Skip to main content

Nonlinear Impairments in Coherent Optical OFDM Systems and Their Mitigation

  • Chapter
  • First Online:
Impact of Nonlinearities on Fiber Optic Communications

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 7))

Abstract

This chapter addresses the analysis of the fiber channel Kerr-effect-induced nonlinearities as well as the synthesis of mitigation methods for these nonlinear (NL) impairments, in the specific context of multicarrier coherent optical Orthogonal Frequency-Division Multiplexing (OFDM) transmission [1–5] (Chap. 2), which imposes a particular spectral and temporal structure on the transmitted signals. We should mention that our analysis is restricted to coherent optical OFDM multicarrier OFDM transmission, making our NL scalar treatment somewhat distinct from those pursued in Chaps. 6–8 applicable to single-carrier systems. In fact, whenever we use the term “OFDM” in this chapter, we imply coherent (rather than direct-detection) optical OFDM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Shieh, C. Athaudage, Electron. Lett. 42, 587–589 (2006)

    Article  Google Scholar 

  2. W. Shieh, H. Bao, Y. Tang, Opt. Express 16, 841–859 (2008)

    Article  ADS  Google Scholar 

  3. A.J. Lowery, Opt. Express 16, 860–865 (2008)

    Article  ADS  Google Scholar 

  4. S.L. Jansen, Application scenarios for optical OFDM, SPPCom – Signal processing in photonic communications – OSA Technical Digest, Optical Society of America, p. SPThB1, 2010

    Google Scholar 

  5. E. Forestieri, G. Colavolpe, T. Foggi, G. Bruno, Signal processing for 100Gb/s: OFDM vs. single carrier – OSA Technical Digest (CD), SPPCom – Signal processing in photonic communications – OSA Technical Digest, Optical Society of America, p. SPThC2, 2010

    Google Scholar 

  6. D. Schadt, Electron. Lett. 27, 1805 (1991)

    Article  Google Scholar 

  7. D. Schadt, T. Stephens, J. Lightwave Technol. 10, 1715–1721 (1992)

    Article  ADS  Google Scholar 

  8. K. Inoue, Opt. Lett. 17, 801 (1992)

    Article  ADS  Google Scholar 

  9. D. Marcuse, A. Chraplyvy, R. Tkach, J. Lightwave Technol. 12, 885–890 (1994)

    Article  ADS  Google Scholar 

  10. H. Kagi, T. Chian, T. Fong, M. Imarhic, L. Kazovsky, Electron. Lett. 30, 1878–1879 (1994)

    Article  Google Scholar 

  11. N. Kagi, T. Chiang, T. Fong, M. Marhic, L. Kazovsky, Cross phase modulation in fiber links with optical amplifiers, in Proceedings of LEOS’94, pp. 188–189, 1994

    Google Scholar 

  12. W. Zeiler, F. Di Pasquale, P. Bayvel, J. Midwinter, J. Lightwave Technol. 14, 1933–1942 (1996)

    Article  ADS  Google Scholar 

  13. W. Szczesny, M. Marciniak, Results of numerical simulation of wavelength multiplexed transmission in non-linear optical fibre telecommunication systems, MMET conference proceedings. 1998 international conference on mathematical methods in electromagnetic theory. MMET 98 (Cat. No.98EX114), IEEE, pp. 923–926, 1998

    Google Scholar 

  14. H. Thiele, R. Killey, P. Bayvel, Electron. Lett. 34, 2050–2051 (1998)

    Article  Google Scholar 

  15. S. Song, C. Allen, K. Demarest, R. Hui, J. Lightwave Technol. 17, 2285–2290 (1999)

    Article  ADS  Google Scholar 

  16. M. Eiselt, J. Lightwave Technol. 17, 2261–2267 (1999)

    Article  ADS  Google Scholar 

  17. F. Matera, A. Mecozzi, M. Settembre, M. Tamburrini, M. Joindot, M. Midrio, Reduction of the cross-phase modulation impairment in wavelength division multipled systems with dispersion management, Opt. Soc. America, 1999

    Google Scholar 

  18. A.V. Cartaxo, J. Lightwave Technol. 17, 178–190 (1999)

    Article  ADS  Google Scholar 

  19. E. Neddam, S. Wabnitz, IEEE Photon. Technol. Lett. 12, 798–800 (2000)

    Article  ADS  Google Scholar 

  20. G. Bellotti, S. Bigo, IEEE Photon. Technol. Lett. 12, 726–728 (2000)

    Article  ADS  Google Scholar 

  21. F. Yang, M. Marhic, L. Kazovsky, J. Lightwave Technol. 18, 512–520 (2000)

    Article  ADS  Google Scholar 

  22. M. Premaratne, IEEE Photon. Technol. Lett. 12, 1630–1632 (2000)

    Article  ADS  Google Scholar 

  23. H. Kim, J. Lightwave Technol. 21, 1770–1774 (2003)

    Article  ADS  Google Scholar 

  24. H. Bao, W. Shieh, Opt. Express 15, 4410–4418 (2007)

    Article  ADS  Google Scholar 

  25. N.M. Costa, A.V. Cartaxo, J. Lightwave Technol. 26, 3640–3649 (2008)

    Article  ADS  Google Scholar 

  26. M.S. Islam, A. Dewanjee, M.S. Monjur, S. Majumder, Dependency of cross-phase and self-phase modulation on different link parameters for a multispan WDM system, 2009 IEEE 9th Malaysia international conference on communications (MICC), IEEE, pp. 280–284, 2009

    Google Scholar 

  27. A. Dewanjee, M.S. Islam, M.S. Monjur, S. Majumder, Impact of cross-phase and self-phase modulation on the performance of a multispan WDM system, 2009 IEEE 9th Malaysia international conference on communications (MICC), IEEE, pp. 285–289, 2009

    Google Scholar 

  28. G. Li, F. Yaman, X. Xie, E. Mateo, Signal processing for polarization multiplexed coherent WDM transmission – OSA Technical Digest (CD), SPPCom – Signal Processing in Photonic Communications – OSA Technical Digest, Optical Society of America, 2010, p. SPTuB1

    Google Scholar 

  29. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, The FWM impairment in coherent OFDM compounds on a phased-array basis over dispersive multi-span links, Coherent Optical Technologies and Applications (COTA), Optical Society of America, 2008, p. CWA4

    Google Scholar 

  30. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, V. Karagodsky, Phased-Array Cancellation of Nonlinear FWM in Coherent OFDM Dispersive Multi-Span Links, Opt. Express. 16, 15777–15810 (2008)

    Article  ADS  Google Scholar 

  31. K. Forozesh, S.L. Jansen, S. Randel, The influence of the dispersion map in coherent optical OFDM transmission systems, 2008 digest of the IEEE/LEOS summer topical meetings, IEEE, pp. 135–136, 2008

    Google Scholar 

  32. S. Adhikari, S.L. Jansen, V.A. Sleiffer, W. Rosenkranz, On the nonlinear tolerance of 42.8-Gb/s DPSK with co-propagating OFDM neighbors, LEOS – IEEE lasers and electro-optics society annual meeting conference proceedings, IEEE, pp. 40–41, 2009

    Google Scholar 

  33. A.J. Lowery, Opt. Express. 15, 12965–12970 (2007)

    Article  ADS  Google Scholar 

  34. A.J. Lowery, S. Wang, M. Premaratne, Opt. Express. 15, 13282–13287 (2007)

    Article  ADS  Google Scholar 

  35. L.B. Du, A.J. Lowery, Opt. Express. 16, 19920–19925 (2008)

    Article  ADS  Google Scholar 

  36. X. Liu, F. Buchali, R.W. Tkach, J. Lightwave Technol. 27, 3632–3640 (2009)

    Article  ADS  Google Scholar 

  37. X. Liu, S. Chandrasekhar, A. Gnauck, R. Tkach, Experimental demonstration of joint SPM compensation in 44-Gb/s PDM-OFDM transmission with 16-QAM subcarrier modulation, Vienna, Paper 2.3.4, 2009

    Google Scholar 

  38. X. Liu, R.W. Tkach, Joint SPM compensation for inline-dispersion- compensated 112-Gb/s PDM-OFDM transmission, OFC/NFOEC – Conference on optical fiber communication and the national fiber optic engineers conference, Paper OTuO5, 2009

    Google Scholar 

  39. W. Qiu, S. Yu, J. Zhang, J. Shen, W. Li, H. Guo, W. Gu, J. Lightwave Technol. 27, 5321–5326 (2009)

    Article  ADS  Google Scholar 

  40. Y. Tang, Y. Ma, W. Shieh, IEEE Photon. Technol. Lett. 21, 1042–1044 (2009)

    Article  Google Scholar 

  41. X. Liu, Fiber nonlinear impairments and their mitigation in coherent optical OFDM transmission – technical digest (CD), Asia communications and photonics conference and exhibition, Optical Society of America, p. ThF1, 2009

    Google Scholar 

  42. M. Nazarathy, Nonlinear impairments in coherent optical OFDM systems and their mitigation – OSA Technical Digest (CD), SPPCom – Signal processing in photonic communications – OSA Technical Digest, Optical Society of America, p. SPThC1, 2010

    Google Scholar 

  43. J. Leibrich, A. Ali, W. Rosenkranz, Single polarization direct detection optical OFDM with 100 Gb/s throughput: A concept taking into account higher order modulation formats – OSA Technical Digest (CD), SPPCom – Signal Processing In Photonic Communications – OSA Technical Digest, Optical Society of America, p. SPThC4, 2010

    Google Scholar 

  44. M. Nazarathy, B. Livshitz, Y. Atzmon, M. Secondini, E. Forestieri, J. Lightwave Technol. Optically Amplified Direct Detection with Pre- and Post- Filtering: A Volterra series approach, 26, 3677–3693 (2008)

    Google Scholar 

  45. R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, Volterra nonlinear compensation of 112 Gb/s ultra-long-haul coherent optical OFDM based on frequency-shaped decision feedback, European conference of optical communication (ECOC), pp. 1–2 (2009)

    Google Scholar 

  46. B. Porat, A Course in Digital Signal Processing (Wiley, NY, 1996)

    Google Scholar 

  47. R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics (Addison Wesley, MA, 1965)

    MATH  Google Scholar 

  48. J. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, CO, 2007)

    Google Scholar 

  49. Y. Atzmon, M. Nazarathy, J. Lightwave Technol. 27, 4650–4659 (2009)

    Article  ADS  Google Scholar 

  50. R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, Volterra nonlinear compensation of 100G coherent OFDM with Baud-rate ADC, tolerable complexity and low intra-channel FWM/XPM error propagation, OFC/NFOEC – Conference on optical fiber communication and the national fiber optic engineers conference, Paper OTuE3, 2010

    Google Scholar 

  51. G. Goldfarb, M.G. Taylor, G. Li, Experimental demonstration of distributed impairment compensation for high-spectral efficiency transmission, Coherent optical technologies and applications (COTA), Optical Society of America, p. CWB3, 2008

    Google Scholar 

  52. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Opt. Express 16, 880–888 (2008)

    Article  ADS  Google Scholar 

  53. E. Ip, A.P. Lau, D.J. Barros, J.M. Kahn, Compensation of Dispersion and Nonlinearity in WDM Transmission Using Simplified Digital Backpropagation, IEEE, 2008

    Google Scholar 

  54. E. Ip, J.M. Kahn, J. Lightwave Technol. 26, 3416–3425 (2008)

    Article  ADS  Google Scholar 

  55. G. Goldfarb, M.G. Taylor, G. Li, IEEE Photon. Technol. Lett. 20, 1887–1889 (2008)

    Article  ADS  Google Scholar 

  56. G. Goldfarb, G. Li, Wavelet Split-Step Backward-Propagation for Efficient Post-Compensation of WDM Transmission Impairments, 2009

    Google Scholar 

  57. E. Ip, J. Lightwave Technol. 28, 939–951 (2010)

    Article  ADS  Google Scholar 

  58. E. Ip, J.M. Kahn, J. Lightwave Technol. 28, 502–519 (2010)

    Article  ADS  Google Scholar 

  59. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (Wiley, NY, 1980)

    MATH  Google Scholar 

  60. G. Mathews, V.J. Sicuranza, Polynomial Signal Processing (Wiley, NY, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Nazarathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nazarathy, M., Weidenfeld, R. (2011). Nonlinear Impairments in Coherent Optical OFDM Systems and Their Mitigation. In: Kumar, S. (eds) Impact of Nonlinearities on Fiber Optic Communications. Optical and Fiber Communications Reports, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8139-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8139-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8138-7

  • Online ISBN: 978-1-4419-8139-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics