM) induces nonlinear phase noise from adjacent WDM channels. The impact of XPM-induced nonlinear phase noise is investigated when the adjacent WDM channels are either constant-intensity phase-modulated or on-off keying (OOK) signals. XPM-induced nonlinear phase noise is Gaussian distributed. For both QPSK and DQPSK signals, the phase error standard deviation (STD) should be less than 4o to 6o for a raw bit-error-rate (BER) between 10-5 to 10-3 before forward error correction (FEC). For DQPSK signals with mean nonlinear phase shift up to 0.5 rad, the SNR penalty is less than 0.5 dB due to the XPM-induced nonlinear phase noise from adjacent OOK WDM channels without guard-band. For QPSK signals with feedforward carrier recovery, the smoothing filter must be designed to minimize the phase error. The optimal Wiener filter can lower the phase error of QPSK signals to within 4o to 6o even when the adjacent channels are OOK signals without guardband.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Kahn, K.-P. Ho, IEEE J. Sel. Top. Quant. Electron. 10(2), 259 (2004)

    Article  Google Scholar 

  2. K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, New York, 2005)

    Google Scholar 

  3. E. Ip, A.P.T. Lau, D.J.F. Barros, J.M. Kahn, Opt. Express 16(2), 753 (2008)

    Article  ADS  Google Scholar 

  4. X. Zhou, J. Yu, M.F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H.B. Matthew, S.K. Mishra, J. Lightwave Technol. 28(4), 456 (2010)

    Article  ADS  Google Scholar 

  5. T. Okoshi, K. Kikuchi, Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988)

    Google Scholar 

  6. S. Betti, G. de Marchis, E. Iannone, Coherent Optical Communication Systems (Wiley, New York, 1995)

    Google Scholar 

  7. J.P. Gordon, L.F. Mollenauer, Opt. Lett. 15(23), 1351 (1990)

    Article  ADS  Google Scholar 

  8. H. Kim, A.H. Gnauck, IEEE Photon. Technol. Lett. 15(2), 320 (2003)

    Article  ADS  Google Scholar 

  9. K.-P. Ho, in Advances in Optics and Laser Research, vol. 3, ed. by W.T. Arkin (Nova Science Publishers, NY, 2003). http://arXiv.org/physics/0303090

  10. K.-P. Ho, H.-C. Wang, IEEE Photon. Technol. Lett. 17(7), 1426 (2005)

    Article  ADS  Google Scholar 

  11. H. Kim, J. Lightwave Technol. 21(8), 1770 (2003)

    Article  ADS  Google Scholar 

  12. K.-P. Ho, IEEE J. Sel. Top. Quant. Electron. 10(2), 421 (2004)

    Article  Google Scholar 

  13. K.-P. Ho, H.-C. Wang, J. Lightwave Technol. 24(1), 396 (2006)

    Article  ADS  Google Scholar 

  14. A.S. Lenihan, G.E. Tudury, W. Astar, G.M. Carter, XPM-induced impairments in RZ-DPSK transmission in a multi-modulation format WDM systems, Conference on the lasers and electro-optics, CLEO, Paper CWO5, 2005

    Google Scholar 

  15. G.W. Lu, L.-K. Chen, C.K. Chan, Performance comparison of DPSK and OOK signals with OOK-modulated adjacent channel in WDM systems, Opto-electronics communication conference, OECC, Paper 7B3-5, 2005

    Google Scholar 

  16. H. Griesser, J.P. Elbers, Influence of cross-phase modulation induced nonlinear phase noise on DQPSK signals from neighbouring OOK channels, European conference on optical communication, ECOC, Paper Tu1, 2005

    Google Scholar 

  17. S. Chandrasekhar, X. Liu, IEEE Photon. Technol. Lett. 19(22), 1801 (2007)

    Article  ADS  Google Scholar 

  18. R.S. Luís, B. Clouet, A. Teixeira, P. Monteiro, Opt. Lett. 32(19), 2786 (2007)

    Article  ADS  Google Scholar 

  19. T. Tanimura, S. Oda, M. Yuki, H. Zhang, L. Li, Z. Tao, H. Nakashima, T. Hoshida, K. Nakamura, J.C. Rasmussen, Nonlinearity tolerance of direct detection and coherent receivers for 43 Gb/s RZ-DQPSK signals with co-propagating 11.1 Gb/s NRZ signals over NZ-DSF, Optical fiber communication conference, OFC, Paper OTuM4, 2008

    Google Scholar 

  20. M. Bertolini, P. Serena, N. Rossi, A. Bononi, Numerical Monte Carlo comparison between coherent PDM-QPSK/OOK and incoherent DQPSK/OOK hybrid systems, European conference on optical communication, ECOC, Paper P.4.16, 2008

    Google Scholar 

  21. A. Carena, V. Curri, P. Poggiolini, F. Forghieri, Guard-band for 111 Gbit/s coherent PM-QPSK channels on legacy fiber links carrying 10 Gbit/s IMDD channels, Optical fiber communication conference, OFC, Paper OThR7, 2009

