Advertisement

Nonlinear Impairments in Coherent Optical OFDM Systems and Their Mitigation

  • Moshe NazarathyEmail author
  • Rakefet Weidenfeld
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 7)

Abstract

This chapter addresses the analysis of the fiber channel Kerr-effect-induced nonlinearities as well as the synthesis of mitigation methods for these nonlinear (NL) impairments, in the specific context of multicarrier coherent optical Orthogonal Frequency-Division Multiplexing (OFDM) transmission [1–5] (Chap. 2), which imposes a particular spectral and temporal structure on the transmitted signals. We should mention that our analysis is restricted to coherent optical OFDM multicarrier OFDM transmission, making our NL scalar treatment somewhat distinct from those pursued in Chaps. 6–8 applicable to single-carrier systems. In fact, whenever we use the term “OFDM” in this chapter, we imply coherent (rather than direct-detection) optical OFDM.

Keywords

OFDM System Fiber Link OFDM Signal Array Factor Volterra Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Shieh, C. Athaudage, Electron. Lett. 42, 587–589 (2006)CrossRefGoogle Scholar
  2. 2.
    W. Shieh, H. Bao, Y. Tang, Opt. Express 16, 841–859 (2008)CrossRefADSGoogle Scholar
  3. 3.
    A.J. Lowery, Opt. Express 16, 860–865 (2008)CrossRefADSGoogle Scholar
  4. 4.
    S.L. Jansen, Application scenarios for optical OFDM, SPPCom – Signal processing in photonic communications – OSA Technical Digest, Optical Society of America, p. SPThB1, 2010Google Scholar
  5. 5.
    E. Forestieri, G. Colavolpe, T. Foggi, G. Bruno, Signal processing for 100Gb/s: OFDM vs. single carrier – OSA Technical Digest (CD), SPPCom – Signal processing in photonic communications – OSA Technical Digest, Optical Society of America, p. SPThC2, 2010Google Scholar
  6. 6.
    D. Schadt, Electron. Lett. 27, 1805 (1991)CrossRefGoogle Scholar
  7. 7.
    D. Schadt, T. Stephens, J. Lightwave Technol. 10, 1715–1721 (1992)CrossRefADSGoogle Scholar
  8. 8.
    K. Inoue, Opt. Lett. 17, 801 (1992)CrossRefADSGoogle Scholar
  9. 9.
    D. Marcuse, A. Chraplyvy, R. Tkach, J. Lightwave Technol. 12, 885–890 (1994)CrossRefADSGoogle Scholar
  10. 10.
    H. Kagi, T. Chian, T. Fong, M. Imarhic, L. Kazovsky, Electron. Lett. 30, 1878–1879 (1994)CrossRefGoogle Scholar
  11. 11.
    N. Kagi, T. Chiang, T. Fong, M. Marhic, L. Kazovsky, Cross phase modulation in fiber links with optical amplifiers, in Proceedings of LEOS’94, pp. 188–189, 1994Google Scholar
  12. 12.
    W. Zeiler, F. Di Pasquale, P. Bayvel, J. Midwinter, J. Lightwave Technol. 14, 1933–1942 (1996)CrossRefADSGoogle Scholar
  13. 13.
    W. Szczesny, M. Marciniak, Results of numerical simulation of wavelength multiplexed transmission in non-linear optical fibre telecommunication systems, MMET conference proceedings. 1998 international conference on mathematical methods in electromagnetic theory. MMET 98 (Cat. No.98EX114), IEEE, pp. 923–926, 1998Google Scholar
  14. 14.
    H. Thiele, R. Killey, P. Bayvel, Electron. Lett. 34, 2050–2051 (1998)CrossRefGoogle Scholar
  15. 15.
    S. Song, C. Allen, K. Demarest, R. Hui, J. Lightwave Technol. 17, 2285–2290 (1999)CrossRefADSGoogle Scholar
  16. 16.
    M. Eiselt, J. Lightwave Technol. 17, 2261–2267 (1999)CrossRefADSGoogle Scholar
  17. 17.
    F. Matera, A. Mecozzi, M. Settembre, M. Tamburrini, M. Joindot, M. Midrio, Reduction of the cross-phase modulation impairment in wavelength division multipled systems with dispersion management, Opt. Soc. America, 1999Google Scholar
  18. 18.
    A.V. Cartaxo, J. Lightwave Technol. 17, 178–190 (1999)CrossRefADSGoogle Scholar
  19. 19.
    E. Neddam, S. Wabnitz, IEEE Photon. Technol. Lett. 12, 798–800 (2000)CrossRefADSGoogle Scholar
  20. 20.
    G. Bellotti, S. Bigo, IEEE Photon. Technol. Lett. 12, 726–728 (2000)CrossRefADSGoogle Scholar
  21. 21.
    F. Yang, M. Marhic, L. Kazovsky, J. Lightwave Technol. 18, 512–520 (2000)CrossRefADSGoogle Scholar
  22. 22.
    M. Premaratne, IEEE Photon. Technol. Lett. 12, 1630–1632 (2000)CrossRefADSGoogle Scholar
  23. 23.
    H. Kim, J. Lightwave Technol. 21, 1770–1774 (2003)CrossRefADSGoogle Scholar
  24. 24.
    H. Bao, W. Shieh, Opt. Express 15, 4410–4418 (2007)CrossRefADSGoogle Scholar
  25. 25.
    N.M. Costa, A.V. Cartaxo, J. Lightwave Technol. 26, 3640–3649 (2008)CrossRefADSGoogle Scholar
  26. 26.
    M.S. Islam, A. Dewanjee, M.S. Monjur, S. Majumder, Dependency of cross-phase and self-phase modulation on different link parameters for a multispan WDM system, 2009 IEEE 9th Malaysia international conference on communications (MICC), IEEE, pp. 280–284, 2009Google Scholar
  27. 27.
    A. Dewanjee, M.S. Islam, M.S. Monjur, S. Majumder, Impact of cross-phase and self-phase modulation on the performance of a multispan WDM system, 2009 IEEE 9th Malaysia international conference on communications (MICC), IEEE, pp. 285–289, 2009Google Scholar
  28. 28.
    G. Li, F. Yaman, X. Xie, E. Mateo, Signal processing for polarization multiplexed coherent WDM transmission – OSA Technical Digest (CD), SPPCom – Signal Processing in Photonic Communications – OSA Technical Digest, Optical Society of America, 2010, p. SPTuB1Google Scholar
  29. 29.
    M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, The FWM impairment in coherent OFDM compounds on a phased-array basis over dispersive multi-span links, Coherent Optical Technologies and Applications (COTA), Optical Society of America, 2008, p. CWA4Google Scholar
  30. 30.
    M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, V. Karagodsky, Phased-Array Cancellation of Nonlinear FWM in Coherent OFDM Dispersive Multi-Span Links, Opt. Express. 16, 15777–15810 (2008)CrossRefADSGoogle Scholar
  31. 31.
    K. Forozesh, S.L. Jansen, S. Randel, The influence of the dispersion map in coherent optical OFDM transmission systems, 2008 digest of the IEEE/LEOS summer topical meetings, IEEE, pp. 135–136, 2008Google Scholar
  32. 32.
    S. Adhikari, S.L. Jansen, V.A. Sleiffer, W. Rosenkranz, On the nonlinear tolerance of 42.8-Gb/s DPSK with co-propagating OFDM neighbors, LEOS – IEEE lasers and electro-optics society annual meeting conference proceedings, IEEE, pp. 40–41, 2009Google Scholar
  33. 33.
    A.J. Lowery, Opt. Express. 15, 12965–12970 (2007)CrossRefADSGoogle Scholar
  34. 34.
    A.J. Lowery, S. Wang, M. Premaratne, Opt. Express. 15, 13282–13287 (2007)CrossRefADSGoogle Scholar
  35. 35.
    L.B. Du, A.J. Lowery, Opt. Express. 16, 19920–19925 (2008)CrossRefADSGoogle Scholar
  36. 36.
    X. Liu, F. Buchali, R.W. Tkach, J. Lightwave Technol. 27, 3632–3640 (2009)CrossRefADSGoogle Scholar
  37. 37.
    X. Liu, S. Chandrasekhar, A. Gnauck, R. Tkach, Experimental demonstration of joint SPM compensation in 44-Gb/s PDM-OFDM transmission with 16-QAM subcarrier modulation, Vienna, Paper 2.3.4, 2009Google Scholar
  38. 38.
    X. Liu, R.W. Tkach, Joint SPM compensation for inline-dispersion- compensated 112-Gb/s PDM-OFDM transmission, OFC/NFOEC – Conference on optical fiber communication and the national fiber optic engineers conference, Paper OTuO5, 2009Google Scholar
  39. 39.
    W. Qiu, S. Yu, J. Zhang, J. Shen, W. Li, H. Guo, W. Gu, J. Lightwave Technol. 27, 5321–5326 (2009)CrossRefADSGoogle Scholar
  40. 40.
    Y. Tang, Y. Ma, W. Shieh, IEEE Photon. Technol. Lett. 21, 1042–1044 (2009)CrossRefGoogle Scholar
  41. 41.
    X. Liu, Fiber nonlinear impairments and their mitigation in coherent optical OFDM transmission – technical digest (CD), Asia communications and photonics conference and exhibition, Optical Society of America, p. ThF1, 2009Google Scholar
  42. 42.
    M. Nazarathy, Nonlinear impairments in coherent optical OFDM systems and their mitigation – OSA Technical Digest (CD), SPPCom – Signal processing in photonic communications – OSA Technical Digest, Optical Society of America, p. SPThC1, 2010Google Scholar
  43. 43.
    J. Leibrich, A. Ali, W. Rosenkranz, Single polarization direct detection optical OFDM with 100 Gb/s throughput: A concept taking into account higher order modulation formats – OSA Technical Digest (CD), SPPCom – Signal Processing In Photonic Communications – OSA Technical Digest, Optical Society of America, p. SPThC4, 2010Google Scholar
  44. 44.
    M. Nazarathy, B. Livshitz, Y. Atzmon, M. Secondini, E. Forestieri, J. Lightwave Technol. Optically Amplified Direct Detection with Pre- and Post- Filtering: A Volterra series approach, 26, 3677–3693 (2008)Google Scholar
  45. 45.
    R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, Volterra nonlinear compensation of 112 Gb/s ultra-long-haul coherent optical OFDM based on frequency-shaped decision feedback, European conference of optical communication (ECOC), pp. 1–2 (2009)Google Scholar
  46. 46.
    B. Porat, A Course in Digital Signal Processing (Wiley, NY, 1996)Google Scholar
  47. 47.
    R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics (Addison Wesley, MA, 1965)zbMATHGoogle Scholar
  48. 48.
    J. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, CO, 2007)Google Scholar
  49. 49.
    Y. Atzmon, M. Nazarathy, J. Lightwave Technol. 27, 4650–4659 (2009)CrossRefADSGoogle Scholar
  50. 50.
    R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, Volterra nonlinear compensation of 100G coherent OFDM with Baud-rate ADC, tolerable complexity and low intra-channel FWM/XPM error propagation, OFC/NFOEC – Conference on optical fiber communication and the national fiber optic engineers conference, Paper OTuE3, 2010Google Scholar
  51. 51.
    G. Goldfarb, M.G. Taylor, G. Li, Experimental demonstration of distributed impairment compensation for high-spectral efficiency transmission, Coherent optical technologies and applications (COTA), Optical Society of America, p. CWB3, 2008Google Scholar
  52. 52.
    X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Opt. Express 16, 880–888 (2008)CrossRefADSGoogle Scholar
  53. 53.
    E. Ip, A.P. Lau, D.J. Barros, J.M. Kahn, Compensation of Dispersion and Nonlinearity in WDM Transmission Using Simplified Digital Backpropagation, IEEE, 2008Google Scholar
  54. 54.
    E. Ip, J.M. Kahn, J. Lightwave Technol. 26, 3416–3425 (2008)CrossRefADSGoogle Scholar
  55. 55.
    G. Goldfarb, M.G. Taylor, G. Li, IEEE Photon. Technol. Lett. 20, 1887–1889 (2008)CrossRefADSGoogle Scholar
  56. 56.
    G. Goldfarb, G. Li, Wavelet Split-Step Backward-Propagation for Efficient Post-Compensation of WDM Transmission Impairments, 2009Google Scholar
  57. 57.
    E. Ip, J. Lightwave Technol. 28, 939–951 (2010)CrossRefADSGoogle Scholar
  58. 58.
    E. Ip, J.M. Kahn, J. Lightwave Technol. 28, 502–519 (2010)CrossRefADSGoogle Scholar
  59. 59.
    M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (Wiley, NY, 1980)zbMATHGoogle Scholar
  60. 60.
    G. Mathews, V.J. Sicuranza, Polynomial Signal Processing (Wiley, NY, 2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentTechnion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations