Skip to main content

Optical Regenerators for Novel Modulation Schemes

  • Chapter
  • First Online:
  • 1336 Accesses

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 7))

Abstract

Optical signals propagating along fibers are impaired by various causes. The impairments can be classified into two different types: deterministic and stochastic impairments. The sources of deterministic signal impairments include chromatic dispersion, polarization-mode dispersion, intrachannel nonlinearities caused by Kerr effects in fibers, and narrowband filtering brought about by networking elements such as add-drop multiplexers. In addition to these impairments, signals are contaminated by stochastic noise emitted by optical amplifiers that are used in most systems to compensate for losses of transmission fibers and other passive optical elements. Data-dependent signal distortion caused by interchannel nonlinearities is also taken as stochastic when the data carried by other channels are unknown to the channel of interest. The deterministic signal distortions can, in principle, be compensated for by optical elements, such as dispersion compensating fibers (DCFs) for chromatic dispersion compensation, for example, and/or signal processing in the electrical domain. The stochastic noise whose effects remain after such compensations are performed determines the ultimate performance of the transmission systems. In the presence of nonlinearity of the transmission fiber, the effect of noise is often enhanced [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Kikuchi, IEEE Photon. Technol. Lett. 5(2), 221–223 (1993)

    Article  ADS  Google Scholar 

  2. O. Leclerc, B. Lavigne, D. Chiaroni, E. Desurvire, All-Optical Regeneration: Principles and WDM Implementation, ed. by I. Kaminow, T. Li. Optical Fiber Telecommunications IV A, Components, (Academic, NY, 2002), pp. 732–783

    Google Scholar 

  3. P.J. Winzer, R.J. Essiambre, J. Lightwave Technol. 24(12), 4711–4728 (2006)

    Article  ADS  Google Scholar 

  4. I. Kang, C. Dorrer, L. Zhang, M. Rasras, L. Buhl, A. Bhardwaj, S. Cabot, M. Dinu, X. Liu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y.F. Chen, S. Patel, D.T. Neilson, J. Jacques, C.R. Giles, Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer, 2005 European conference on optical communication, Th4.3.3, 2005

    Google Scholar 

  5. P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, J. Leuthold, IEEE Photon. Technol. Lett. 18, 1970–1972 (2006)

    Article  ADS  Google Scholar 

  6. M. Matsumoto, IEEE Photon. Technol. Lett. 19, 273–275 (2007)

    Article  ADS  Google Scholar 

  7. R. Elschner, C.A. Bunge, K. Petermann, All-optical regeneration of 100 Gb/s DPSK signals, 2007 LEOS annual meeting, ThP3, 2007

    Google Scholar 

  8. M. Matsumoto, H. Sakaguchi, Opt. Express 16, 11169–11175 (2008)

    Article  ADS  Google Scholar 

  9. M. Matsumoto, Y. Morioka, Opt. Express 17, 6913–6919 (2009)

    Article  ADS  Google Scholar 

  10. J. Wang, A. Maitra, W. Freude, J. Leuthold, Opt. Express 17(25), 22639–22658 (2009)

    Article  ADS  Google Scholar 

  11. C. Kouloumentas, M. Bouqioukos, A. Maziotis, H. Avramopoulos, Phase-incoherent DPSK regeneration using a fiber-Sagnac interferometer, 2010 optical fiber communication conference, OMT5, 2010

    Google Scholar 

  12. P.S. Devgan, M. Shin, V.S. Grigoryan, J. Lasri, P. Kumar, SOA-based regenerative amplification of phase noise degraded DPSK signals, 2005 optical fiber communication conference, PDP34, 2005

    Google Scholar 

  13. P. Johannisson, G. Adolfsson, M. Karlsson, Opt. Lett. 31, 1385–1387 (2006)

    Article  ADS  Google Scholar 

  14. C.C. Wei, J.J. Chen, Opt. Express 14, 9584–9593 (2006)

    Article  ADS  Google Scholar 

  15. A.G. Striegler, M. Meissner, K. Cvecek, K. Spnsel, G. Leuchs, B. Schmauss, IEEE Photon. Technol. Lett. 17, 639–641 (2005)

    Article  ADS  Google Scholar 

  16. M. Matsumoto, IEEE Photon. Technol. Lett. 17, 1055–1057 (2005)

    Article  ADS  Google Scholar 

  17. M. Matsumoto, J. Lightwave Technol. 23(9), 2696–2701 (2005)

    Article  ADS  Google Scholar 

  18. S. Boscolo, R. Bhamber, S.K. Turitsyn, IEEE J. Quant. Electron. 42, 619–624 (2006)

    Article  ADS  Google Scholar 

  19. K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, G. Leuchs, IEEE Photon. Technol. Lett. 19, 146–148 (2007)

    Article  ADS  Google Scholar 

  20. F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, C. Schubert, All-optical amplitude noise suppression of 160-Gb/s OOK and DPSK data signals using a parametric fiber switch, 2007 optical fiber communication conference, Paper OThB3, 2007

    Google Scholar 

  21. K. Croussore, G. Li, Electron. Lett. 43, 177–178 (2007)

    Article  Google Scholar 

  22. M. Matsumoto, K. Sanuki, Opt. Express 15, 8094–8103 (2007)

    Article  ADS  Google Scholar 

  23. C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C.V. Nielsen, L. Grüner-Nielsen, K. Rottwitt, IEEE Photon. Technol. Lett. 21(13), 872–874 (2009)

    Article  ADS  Google Scholar 

  24. C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, G. Leuchs, IEEE Photon. Technol. Lett. 21(24), 1864–1866 (2009)

    Article  ADS  Google Scholar 

  25. Q.T. Le, L. Bramerie, H.T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.L. Oudar, J.C. Simon, IEEE Photon. Technol. Lett. 22(12), 887–889 (2010)

    Article  ADS  Google Scholar 

  26. K. Croussore, C. Kim, G. Li, Opt. Lett. 29(20), 2357–2359 (2004)

    Article  ADS  Google Scholar 

  27. K. Croussore, I. Kim, C. Kim, Y. Han, G. Li, Opt. Express 14, 2085–2094 (2006)

    Article  ADS  Google Scholar 

  28. A. Bogris, D. Syvridis, IEEE Photon. Technol. Lett. 18, 2144–2146 (2006)

    Article  ADS  Google Scholar 

  29. K. Croussore, G. Li, IEEE J. Sel. Top. Quant. Electron. 14, 648–658 (2008)

    Article  Google Scholar 

  30. F. Parmigiani, R. Slavik, J. Kakande, C. Lundstrom, M. Sjodin, P. Andrekson, R. Weerasuriya, S. Sygletos, A.D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropulos, D.J. Richadson, All-optical phase regeneration of 40Gbit/s DPSK signals in a black-box phase sensitive amplifier, 2010 optical fiber communication conference, PDPC3, 2010

    Google Scholar 

  31. Z. Zheng, L. An, Z. Li, X. Zhao, X. Liu, Opt. Commun. 281, 2755–2759 (2008)

    Article  ADS  Google Scholar 

  32. X. Yi, R. Yu, J. Kurumida, S.J.B. Yoo, J. Lightwave Technol. 28(4), 587–595 (2010)

    Article  ADS  Google Scholar 

  33. M. Matsumoto, Opt. Express 18(1), 10–24 (2010)

    Article  ADS  Google Scholar 

  34. R. Elschner, A. Marques de Melo, C.A. Bunge, K. Petermann, Opt. Lett. 32(2), 112–114 (2007)

    Article  ADS  Google Scholar 

  35. A.H. Gnauck, P.J. Winzer, J. Lightwave Technol. 23(1), 115–130 (2005)

    Article  ADS  Google Scholar 

  36. M. Daikoku, N. Yoshikane, T. Otani, H. Tanaka, J. Lightwave Technol. 24(3), 1142–1148 (2006)

    Article  ADS  Google Scholar 

  37. J.H. Lee, P.C. The, Z. Yusoff, M. Ibsen, W. Belardi, T.M. Monro, D.J. Richardson, IEEE Photon. Technol. Lett. 14(6) 876–878 (2002)

    Article  ADS  Google Scholar 

  38. L.B. Fu, M. Rochette, V.G. Ta’eed, D.J. Moss, B.J. Eggleton, Opt. Express 13, 7637–7644 (2005)

    Article  ADS  Google Scholar 

  39. F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, D.J. Richardson, Opt. Express 14, 5038–5044 (2006)

    Article  ADS  Google Scholar 

  40. P.V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, 1998 European conference on optical communication, pp. 475–476, 1998

    Google Scholar 

  41. M. Matsumoto, Opt. Express 14, 11018–11023 (2006)

    Article  ADS  Google Scholar 

  42. H. Toda, S. Kobayashi, I. Akiyoshi, Reduction of pulse-to-pulse interaction of optical RZ pulses in dispersion managed fiber, 2002 Asia-Pacific optical and wireless communications, Paper 4906–54, 2002

    Google Scholar 

  43. T. Tanemura, J.H. Lee, D. Wang, K. Katoh, K. Kikuchi, Opt. Express 14, 1408–1412 (2006)

    Article  ADS  Google Scholar 

  44. J.P. Gordon, L.F. Mollenauer, Opt. Lett. 15, 1351–1353 (1990)

    Article  ADS  Google Scholar 

  45. H. Kim, J. Lightwave Technol. 21(8), 1770–1774 (2003)

    Article  ADS  Google Scholar 

  46. A.G. Green, P.P. Mitra, L.G.L. Wegener, Opt. Lett. 28, 2455–2457 (2003)

    Article  ADS  Google Scholar 

  47. S. Kumar, Opt. Lett. 30(24), 3278–3280 (2005)

    Article  ADS  Google Scholar 

  48. K.P. Ho, H.C. Wang, Opt. Lett. 31(14), 2109–2111 (2006)

    Article  ADS  Google Scholar 

  49. N.J. Doran, D. Wood, Opt. Lett. 13(1), 56–58 (1988)

    Article  ADS  Google Scholar 

  50. G. Cappellini, S. Trillo, J. Opt. Soc. Am. B 8(4), 824–838 (1991)

    Article  ADS  Google Scholar 

  51. K. Inoue, T. Mukai, Opt. Lett. 26, 10–12 (2001)

    Article  ADS  Google Scholar 

  52. K. Inoue, Electron. Lett. 36, 1016–1017 (2000)

    Article  Google Scholar 

  53. E. Ciaramella, S. Trillo, IEEE Photon. Technol. Lett. 12(7), 849–451 (2000)

    Article  ADS  Google Scholar 

  54. K. Inoue, IEEE Photon. Technol. Lett. 13(4), 338–340 (2001)

    Article  ADS  Google Scholar 

  55. S. Radic, C.J. McKinstrie, R.M. Jopson, J.C. Centanni, A.R. Chraplyvy, IEEE Photon. Technol. Lett. 15, 957–959 (2003)

    Article  ADS  Google Scholar 

  56. C.M. Caves, Phys. Rev. D 26, 1817–1839 (1982)

    Article  ADS  Google Scholar 

  57. R. Loudon, IEEE J. Quant. Electron. QE-21(7), 766–773 (1985)

    Google Scholar 

  58. M.E. Marhic, C.H. Hsia, J.M. Jeong, Electron. Lett. 27(3), 210–211 (1991)

    Article  ADS  Google Scholar 

  59. M.E. Marhic, C.H. Hsia, Quantum Opt. 3, 341–358 (1991)

    Article  ADS  Google Scholar 

  60. H.A. Haus, J. Opt. Soc. Am B 12(11), 2019–2036 (1995)

    Article  ADS  Google Scholar 

  61. D. Levandovsky, M. Vasilyev, P. Kumar, Opt. Lett. 24(14), 984–986 (1999)

    Article  ADS  Google Scholar 

  62. W. Imajuku, A. Takada, Y. Yamabayashi, Electron. Lett. 36(1), 63–64 (2000)

    Article  Google Scholar 

  63. C.J. McKinstrie, S. Radic, Opt. Express 12(20), 4973–4979 (2004)

    Article  ADS  Google Scholar 

  64. R. Tang, P. Devgan, P.L. Voss, V.S. Grigoryan, P. Kumar, IEEE Photon. Technol. Lett. 17(9), 1845–1847 (2005)

    Article  ADS  Google Scholar 

  65. R. Tang, P.S. Devgan, V.S. Grigoryan, P. Kumar, M. Vasilyev, Opt. Express 16(12), 9046–9053 (2008)

    Article  ADS  Google Scholar 

  66. R.D. Li, P. Kumar, W.L. Kath, J. Lightwave Technol. 12(3), 541–549 (1994)

    Article  ADS  Google Scholar 

  67. H.P. Yuen, Opt. Lett. 17(1), 73–75 (1992)

    Article  ADS  Google Scholar 

  68. G.D. Bartolini, D.K. Serkland, P. Kumar, W.L. Kath, IEEE Photon. Technol. Lett. 9(7), 1020–1022 (1997)

    Article  ADS  Google Scholar 

  69. I. Kim, K. Croussore, X. Li, G. Li, IEEE Photon. Technol. Lett. 19, 987–989 (2007)

    Article  ADS  Google Scholar 

  70. R. Weerasuriya, S. Sygletos, S.K. Ibrahim, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, A.D. Ellis, Generation of frequency symmetric signals from a BPSK input for phase sensitive amplification, OFC2010, OWT6, 2010

    Google Scholar 

  71. A. Takada, W. Imajuku, Electron. Lett. 32, 677–679 (1996)

    Article  Google Scholar 

  72. K. Cvecek, K. Spnsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, G. Leuchs, IEEE Photon. Technol. Lett. 19, 1475–1477 (2007)

    Article  ADS  Google Scholar 

  73. M. Matsumoto, T. Kamio, IEEE J. Select. Top. Quant. Electron. 14, 610–615 (2008)

    Article  Google Scholar 

  74. R.A. Griffin, A.C. Carter, Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission, 2002 optical fiber communication conference, Paper WX6, 2002

    Google Scholar 

  75. K. Mishina, S.M. Nissanka, A. Maruta, S. Mitani, K. Ishida, K. Shimizu, T. Hatta, K. Kitayama, Opt. Express 15, 7774–7785 (2007)

    Article  ADS  Google Scholar 

  76. I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L.T. Gomez, Y.F. Chen, S.S. Patel, N. Dutta, A. Piccirilli, J. Jaques, C.R. Giles, Opt. Express 17, 19062–19066 (2009)

    Article  ADS  Google Scholar 

  77. K.P. Ho, Phase-Modulated Optical Communication Systems (Springer, Berlin, 2005)

    Google Scholar 

  78. T. Ohara, H. Takara, A. Hirano, K. Mori, S. Kawanishi, IEEE Photon. Technol. Lett. 15, 763–765 (2003)

    Article  ADS  Google Scholar 

  79. M. Vasilyev, T.I. Lakoba, Opt. Lett. 30, 1458–1460 (2005)

    Article  ADS  Google Scholar 

  80. L. Provost, P. Petropoulos, D.J. Richardson, Optical WDM regeneration: status and future prospects, OFC2009, OWD7, (2009)

    Google Scholar 

  81. P.G. Patki, M. Vasilyev, T.I. Lakoba, Multichannel all-optical regeneration, IEEE Photonics Society summer topical meetings, WC2.2, (2010)

    Google Scholar 

Download references

Acknowledgments

The author thanks K. Sanuki, H. Sakaguchi, and Y. Morioka for their assistance in the experiments of (D)BPSK signal transmission and regeneration. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (B) 20360171 and for Scientific Research on Priority Areas 18040006 and 19023005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Matsumoto, M. (2011). Optical Regenerators for Novel Modulation Schemes. In: Kumar, S. (eds) Impact of Nonlinearities on Fiber Optic Communications. Optical and Fiber Communications Reports, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8139-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8139-4_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8138-7

  • Online ISBN: 978-1-4419-8139-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics