Advertisement

Channel Capacity of Non-Linear Transmission Systems

  • Andrew D. EllisEmail author
  • Jian Zhao
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 7)

Abstract

Since their introduction in the late 1970s, the capacity of optical communication links has grown exponentially, fuelled by a series of key innovations including movement between the three telecommunication windows of 850 nm, 1,310 nm and 1,550 nm, distributed feedback laser, erbium-doped fibre amplifiers (EDFAs), dispersion-shifted and dispersion-managed fibre links, external modulation, wavelength division multiplexing, optical switching, forward error correction (FEC), Raman amplification, and most recently, coherent detection, electronic signal processing and optical orthogonal frequency division multiplexing (OFDM). Throughout this evolution, one constant factor has been the use of single-mode optical fibre, whose fundamental principles dated back to the 1800s, when Irish scientist, John Tyndall demonstrated in a lecture to the Royal Society in London that light could be guided through a curved stream of water [1]. Following many developments, including the proposal for waveguides by J.J. Thompson [2], the presentation of detailed calculations for dielectric waveguides by Snitzer [3], the proposal [4] and fabrication [5] of ultra low loss fibres, single-mode fibres were first adopted for non-experimental use in Dorset, UK in 1975, and are still in use today, despite the evolving designs to control chromatic dispersion and non-linearity.

Keywords

Orthogonal Frequency Division Multiplex Channel Capacity Orthogonal Frequency Division Multiplex System Forward Error Correction Amplify Spontaneous Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.S. Eve, C.H. Creasey, Life and Work of John Tyndall (Macmillan, London, 1945)Google Scholar
  2. 2.
  3. 3.
    E. Snitzer, J. Opt. Soc. Am. 51, 491–498 (1961)Google Scholar
  4. 4.
    K.C. Kao, G.A. Hockham, Proc. IEE 113(7), 1151–1158 (1966)Google Scholar
  5. 5.
    F.P. Kapron, D.B. Keck, R.D. Maurer, Appl. Phys. Lett. 17, 423–425 (1970)ADSGoogle Scholar
  6. 6.
    E.B. Desurvire, J. Lightwave Technol. 24(12), 4697–4710 (2006)ADSGoogle Scholar
  7. 7.
    L. Wood, D. Blankenhdn, DESIDOC Bull. Inform. Technol. 15(4), 23–31 (1995)Google Scholar
  8. 8.
    IEEE P802.3av Task Force, 10 Gb/s Ethernet Passive Optical Network, http://www.ieee802.org/3/av, downloaded 20/4/2009
  9. 9.
    J.M. Kahn, K.-P. Ho, IEEE J. Select. Top. Quant. Electron. 10(2), 259–272 (2004)Google Scholar
  10. 10.
    C.E. Shannon, Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)MathSciNetGoogle Scholar
  11. 11.
    C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, IL, 1963)zbMATHGoogle Scholar
  12. 12.
    H. Nyquist, Trans. Am. Inst. Elec. Eng. 47, 617–644 (1928)Google Scholar
  13. 13.
    M.E. McCarthy, J. Zhao, A.D. Ellis, P. Gunning, IEEE J. Lightwave Technol. 27, 5327–5335 (2009)ADSGoogle Scholar
  14. 14.
    X. Liu, DSP-enhanced differential direct-detection for DQPSK and m-ary DPSK, European conference on optical communication (ECOC), paper 07.2.1, 2007; E.B. Desurvire, J. Lightwave Technol. 24(12), 4697–4710 (2006)Google Scholar
  15. 15.
    R.-J. Essiambre, Capacity limits of fiber-optic communication systems, in Proceedings of OFC 2009, San Diego, ISA, Paper OThL1, 2009Google Scholar
  16. 16.
    N. Kikuchi, K. Mandai, K. Sekine, S. Sasaki, J. Lightwave Technol. 26(1), 150–157 (2008)ADSGoogle Scholar
  17. 17.
    J.M. Kahn, E. Ip, Principles of digital coherent receivers for optical communications, in Proceedings of OFC 2009, San Diego, ISA, Paper OTuG5, 2009Google Scholar
  18. 18.
    Ip, A.P.T. Lau, D.J.F. Barros, J.M. Khan, Opt. Express 16(2), 753–791 (2008)ADSGoogle Scholar
  19. 19.
    E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, Hoboken, 2002)Google Scholar
  20. 20.
    S. Haykin, Digital Communications (Wiley, NY, 1988)Google Scholar
  21. 21.
    N. Kikuchi, S. Sasaki, Improvement of tolerance to fibre non-linearity of incoherent multilevel signalling for WDM transmission with 10-Gbit/s OOK channels, in Proceedings of ECOC 2009, Vienna, Austria, Paper 8.4.1, 20–24 September 2009Google Scholar
  22. 22.
    J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, New York, 2000)Google Scholar
  23. 23.
    F. Gray, Pulse code communication, U.S. Patent 2,632,058, March 17, 1953 (filed Nov 1947)Google Scholar
  24. 24.
    M. Nakazawa, Challenges to FDM-QAM coherent transmission with ultrahigh spectral efficiency, in Proceedings of ECOC 2008, Brussels, Paper Tu1E1, 2008Google Scholar
  25. 25.
    S.Y. Chung, G.D. Forney, T.J. Richardson, R. Urbanke, IEEE Commun. Lett. 5(2), 58–60 (2001)Google Scholar
  26. 26.
    B. Zhou, L. Zhang, J. Kang, O. Huang, Y.Y. Tai, S. Lin, M. Xu, Non-binary LDPC codes vs. Reed-Solomon codes, in Proceedings of information theory and applications workshop 2008, San Diego, pp. 175–184, 2008Google Scholar
  27. 27.
    G.709: Interfaces for the Optical Transport Network (OTN), downloaded from http://www.itu.int/rec/T-REC-G.709/en.
  28. 28.
    R.W. Chang, Bell Syst. Tech. J. 45, 1775–1796, (1966)Google Scholar
  29. 29.
    R.R. Mosier, R.G. Clabaugh, AIEE Trans. 76, 723–728 (1958)Google Scholar
  30. 30.
    H. Sanjoh, E. Yamada, Y Yoshikuni, Optical orthogonal frequency. division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz, in Proceedings of OFC’02, Anaheim, Paper ThD1, 2002Google Scholar
  31. 31.
    A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, R. Kudo, K. Ishihara, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, H. Yamazaki, S. Kamei, H. Ishii, 13.4-Tb/s (134 ×111-Gb/s/ch) No-Guard-Interval Coherent OFDM Transmission over 3,600 km of SMF with 19-ps average PMD, in Proceedings of ECOC’08, Brussels, Paper Th3E1, 2008Google Scholar
  32. 32.
    K. Takiguchi, M. Oguma, T. Shibata, H Takahashi, Optical OFDM demultiplexer using silica PLC based optical FFT circuit, in Proceedings of OFC 2009, San Diego, Paper OWO3, 2009Google Scholar
  33. 33.
    A.D. Ellis, F.C.G. Gunning, Filter strategies for coherent WDM, in Proceedings of emerging technologies in optical sciences, Cork, 26–29 July 2004Google Scholar
  34. 34.
    A.D. Ellis, F.C.G. Gunning, Photon. Technol. Lett. 17(2), 504–506 (2005)ADSGoogle Scholar
  35. 35.
    J. Zhao, A.D. Ellis, Performance improvement using a novel MAP detector in coherent WDM systems, in Proceedings of ECOC’08, Paper Tu1.D.2, 2008Google Scholar
  36. 36.
    T. Healy, F.C. Garcia Gunning, E. Pincemin, B. Cuenot, A.D. Ellis, 1,200 km SMF (100 km spans) 280 Gbit/s coherent WDM transmission using hybrid Raman/EDFA amplification, in ECOC’07, Berlin, Paper Mo1.3.5, 2007Google Scholar
  37. 37.
    A.J. Lowery, J. Armstrong, Opt. Express 14, 2079–2084 (2006)ADSGoogle Scholar
  38. 38.
    B.J.C. Schmidt, Z. Zan, L.B. Du, A.J. Lowery, 100 Gbit/s transmission using single band direct detection optical OFDM, in Proceedings of OFC’09, San Diego, Paper PDPC4, 2009Google Scholar
  39. 39.
    I.B. Djordjevic, B. Vasic, IEEE Photon. Technol. Lett. 18(15), 1576–1578 (2006)ADSGoogle Scholar
  40. 40.
    S.L. Jansen, I. Morita, H. Tanaka, 10-Gb/s OFDM with conventional DFB lasers, in Proceedings of ECOC’07, Berlin Paper Tu. 2.5.2, 2007Google Scholar
  41. 41.
    W. Shieh High spectral efficiency coherent optical OFDM for 1 Tb/s Ethernet transport, in Proceedings of OFC 2009, San Diego, Paper OWW1, 2009Google Scholar
  42. 42.
    S.L. Jansen, I. Morita, N. Takeda, H. Tanaka, 20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation, in Proceedings of optical fiber communication (OFC) conference 2007, Anaheim, Paper PDP 15, 2007Google Scholar
  43. 43.
    H. Takahashi, A. Al Amin, S.L. Jansen, I. Morita, H. Tanaka DWDM transmission with 7.0 bit/s/Hz spectral efficiency using 8 ×65. 1 Gbit∕s coherent PDM OFDM signals, in Proceedings of OFC 2009, San Diego, Paper PDPB7, 2009Google Scholar
  44. 44.
    X. Yi, W. Shieh, Y. Ma, Phase noise on coherent optical OFDM systems with 16-QAM and 64-QAM beyond 10 Gb/s, in Proceedings of ECOC’07, Berlin, Paper Tu5.2.3, 2007Google Scholar
  45. 45.
    T. Miki, H. Ishio, IEEE Trans. Commun. 26(7), 1082–1087 (1978)Google Scholar
  46. 46.
    A.D. Ellis, F.C.G. Gunning, B. Cuenot, T.C. Healy, E. Pincemin, M. Rukosueva, Towards 1TbE using coherent WDM, in Proceedings of OECC/ACOFT 2008, Sydney, Paper WeA-1, 2008Google Scholar
  47. 47.
    F.C.G. Gunning. T. Healy, X. Yang, A.D. Ellis, 0.6Tbit/s capacity and 2bit/s/Hz spectral efficiency at 42.6Gsymbol/s using a single DFB laser with NRZ coherent WDM and polarisation multiplexing, in CLEO Europe 2007, Munich, Germany, Paper CI8–5, 2007Google Scholar
  48. 48.
    Y. Ma, Q. Yang, Y. Tang, S. Chen, W. Shieh, 1 Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access, in Proceedings of OFC’09, San Diego, Paper PDPC1, 2009Google Scholar
  49. 49.
    J. Armstrong, Electron. Lett. 38(5), 246–248 (2002)MathSciNetGoogle Scholar
  50. 50.
    D.J. Malyon, T. Widdowson, E.G. Bryant, S.F. Carter, J.V. Wright, W.A. Stallard, Electron. Lett. 27(2), 120–121 (1991)Google Scholar
  51. 51.
    H.J. Thiele, R.I. Killey, P. Bayvel, Electron. Lett. 34(21), 2050–2051 (1998)Google Scholar
  52. 52.
    A.D. Ellis, W.A. Stallard, Four Wave mixing in ultra long transmission systems incorporating linear amplifiers, IEE Colloquium, 159 (1990), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=190875 Google Scholar
  53. 53.
    R.-J. Essiambre, B. Mikkelsen, G. Raybon, Electron. Lett. 35(18), 1576–1578 (1999)Google Scholar
  54. 54.
    A.D. Ellis, J.D. Cox, D. Bird, J. Regnault, J.V. Wright, W.A. Stallard, Electron. Lett. 27(10), 878 (1991)Google Scholar
  55. 55.
    I. Morita, K. Tanaka, N. Edagawa, M. Suzuki, Impact of the dispersion map on long-haul 40 Gbith single-channel soliton transmission with periodic dispersion compensation, in Proceedings of OFC’99, San Diego, Paper FD1, 1999Google Scholar
  56. 56.
    P.V. Mamyshev, L.F. Mollenauer, Opt. Lett 21(6), 396–398 (1996)ADSGoogle Scholar
  57. 57.
    N.J. Smith, N.J. Doran, Opt. Lett. 21(8), 570–572 (1996)ADSGoogle Scholar
  58. 58.
    E Pincemin, A. Tan, A. Bezard, A. Tonello, S. Wabnitz, J-D Ania-Castañòn, S. Turitsyn, Opt. Express 14(25), 12049–12062 (2006)ADSGoogle Scholar
  59. 59.
    P.P.Mitra, J.B.Stark, Nature 411, 1027–1030 (2001)ADSGoogle Scholar
  60. 60.
    L.G.L. Wegener, b. M.L. Povinelli, A.G. Green, P.P. Mitra, J.B. Stark, P.B. Littlewood, Phys. D Nonlinear Phenomena 189(1–2), 81–99 (2004)zbMATHADSGoogle Scholar
  61. 61.
    R.J. Essiambre, G.J. Foschini, P.J. Winzer, G. Kramer, Exploring capacity limits of fibre-optic mommunication systems, in Proceedings of ECOC 2008, Brussels, Paper We1E1, 2008Google Scholar
  62. 62.
    K.J. Blow, N.J. Doran, IEEE Photon. Technol. Lett. 3(4), 369 (1991)ADSGoogle Scholar
  63. 63.
    A. Altuncu, L. Noel, W.A. Pender, A.S. Siddiqui, T. Widdowson, A.D. Ellis, M.A. Newhouse, A.J. Antos, G. Kar, P.W. Chu, Electron. Lett 32(3), 233 (1996)Google Scholar
  64. 64.
    V. Karalekas, J.-D. Ania-Castañón, P. Harper, S.K. Turitsyn, Ultra-long Raman fibre laser transmission links (Invited), in Proceedings of the 11th international conference on transparent optical networks, Paper Tu.A.2.1, 2009Google Scholar
  65. 65.
    X. Liu, X. Wei, R.E. Slusher, C.J. McKinstrie, Opt. Lett. 27, 1616–1618 (2002)ADSGoogle Scholar
  66. 66.
    K. Kikuchi, Opt. Express 16(2), 889–896 (2008)ADSGoogle Scholar
  67. 67.
    L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, I. Kang, C. Doerr, Demonstration of 109 X 10G dense WDM over more than 18,000 km using novel, periodic-group-delay complemented dispersion compensation and dispersion managed solitons, in Proceedings of ECOC 03, Rimini, Post-deadline Paper Th4.3.4, 2003Google Scholar
  68. 68.
    C. Xu, X. Liu, X. Wei, IEEE J. Select. Top. Quant. Electron. 10(2), 281–293 (2004)Google Scholar
  69. 69.
    W. Pieper, C. Kurtze, R. Schnabel, D. Bruer, R. Ludwig, K. Petermann, Electron. Lett. 30(9), 724–725 (1992)ADSGoogle Scholar
  70. 70.
    S. Watanabe, M. Shirasaki, J. Lightwave Technol. 14(3), 243–248 (1996)ADSGoogle Scholar
  71. 71.
    K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, Photon. Technol. Lett. 18(2), 403–405 (2006)ADSGoogle Scholar
  72. 72.
    L.F. Mollenauer, J.P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Elsevier, MA, 2006)Google Scholar
  73. 73.
    C. Spagnol, W. Marnane, E Popovici, FPGA implementations of LDPC over GF (2 m) decoders, in Proceedings of 2007 IEEE workshop on signal processing. Institute of Electrical and Electronics Engineers, Shanghai, China, 2007, pp. 273–278, 2007Google Scholar
  74. 74.
    J. Tang, J. Lightwave Technol. 24(5), 2070–2075 (2006)ADSGoogle Scholar
  75. 75.
    Y. Frignac, J.-C. Antona, S. Bigo, Enhanced analytical engineering rule for fast optimization dispersion maps in 40 Gbit/s-based transmission, Optical fiber communication conference, 2004. OFC 2004, vol. 1, 23–27 Feb 2004Google Scholar
  76. 76.
    R.W. Tkach, A.R. Chraplyvy, F. Forghieri, A.H. Gnauck, R. M. Derosier, J. Lightwave Technol. 13(5), 841–849 (1995)ADSGoogle Scholar
  77. 77.
    A.J. Lowery, Opt. Express 15(20), 12965 (2007)ADSGoogle Scholar
  78. 78.
    A. Mecozzi, M. Shtaif, Photon. Technol. Lett. 13, 1029–1031 (2001)ADSGoogle Scholar
  79. 79.
    R.-J. Essiambre, G.J. Foschini, P.J. Winzer, G. Kramer, E.C. Burrows, The capacity of fiber-optic communication systems, in Proceedings of OFC2008, San Diego, Paper OTuE1, 2008Google Scholar
  80. 80.
    B. Wu, E. Narimanov, Information capacity of nonlinear fiber-optical systems, in Proceedings of 2005 quantum electronics and laser science conference (QELS), Paper JThE74, 2005Google Scholar
  81. 81.
    K.S. Turitsyn, S.A. Derevyanko, I.V. Yurkevich, S.K. Turitsyn, Phys. Rev. Lett. 91, 203901 (2003)ADSGoogle Scholar
  82. 82.
    M.S. Pinsker, Information and Information Stability of Random Variables and Processes (Holden Day, San Francisco, 1964), pp. 160–201zbMATHGoogle Scholar
  83. 83.
    J. Tang, J. Lightwave Technol. 19, 1104–1109 (2000)ADSGoogle Scholar
  84. 84.
    H. Goto, M. Yoshida, T. Omiya, K. Kasai, M. Nakazawa, IEICE Electron. Express 5(18), 776–781 (2008)Google Scholar
  85. 85.
    S.L. Jansen, D. van den Borne, C. Climent, M. Serbay C.-J. Weiske, H. Suche, P.M. Krummrich, S. Spalter, S. Calabro, N. Hecker-Denschlag, P. Leisching, W. Rosenkranz, W. Sohler, G.D. Khoe, T. Koonen, H. de Waardt, 10,200km 22 ×2 ×l0Gbit∕s RZ-DQPSK dense WDM transmission without inline dispersion compensation through optical phase conjugation, in Proceedings of OFC’05, Anaheim, Paper PDP28, 2005Google Scholar
  86. 86.
    E Ip, J.M Kahn, J. Lightwave Technol. 26(20), 3416–3425 (2008)Google Scholar
  87. 87.
    X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Opt. Express 16, 880–888 (2008)ADSGoogle Scholar
  88. 88.
    L. Becouarn, G. Vareille, P. Pecci, J.F. Marcerou, 3Tbit/s transmission (301 DPSK channels at 10.709Gb/s) over 10270km with a record efficiency of 0.65(bit/s)/Hz, in Proceedings of ECOC 03, Rimini, Post-deadline Paper Th4.3.2, 2003Google Scholar
  89. 89.
    I. Morita, N. Edagawa, 50GHz-spaced 64 ×42. 7 Gbit∕s transmission over 8200km using pre-filtered CS-RZ DPSK signal and EDFA repeaters, in Proceedings of ECOC’03, Rimini, Paper Th4.3.1, 2003Google Scholar
  90. 90.
    A.D. Ellis, D.A. Cleland, Electron. Lett. 28(4), 405 (1992)Google Scholar
  91. 91.
    M. Jinno, M. Abe, Electron. Lett. 28(14), 1350 (1992)Google Scholar
  92. 92.
    Y. Ueno, S. Nakamura, K. Tajima, IEEE Photon. Technol. Lett. 13(5), 469–471 (2001)ADSGoogle Scholar
  93. 93.
    R.J. Manning, A.D. Ellis, A.J. Poustie, K.J. Blow, J. Opt. Soc. Am. B 14, 3204–3216 (1997)ADSGoogle Scholar
  94. 94.
    K. Croussore, C. Kim, G. Li, Opt. Lett. 29, 2357–2359 (2004)ADSGoogle Scholar
  95. 95.
    L.F. Mollenauer, P.V. Mamyshev, M.J. Neubelt, Electron. Lett. 32(5), 471 (1996)Google Scholar
  96. 96.
    P.V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, in Proceedings of ECOC, vol. 1, pp. 475–476, 1998Google Scholar
  97. 97.
    B. Cuenot, A.D. Ellis, Opt. Express, 15(18), 11492–11499 (2007)ADSGoogle Scholar
  98. 98.
    P. Petropoulos, L. Provost, F. Parmigiani, C. Kouloumentas, C. Finot, K. Mukasa, P. Vorreau, I. Tomkos, S. Sygletos, W. Freude, J. Leuthold, A. D. Ellis, D.J. Richardson, Simultaneous 2R regeneration of WDM signals in a single optical fibre, IEEE/LEOS winter topical meeting series, pp 252–253, 2009Google Scholar
  99. 99.
    O. Leclerc, E. Desurvire, O. Audouin, Opt. Fiber Technol. 3(2), 97–116 (1997)ADSGoogle Scholar
  100. 100.
    I.Y. Khrushchev, I.D. Phillips, A.D. Ellis, R.J. Manning, D. Nesset, D.G. Moodie, R.V. Penty, I.H. White, Electron. Lett. 35(14), 1183–1185 (1999)Google Scholar
  101. 101.
    M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, E. Yamada, Electron. Lett. 34(1), 103–104 (1998)Google Scholar
  102. 102.
    J.M.C. Boggio, C. Lundström, J. Yang, H. Sunnerud, P.A. Andrekson, Double-pumped FOPA with 40 dB flat gain over 81 nm bandwidth, in Proceedings of ECOC 2008, Brussels, Paper Tu.3B5, 2008Google Scholar
  103. 103.
    P.J. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, P.St.J. Russell, Opt. Exp. 13, 236–244 (2005)ADSGoogle Scholar
  104. 104.
    R.M. Percival, D. Szebesta, C.P. Seltzer, S.D. Perin, S.T. Devey, M. Louka, J. Quant. Electron. 31(3), 489–493 (1995)Google Scholar
  105. 105.
    A. Krier, Y. Mao, Infrared Phys. Technol. 38(7), 397–403 (1997)ADSGoogle Scholar
  106. 106.
    Z. Tong, Q. Yang, Y. Ma, W. Shieh, 21.4 Gb/s coherent optical OFDM transmission over 200 km multimode fiber, in Proceedings of OECC/ACOFT 2008, Syndey, Paper PDP5, 2008Google Scholar
  107. 107.
    C.P. Tsekrekos, A. Martinez, F.M. Huijskens, A.M.J. Koonen, IEEE Photon. Technol. Lett. 18, 2359–2361 (2006)ADSGoogle Scholar
  108. 108.
    E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, M. Koga, IEEE Photon. Technol. Lett. 19(9), 9–11 (2007)ADSGoogle Scholar
  109. 109.
    H.A. Haus, Y. Yamamoto, IEEE J. Quant. Electron. QE-23, 212–221 (1987)ADSGoogle Scholar
  110. 110.
    S. Oda, H. Sunnerud, P.A. Andrekson, Opt. Lett. 32(13), 1776–1778 (2007)ADSGoogle Scholar
  111. 111.
    G. Charlet, M. Salsi, H. Mardoyan, P. Tran, J. Renaudier, S. Bigo, M. Astruc, P. Sillard, L. Provost, F. Cérou, Transmission of 81 channels at 40Gbit/s over a transpacific-distance erbium-only link, using PDM-BPSK modulation, coherent detection, and a new large effective area fibre, in Proceedings of ECOC’08, Brussels, Paper Th3E3, 2008Google Scholar
  112. 112.
    S. Ten, Advanced fibers for submarine and long-haul applications, in Proceedings of LEOS 2004, vol. 2, pp. 543–544, San Francisco, Paper WJ2, 2004Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Tyndall National Institute and Department of PhysicsUniversity College CorkCorkIreland

Personalised recommendations