    Google Scholar 

  22. O. Bertran-Pardo, J. Renaudier, G. Charlet, H. Mardoyan, P. Tran, S. Bigo, IEEE Photon. Technol. Lett. 20(15), 1314 (2008)

    Article  ADS  Google Scholar 

  23. Z. Tao, W. Yan, S. Oda, T. Hoshida, J.C. Rasmussen, Opt. Express 17(16), 13860 (2009)

    Article  ADS  Google Scholar 

  24. A. Bononi, M. Bertolini, P. Serena, G. Bellotti, J. Lightwave Technol. 27(18), 3974 (2009)

    Article  ADS  Google Scholar 

  25. E. Ip, J.M. Kahn, J. Lightwave Technol. 25(9), 2675 (2007); J. Lightwave Technol. 27(13), 2552 (2009)

    Google Scholar 

  26. R. Noé, J. Lightwave Technol. 23(2), 802 (2005)

    Article  ADS  Google Scholar 

  27. K.-P. Ho, IEEE Photon. Technol. Lett. 16(1), 308 (2004)

    Article  ADS  Google Scholar 

  28. V.K. Prabhu, IEEE Trans. Commun. Technol. COM-17(1), 33 (1969)

    Google Scholar 

  29. P.C. Jain, N.M. Blachman, IEEE Trans. Info. Theor. IT-19(5), 623 (1973)

    Google Scholar 

  30. N.M. Blachman, IEEE Trans. Commun. COM-29(3), 364 (1981)

    Google Scholar 

  31. T.K. Chiang, N. Kagi, T.K. Fong, M.E. Marhic, L.G. Kazovsky, IEEE Photon. Technol. Lett. 6(6), 733 (1994)

    Article  ADS  Google Scholar 

  32. T.K. Chiang, N. Kagi, M.E. Marhic, L.G. Kazovsky, J. Lightwave Technol. 14(3), 249 (1996)

    Article  ADS  Google Scholar 

  33. K.-P. Ho, E.T.P. Kong, L.Y. Chan, L-K. Chan, F. Tong, IEEE Photon. Technol. Lett. 11(9), 1126 (1999)

    Google Scholar 

  34. J. Leibrich, C. Wree, W. Rosenkranz, IEEE Photon. Technol. Lett. 14(2), 215 (2002)

    Article  Google Scholar 

  35. K.-P. Ho, Opt. Commun. 169(1–6), 63 (1999)

    Article  ADS  Google Scholar 

  36. R. Hui, K.R. Demarest, C.T. Allen, J. Lightwave Technol. 17(6), 1018 (1999)

    Article  ADS  Google Scholar 

  37. A.V.T. Cartaxo, J. Lightwave Technol. 17(2), 178 (1999)

    Article  ADS  Google Scholar 

  38. J.-A. Huang, K.-P. Ho, Exact error probability of DQPSK signal with nonlinear phase noise, Proceedings of the 5th Pacific Rim conference on lasers and electro-optics, CLEO/PR, Paper TU4H-(9)-5, 2003

    Google Scholar 

  39. X. Wei, X. Liu, Opt. Lett. 28(23), 2300 (2003)

    Article  ADS  Google Scholar 

  40. A.P.T. Lau, S. Rabbani, J.M. Kahn, J. Ligtwave Technol. 26(14), 2128 (2008)

    Article  ADS  Google Scholar 

  41. J.J. Spilker Jr., Digital Communications by Satellite (Prentice Hall, NJ, 1977)

    Google Scholar 

  42. L.G. Kazovsky, J. Lightwave Technol. LT-4(4), 415 (1986)

    Google Scholar 

  43. K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation (Wiley, New York, 1999)

    Google Scholar 

  44. S. Norimatsu, K. Iwashita, J. Lightwave Technol. 10(3), 341 (1992)

    Article  ADS  Google Scholar 

  45. T. Pfau, S. Hoffmann, R. Noé, J. Lightwave Technol. 27(8), 989 (2009)

    Article  ADS  Google Scholar 

  46. M.G. Taylor, J. Lightwave Technol. 27(7), 901 (2009)

    Article  ADS  Google Scholar 

  47. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd edn. (McGraw Hill, New York, 1984)

    MATH  Google Scholar 

  48. J.B. Thomas, An Introduction to Statistical Communication Theory (Wiley, New York, 1969)

    MATH  Google Scholar 

  49. C.B. Collings, L. Boivin, IEEE Photon. Technol. Lett. 12(11), 1582 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keang-Po Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ho, KP. (2011). Cross-Phase Modulation-Induced Nonlinear Phase Noise for Quadriphase-Shift-Keying Signals. In: Kumar, S. (eds) Impact of Nonlinearities on Fiber Optic Communications. Optical and Fiber Communications Reports, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8139-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8139-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8138-7

  • Online ISBN: 978-1-4419-8139-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics