Advertisement

Coherent, Self-Coherent, and Differential Detection Systems

  • Xiang Liu
  • Moshe Nazarathy
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 7)

Abstract

In order to meet the ever-increasing demand in telecommunication capacity, fiberoptic communication systems have been evolving dramatically over the past decade [1, 2]. The fiberoptic communication traffic growth has been at a rate of about 2 dB per year, representing a traffic increase of a factor of 100 in 10 years [1, 2]. The capacity increase in fiberoptic communication systems has been achieved mainly by deploying more fiber links, populating more wavelength channels per fiber link through dense wavelength-division-multiplexing (DWDM), and increasing the data rate per wavelength channel. In addition to increased capacity, the cost per bit in terms of both capital and operational expenditure has been decreased to sustain the traffic growth. Increasing the data rate per wavelength channel is regarded as an effective way to provide both increased capacity and lowered cost per bit.

Keywords

Amplify Spontaneous Emission Constant Modulus Algorithm Maximum Likelihood Sequence Estimation DWDM System Channel Data Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

X. Liu is deeply grateful to Dr. S. Chandrasekhar for close collaborations in recent years, generating many of the results reviewed in this chapter. He is also grateful to numerous current and past colleagues in Bell Laboratories, Alcatel-Lucent, for fruitful collaborations and valuable discussions. Among them are F. Buchali, C.R. Doerr, R. Essiambre, D.A. Fishman, D.M. Gill, A.H. Gnauck, I. Kang, Y.-H. Kao, N. Kaneda, S.K. Korotky, G. Kramer, A. Leven, C.J. McKinstrie, L.F. Mollenauer, A.J. van Wijngaarden, X. Wei, P.J. Winzer, C. Xie, and C. Xu. He also wishes to thank A.R. Chraplyvy, C.R. Giles, J.-P. Hamaide, and R.W. Tkach for their support.

M. Nazarathy would like to acknowledge: his former and current graduate students and his peers in the Technion EE Department, and in particular Prof. M. Orenstein; express deep gratitude to Profs. B. Fischer and G. Eisenstein who “enticed” Moshe to return to the academia, after having spent many years in the industry; national collaborators Prof. D. Sadot and Dr. D. Marom; US collaborators and in particular his co-author Xiang Liu, Prof. A.E. Willner and his past students Y.K. Lizé, and L. Christen and; EU collaborators: Prof. E. Forestieri and his group, and Prof. J. Prat and his group; his own family for their love and their infinite tolerance of imbalanced priorities.

References

  1. 1.
    A.R. Chraplyvy, The Coming Capacity Crunch, ECOC Plenary Talk (2009)Google Scholar
  2. 2.
    R.W. Tkach, Bell Labs Tech. J. 14, 3–10 (2010)CrossRefGoogle Scholar
  3. 3.
    C. Xu, X. Liu, X. Wei, IEEE J. Select Topics Quant. Electron. 10, 281–293 (2004)CrossRefGoogle Scholar
  4. 4.
    A.H. Gnauck, P.J. Winzer, J. Lightwave Technol. 23, 115–130 (2005)CrossRefADSGoogle Scholar
  5. 5.
    X. Liu, S. Chandrasekhar, A. Leven, Self-coherent optical transport systems, chapter 4, ed. by I.P. Kaminov, T. Li, A.E. Willner. Optical Fiber Telecommunications V.B: Systems and Networks (Academic, San Diego 2008)Google Scholar
  6. 6.
    M.G. Taylor, IEEE Photon. Technol. Lett. 16(2), 674–676 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Y. Han, G. Li, Opt. Express 13(19), 7527–7534 (2005)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    C.R.S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.D. Schmidt, T. Wuth, E. de Man, G.D. Khoe, H. de Waardt, 10 ×111 Gbit∕s, 50 GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalization. OFC’07, post-deadline paper PDP22, 2007Google Scholar
  9. 9.
    K. Kikuchi, Coherent Optical Communication Systems, chapter 3, ed. by I.P. Kaminov, T. Li, A.E. Willner. Optical Fiber Telecommunications V.B: Systems and Networks (Academic, San Diego, 2008)Google Scholar
  10. 10.
    E.M. Ip, A.P.T. Lau, D.J.F. Barros, J.M. Kahn, Opt. Express 16, 753–791 (2008)CrossRefADSGoogle Scholar
  11. 11.
    A.H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, D.M. Gill, 2.5 Tb/s (64 ×42. 7 Gb∕s) transmission over 40 ×100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans. OFC’02, post-deadline paper FC2, 2002Google Scholar
  12. 12.
    S. Chandrasekhar, X. Liu, D. Kilper, C.R. Doerr, A.H. Gnauck, E.C. Burrows, L.L. Buhl, 0.8-bit/s/Hz terabit transmission at 42.7-Gb/s using hybrid RZ-DQPSK and NRZ-DBPSK formats over 16 ×80 km SSMF spans and 4 bandwidth-managed ROADMs. OFC’07, post-deadline paper PDP28, 2007Google Scholar
  13. 13.
    C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, M. O’Sullivan, Wavelength division multiplexing (WDM) and polarization mode dispersion (PMD) performance of a coherent 40Gbit/s dual-polarization quadrature phase shift keying (DP-QPSK) transceiver. OFC’07, post-deadline paper PDP16, 2007Google Scholar
  14. 14.
    N. Kikuchi, S. Sasaki, J. Lightwave Technol. 28, 123–130 (2010)CrossRefADSGoogle Scholar
  15. 15.
    G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, S. Bigo, 72 ×100Gb∕s Transmission over transoceanic distance, using large effective area fiber, hybrid Raman-Erbium amplification and coherent detection. OFC’09, post-deadline paper PDPB6, 2009Google Scholar
  16. 16.
    X. Zhou, J. Yu, M.F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S.Y. Ten, H.B. Matthew, S.K. Mishra, 32Tb/s (320 ×114Gb∕s) PDM-RZ-8QAM transmission over 580km of SMF-28 ultra-low-loss fiber. OFC’09, post-deadline paper PDPB4, 2009Google Scholar
  17. 17.
    A.H. Gnauck, P.J. Winzer, C.R. Doerr, L.L. Buhl, 10 ×112-Gb∕s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency. OFC’09, post-deadline paper PDPB8, 2009Google Scholar
  18. 18.
    A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, 69.1-Tb/s (432 ×171-Gb∕s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection. OFC’10 postdeadline paper PDPB7, 2010Google Scholar
  19. 19.
    X. Zhou, J. Yu, M.F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P.I. Borel, D.W. Peckham, R. Lingle, 64-Tb/s (640 ×107-Gb∕s) PDM-36QAM transmission over 320km using both pre- and post-transmission digital equalization. OFC’10, post-deadline paper PDPB9, 2010Google Scholar
  20. 20.
    A.H. Gnauck, P.J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, D.W. Peckham, 10 ×224-Gb∕s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1,200 km of fiber. OFC’10, post-deadline paper PDPB8, 2010Google Scholar
  21. 21.
    X. Liu, S. Chandrasekhar, B. Zhu, P.J. Winzer, A.H. Gnauck, D.W. Peckham, Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000 km of ULAF and five 80–GHz–Grid ROADMs. OFC’10, post-deadline paper PDPC2, 2010Google Scholar
  22. 22.
    Y. Ma, Q. Yang, Y. Tang, S. Chen, W. Shieh, 1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access. OFC’09, post-deadline paper PDPC1, 2009Google Scholar
  23. 23.
    S. Chandrasekhar, X. Liu, B. Zhu, D.W. Peckham, Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber. ECOC’09, post-deadline paper PD2.6, 2009Google Scholar
  24. 24.
    W. Shieh, Q. Yang, Y. Ma, Opt. Express 16, 6378–6386 (2008)CrossRefADSGoogle Scholar
  25. 25.
    M. Nazarathy, D.M. Marom, W. Shieh, Optical comb and filter bank (De)Mux enabling 1 Tb/s orthogonal sub-band multiplexed CO-OFDM free of ADC/DAC limits,. European conference on optical communications, Paper P3.12, ECOC’09, Vienna, September 2009Google Scholar
  26. 26.
    A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, Y. Takatori, J. Lightwave Technol. 27, 3705–3713 (2009)CrossRefADSGoogle Scholar
  27. 27.
    K. Roberts, M. O’Sullivan, K.T. Wu, H. Sun, A. Awadalla, D. Krause, C. Laperle, J. Lightwave Technol. 27, 3546–3559 (2009)CrossRefADSGoogle Scholar
  28. 28.
    I. Dedic, 56Gs/s ADC: Enabling 100GbE. OFC’10, invited paper OThT6, 2010Google Scholar
  29. 29.
    M. Birk, P. Gerard, R. Curto, L. Nelson, X. Zhou, P. Magill, T.J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, G. Nicholl, M. Nowell, F. Forghieri, Field trial of a real-time, single wavelength, coherent 100 Gbit/s PM-QPSK channel upgrade of an installed 1800km link. OFC’10, post-deadline paper PDPD1, 2010Google Scholar
  30. 30.
    T.J. Xia, G. Wellbrock, B. Basch, S. Kotrla, W. Lee, T. Tajima, K. Fukuchi, M. Cvijetic, J. Sugg, Y. Ma, B. Turner, C. Cole, C. Urricariet, End-to-end native IP data 100G single carrier real time DSP coherent detection transport over 1520–km field deployed fiber. OFC’10, post-deadline paper PDPD4, 2010Google Scholar
  31. 31.
    D.A. Fishman, W.A. Thompson, L. Vallone, Bell Labs Tech. J. 11, 27–53 (2006)CrossRefGoogle Scholar
  32. 32.
    X. Liu, S. Chandrasekhar, High spectral-efficiency mixed 10G/40G/100G transmission. AOE’08, paper SuA2, 2008Google Scholar
  33. 33.
    K.P. Ho, Phase-Modulated Optical Communication Systems (Springer, New York, 2005)Google Scholar
  34. 34.
    P.J. Winzer, R.J. Essiambre, Advanced Optical Modulation Formats, chapter 2, ed. by I.P. Kaminov, T. Li, A.E. Willner. Optical Fiber Telecommunications V.B: Systems and Networks (Academic, San Diego, 2008)Google Scholar
  35. 35.
    A.J. Price, N. Le Mercier, Electron. Lett. 31, 58–59 (1995)CrossRefGoogle Scholar
  36. 36.
    X. Liu, A.H. Gnauck, X. Wei, Y.C. Hsieh, C. Ai, V. Chien, IEEE Photon. Technol. Lett. 17, 2610–2612 (2005)CrossRefADSGoogle Scholar
  37. 37.
    B. Mikkelsen, C. Rasmussen, P. Mamyshev, F. Liu, Electron. Lett. 42, 1363–1364 (2006)CrossRefGoogle Scholar
  38. 38.
    C. Wree, N. Hecker-Denschlag, E. Gottwald, P. Krummrich, J. Leibrich, E.D. Schmidt, B. Lankl, W. Rosenkranz, IEEE Photon. Technol. Lett. 15, 1303–1305 (2003)CrossRefADSGoogle Scholar
  39. 39.
    P.S. Cho, G. Harston, C. Kerr, A. Greenblatt, A. Kaplan, Y. Achiam, G. Yurista, M. Margalit, Y. Gross, J. Khurgin, IEEE Photon. Tech. Lett. 16, 656–658 (2004)CrossRefADSGoogle Scholar
  40. 40.
    D. van den Borne, S.L. Jansen, E. Gottwald, P.M. Krummrich, G.D. Khoe, H. de Waardt, J. Lightwave Technol. 25, 222–232 (2007)CrossRefADSGoogle Scholar
  41. 41.
    S. Chandrasekhar, X. Liu, D. Kilper, C.R. Doerr, A.H. Gnauck, E.C. Burrows, L.L. Buhl, J. Lightwave Technol. 26, 85–90 (2008)CrossRefADSGoogle Scholar
  42. 42.
    S. Chandrasekhar, X. Liu, Bell Labs Tech. J. 14, 11–25 (2010)CrossRefGoogle Scholar
  43. 43.
    C. Xie, D. Werner, H. Haunstein, R.M. Jopson, S. Chandrasekhar, X. Liu, y. Shi, S. Gronbach, T. Link, K. Czotscher, Bell Labs Tech. J. 14, 115–129 (2010)Google Scholar
  44. 44.
    P.J. Winzer, G. Raybon, S. Chandrasekhar, C.R. Doerr, T. Kawanishi, T. Sakamoto, K. Higuma, 10 ×107-Gb∕s NRZ-DQPSK transmission over 12 ×100 km including 6 routing nodes. OFC’07, post-deadline paper PDP24, 2007Google Scholar
  45. 45.
    S. Chandrasekhar, X. Liu, E.C. Burrows, L.L. Buhl, Hybrid 107-Gb/s polarization-multiplexed DQPSK and 42.7-Gb/s DQPSK transmission at 1.4 bits/s/Hz spectral efficiency over 1280 km of SSMF and 4 bandwidth-managed ROADMs. ECOC’07, post-deadline paper PD 1.9, 2007Google Scholar
  46. 46.
    X. Liu, S. Chandrasekhar, Direct Detection of 107-Gb/s polarization-multiplexed DQPSK with electronic polarization demultiplexing. OFC’08, paper OTuG4, 2008Google Scholar
  47. 47.
    G. Kramer, A. Ashikhmin, A.J. van Wijngaarden, X. Wei, J. Lightwave Technol. 21, 2438–2445 (2003)CrossRefADSGoogle Scholar
  48. 48.
    T. Mizuochi, J. Select Topics Quant. Electron. 12, 544–554 (2006)CrossRefGoogle Scholar
  49. 49.
    H. Sun, K. Wu, K. Roberts, Opt. Express 16, 873–879 (2008)CrossRefADSGoogle Scholar
  50. 50.
    D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, M. O’Sullivan, 5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation. OFC’05, postdeadline paper PDP 27, 2005Google Scholar
  51. 51.
    M.M. El Said, J. Sitch, M.I. Elmasry, J. Lightwave Technol. 23, 388–400 (2005)CrossRefADSGoogle Scholar
  52. 52.
    R.I. Killey, P.M. Watts, M. Glick, P. Bayvel, Electronic precompensation techniques to combat dispersion and nonlinearities in optical transmission. ECOC’05, paper Tu4.2.1, 2005Google Scholar
  53. 53.
    X. Liu, D.A. Fishman, A fast and reliable algorithm for electronic preequalization of SPM and chromatic dispersion. OFC’ 06, paper OThD4, 2006Google Scholar
  54. 54.
    A.H. Gnauck, P.J. Winzer, S. Chandrasekhar, IEEE Photon. Tech. Lett. 17, 2203–2205 (2005)CrossRefADSGoogle Scholar
  55. 55.
    G. Charlet, H. Mardoyan, P. Tran, M. Lefrancois, S. Bigo, Nonlinear interactions between 10Gb/s NRZ channels and 40Gb/s channels with RZ-DQPSK or PSBT format, over low-dispersion fiber. ECOC’06, paper Mo3.2.6, 2006Google Scholar
  56. 56.
    M. LeFrancois, F. Houndonoughbo, T. Fauconnier, G. Charlet, S. Bigo, Cross comparison of the nonlinear impairments caused by 10Gbit/s neighboring channels on a 40Gbit/s channel modulated with various formats, and over various fiber types. OFC’07, paper JThA44, 2007Google Scholar
  57. 57.
    S. Chandrasekhar, X. Liu, IEEE Photon. Tech. Lett. 19, 1801–1803 (2007)CrossRefADSGoogle Scholar
  58. 58.
    X. Liu, S. Chandrasekhar, Suppression of XPM penalty on 40-Gb/s DQPSK resulting from 10-Gb/s OOK channels by dispersion management. OFC’08, paper OMQ6, 2008Google Scholar
  59. 59.
    D. van den Borne, C. Fludger, T. Duthel, C. Schulien, T. Wuth, E.D. Schmidt, E. Gottwald, G.D. Khoe, H. de Waardt, Carrier phase estimation for coherent equalization of 43-Gb/s POLMUX-NRZ-DQPSK transmission with 10.7-Gb/s NRZ neighbours. ECOC’07, paper 7.2.3, 2007Google Scholar
  60. 60.
    G. Charlet, M. Salsi, H. Mardoyan, P. Tran, J. Renaudier, S. Bigo, M. Astruc, P. Sillard, L. Provost, F. Cerou, Transmission of 81 channels at 40Gbit/s over a transpacific-distance erbium-only link, using PDM-BPSK modulation, coherent detection, and a new large effective area fibre. ECOC’08, paper Th.3.E.3, 2008Google Scholar
  61. 61.
    G. Charlet, The impact and mitigation of nonlinear effects in coherent optical transmission. OFC’09, paper NThB4, 2009Google Scholar
  62. 62.
    M. Nazarathy, X. Liu, L. Christen, Y. Lize, A. Willner, IEEE Photon. Technol. Lett. 19, 828–839 (2007)CrossRefADSGoogle Scholar
  63. 63.
    M. Nazarathy, Y. Yadin, Approaching coherent homodyne performance with direct detection low-complexity advanced modulation formats. Coherent Optical Technologies and Applications (COTA), Whisler, Canada, 28–30 June 2006Google Scholar
  64. 64.
    M. Nazarathy, X. Liu, Y. Yadin, M. Orenstein, Multi-chip detection of optical differential phase-shift keying and complexity reduction by interferometric decision feedback. European conference of optical communication ECOC’06, Cannes, France, Paper We3.P.79, 24–28 September 2006Google Scholar
  65. 65.
    M. Nazarathy, Y. Yadin, M. Orenstein, Y. Lize, L. Christen, A. Willner, Enhanced self-coherent optical decision-feedback-aided detection of multi-symbol m-DPSK/PolSK in particular 8-DPSK/BPolSK at 40 Gbps. OFC’07, Paper JWA43, 2007Google Scholar
  66. 66.
    M. Nazarathy, X. Liu, L. Christen, Y. Lize, A. Wilner, J. Lightwave Technol. 26, 1921–1934 (2008)CrossRefADSGoogle Scholar
  67. 67.
    A. Atzmon, M. Nazarathy, Self-coherent differential transmission with decision feedback – phase noise impairments. Coherent Optical Technologies and Applications (COTA), Boston, 2008Google Scholar
  68. 68.
    N. Kikuchi, K. Mandai, S. Sasaki, K. Sekine, Proposal and first experimental demonstration of digital incoherent optical field detector for chromatic dispersion compensation, in Proceedings of European Conference on Optical Communications, Post-deadline Paper Th4.4.4, 2006Google Scholar
  69. 69.
    X. Liu, S. Chandrasekhar, A. Leven, Opt. Express 16, 792–803 (2008)CrossRefADSGoogle Scholar
  70. 70.
    D. van den Borne, S. Jansen, G. Khoe, H. de Wardt, S. Calabro, E. Gottwald, Differential quadrature phase shift keying with close to homodyne performance based on multi-symbol phase estimation, IEE seminar on optical fiber comm. and electronic signal processing, ref. No. 2005–11310, 2005Google Scholar
  71. 71.
    X. Liu, Receiver sensitivity improvement in optical DQPSK and DQPSK/ASK through data-aided multi-symbol phase estimation, in Proceedings of European Conference on Optical Communications 2006, Paper We2.5.6, 2006Google Scholar
  72. 72.
    X. Liu, Opt. Express 15, 2927–2939 (2007)CrossRefADSGoogle Scholar
  73. 73.
    X. Liu, S. Chandrasekhar, A.H. Gnauck, C.R. Doerr, I. Kang, D. Kilper, L.L. Buhl, J. Centanni, DSP-enabled compensation of demodulator phase error and sensitivity improvement in direct-detection 40-Gb/s DQPSK, in Proceedings of European Conference on Optical Communications 2006, post-deadline paper Th4.4.5, 2006Google Scholar
  74. 74.
    N. Kikuchi, S. Sasaki, Optical dispersion-compensation free incoherent multilevel signal transmission over standard single-mode fiber with digital pre-distortion and phase pre-integration techniques. ECOC’08, paper Tu.1.E.2, 2008Google Scholar
  75. 75.
    N. Kikuchi, S. Sasaki, Sensitivity improvement of incoherent multilevel (30-Gbit/s 8QAM and 40-Gbit/s 16QAM) signaling with non-Euclidean metric and MSPE (multi symbol phase estimation). OFC’09, paper OWG1, 2009Google Scholar
  76. 76.
    J.P. Gordon, L.F. Mollenauer, Opt. Lett. 15, 1351–1353 (1990)CrossRefADSGoogle Scholar
  77. 77.
    X. Liu, X. Wei, R.E. Slusher, C.J. McKinstrie, Opt. Lett. 27, 1616–1618 (2002)CrossRefADSGoogle Scholar
  78. 78.
    K.P. Ho, J.M. Kahn, J. Lightwave Technol 22, 779–783 (2004)CrossRefADSGoogle Scholar
  79. 79.
    G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, S. Bigo, Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation, in Proceedings of European Conference on Optical Communications 2006, Post-deadline Paper Th4.3.4, 2006Google Scholar
  80. 80.
    N. Kikuchi, K. Mandai, S. Sasaki, Compensation of non-linear phase-shift in incoherent multilevel receiver with digital signal processing, in Proceedings of European Conference on Optical Communications 2007, Paper 9.4.1, 2007Google Scholar
  81. 81.
    Y.K. Lizé, L. Christen, M. Nazarathy, S. Nuccio, X. Wu, A.E. Willner, R. Kashyap, Opt. Express 15, 6831–6839 (2007)CrossRefADSGoogle Scholar
  82. 82.
    Y.K. Lizé, L. Christen, M. Nazarathy, Y. Atzmon, S. Nuccio, P. Saghari, R. Gomma, J.-Y. Yang, R. Kashyap, A. Willner, L. Paraschis, Photon. Technol. Lett. 19, 1874–1876 (2007)CrossRefADSGoogle Scholar
  83. 83.
    X. Liu, Digital self-coherent detection and mitigation of transmission impairments, 2008 OSA summer topic meeting on coherent optical technologies and applications (COTA’08), paper CWB2, 2008Google Scholar
  84. 84.
    S. Zhang, P.Y. Kam, J. Chen, C. Yu, Opt. Express 17, 704–715 (2009)ADSGoogle Scholar
  85. 85.
    C. Yu, S. Zhang, P.Y. Kam, J. Chen, Opt. Express 18, 12088–12103 (2010)CrossRefADSGoogle Scholar
  86. 86.
    M. Nazarathy, A. Gorshtein, D. Sadot, Doubly-differential coherent 100 G transmission: multi-symbol decision-directed carrier phase estimation with intradyne frequency offset cancellation, Signal processing techniques in communication, signal processing in photonic communications (SPPCom), Advanced photonics OSA conference, Karlsruhe, Germany, 21–24 June, 2010Google Scholar
  87. 87.
    S.J. Savory, Opt. Express 16, 804–817 (2008)CrossRefADSGoogle Scholar
  88. 88.
    Y. Mori, C. Zhang, M. Usui, K. Igarashi, K. Katoh, K. Kikuchi, 200-km transmission of 100-Gbit/s 32-QAM dual-polarization signals using a digital coherent receiver. ECOC’09, paper 8.4.6, 2009Google Scholar
  89. 89.
    J. Yu, X. Zhou, S. Gupta, Y.K. Huang, M.F. Huang, IEEE Photon. Technol. Lett. 22, 115–117 (2010)CrossRefADSGoogle Scholar
  90. 90.
    See, for example, IEEE standards 802.11a, 802.11g, and 802.16Google Scholar
  91. 91.
    A.J. Lowery, L. Du, J. Armstrong, Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems. OFC’06, post-deadline paper PDP39, 2006Google Scholar
  92. 92.
    W. Shieh, C. Athaudage, Electron. Lett. 42, 587–589 (2006)CrossRefGoogle Scholar
  93. 93.
    I.B. Djordjevic, B. Vasic, Opt. Express 14, 3767–3775 (2006)CrossRefADSGoogle Scholar
  94. 94.
    S.L. Jansen, I. Morita, T.C. Schenk, H. Tanaka, J. Opt. Netw. 7, 173–182 (2008)Google Scholar
  95. 95.
    W. Shieh, X. Yi, Y. Ma, Q. Yang, J. Opt. Netw. 7, 234–255 (2008)Google Scholar
  96. 96.
    W. Shieh, H. Bao, Y. Tang, Opt. Express 16, 841–859 (2008)CrossRefADSGoogle Scholar
  97. 97.
    A. Bocoi1, M. Schuster, F. Rambach, D.A. Schupke, C.A. Bunge, B. Spinnler, Cost comparison of networks using traditional 10 and 40 Gb/s transponders versus OFDM transponders. OFC’08, paper OThB4, 2008Google Scholar
  98. 98.
    B. Spinnler, F.N. Hauske, M. Kuschnerov, Adaptive equalizer complexity in coherent optical receivers. ECOC’08, paper We.2.E.4, 2008Google Scholar
  99. 99.
    E.M. Ip, J.M. Khan, J. Lightwave Technol. 28(4), 502–519 (2010)CrossRefADSGoogle Scholar
  100. 100.
    X. Liu, F. Buchali, R.W. Tkach, S. Chandrasekhar, Bell Labs Tech. J. 14, 47–59 (2010)CrossRefGoogle Scholar
  101. 101.
    M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, The FWM impairment in coherent OFDM compounds on a phased-array basis over dispersive multi-span links, Coherent optical technologies and applications (COTA), Boston, 2008Google Scholar
  102. 102.
    M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P.S. Pak, R. Noe, I. Shpantzer, V. Karagodsky, Opt. Express 16(6), 4228–4236 (2008)CrossRefGoogle Scholar
  103. 103.
    R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, Volterra nonlinear compensation of 112 Gb/s ultra-long-haul coherent optical OFDM based on frequency-shaped decision feedback, European conference on optical communications, Paper 2.3.3, ECOC’09, Vienna, September 2009Google Scholar
  104. 104.
    R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, Volterra nonlinear compensation of 100G coherent OFDM with baud-rate ADC, tolerable complexity and low intra-channel FWM/XPM error propagation. Paper OTuE3, OFC’10, San Diego, March 2010Google Scholar
  105. 105.
    D. Liang, B. Schmidt, A. Lowery, Efficient digital backpropagation for PDM-CO-OFDM optical transmission systems, Optical fiber communications (OFC 2010), San Diego, CA. Paper OTuE2, 23 March 2010Google Scholar
  106. 106.
    M. Nazarathy, Nonlinear impairments in coherent optical OFDM systems and their mitigation, Invited paper, Signal processing in photonic communications (SPPCom), Advanced photonics OSA conference, Karlsruhe, Germany, 21–24 June, 2010Google Scholar
  107. 107.
    X. Liu, F. Buchali, Opt. Express 16, 21944–21957 (2008)CrossRefADSGoogle Scholar
  108. 108.
    X. Liu, F. Buchali, R.W. Tkach, J. Lightwave Technol. 27, 3632–3640 (2009)CrossRefADSGoogle Scholar
  109. 109.
    K. Ishihara et al., Electron. Lett. 44, 1480–1481 (2008)CrossRefMathSciNetGoogle Scholar
  110. 110.
    A.J. Lowery, Opt. Express 15, 12965 (2007)CrossRefADSGoogle Scholar
  111. 111.
    S. Oda, T. Tanimura, T. Hoshida, C. Ohshima, H. Nakashima, Z. Tao, J.C. Rasmussen, 112Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver. OFC’09, paper OThR6, 2009Google Scholar
  112. 112.
    D.S. Millar, S. Makovejs, V. Mikhailov, R.I. Killey, P. Bayvel, S.J. Savory, Experimental comparison of nonlinear compensation in long-haul PDM-QPSK transmission at 42.7 and 85.4 Gb/s. ECOC’09, paper 9.4.4, 2009Google Scholar
  113. 113.
    S. Chandrasekhar, X. Liu, Opt. Express 17, 12350–12361 (2009)CrossRefGoogle Scholar
  114. 114.
    A. Ellis, F.C.G. Gunning, IEEE Photon. Technol. Lett. 17, 504–506 (2005)CrossRefADSGoogle Scholar
  115. 115.
    R.M. Metcalfe, Toward terabit Ethernet. OFC’08, plenary talk 2, 2008Google Scholar
  116. 116.
    A.D. Ellis, F.C.G. Gunning, B. Cuenot, T.C. Healy, E. Pincemin, Towards 1TbE using coherent WDM, in Proceedings of OECC/ACOFT 2008, Paper WeA-1, Sydney, Australia, 2008Google Scholar
  117. 117.
    R. Dischler, F. Buchali, Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 but/s/Hz over 400 km of SSMF. OFC’09, post-deadline paper PDPC2, 2009Google Scholar
  118. 118.
    T. Healy, F.C. Garcia Gunning, A.D. Ellis, J. D, Bull, Opt. Express 15, 2981–2986 (2007)Google Scholar
  119. 119.
    A. Kaplan, A. Greenblatt, G. Harston, P.S. Cho, Y. Achiam, I. Shpantzer, Fully tunable LiNbO3 ring resonator cavity for frequency comb generator (FCG). ECIO’07, 2007Google Scholar
  120. 120.
    X. Liu, S. Chandrasekhar, B. Zhu, D.W. Peckham, Efficient digital coherent detection of a 1.2-Tb/s 24-carrier no-guard-interval CO-OFDM signal by simultaneously detecting multiple carriers per sampling. OFC’10, paper OWO2, 2010Google Scholar
  121. 121.
    X. Liu, S. Chandrasekhar, Impact of fiber nonlinearity on Tb/s PDM-OFDM transmission, 2010 IEEE photonics society summer topicals, invited paper TuA3, 2010Google Scholar
  122. 122.
    C.E. Shannon, Bell Syst. Tech. J. 27, 379–423 623–656 (1948)Google Scholar
  123. 123.
    R.J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, J. Lightwave Technol. 28, 662–701, (2010) and references thereinGoogle Scholar
  124. 124.
    A.D. Ellis, J. Zhao, D. Cotter, J. Lightwave Technol. 28, 424–433, (2010) and references thereinGoogle Scholar
  125. 125.
    D. Gorshtein G. Sadot O. Katz Levy, Coherent CD equalization for 111Gbps DP-QPSK with one sample per symbol based on anti-aliasing filtering and MLSE. OFC/NFOEC’10, paper OThT2, 2010Google Scholar
  126. 126.
    A. Agmon, M. Nazarathy, Opt. Express 15, 13123–13128 (2007)CrossRefADSGoogle Scholar
  127. 127.
    M. Nazarathy, A. Agmon, J. Lightwave Technol. 26, 2037–2045 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Bell LaboratoriesAlcatel-LucentHolmdelUSA
  2. 2.Electrical Engineering DepartmentTechnion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations