Skip to main content

Soft Tissue and Bone Tumors

  • Chapter
  • First Online:
Handbook of Practical Immunohistochemistry

Abstract

Immunohistochemistry is a powerful adjunctive technique for the pathologic diagnosis of soft tissue and bone tumors, although some tumors still lack specific markers. This chapter includes the questions about the immunohistochemical markers for normal soft tissue and bone, soft ­tissue and bone tumors, and their utility for differentiation. The questions are answered in the form of tables. The photos of selected markers are also included. New markers such as MDM2, TLS/EWS-CHOP chimeric oncoproteins, HHV8, TFE3, and TLE1, as well as other commonly used markers, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dabbs DJ. Diagnostic immunohistochemistry. 3rd ed. Philadelphia, PA: Churchill Livingstone Elsevier; 2010. Accessed 14 Apr 2010.

    Google Scholar 

  2. Fletcher CD, Unni KK, Mertens F. WHO classification of tumours: pathology & genetics: tumours of soft tissue and bone. Lyon, France: IARC Press (International Agency for Research on Cancer); 2002. p. 427.

    Google Scholar 

  3. Folpe AL, Inwards CY. Foundations in diagnostic pathology: bone and soft tissue pathology. Philadelphia, PA: Saunders Elsevier; 2010. p. 462.

    Google Scholar 

  4. Weiss SW, Goldblum JR. Enzinger and Weiss’s soft tissue tumors. 5th ed. Philadelphia, PA: Mosby Elsevier; 2008. p. 1257. Accessed 21 May 2010.

    Google Scholar 

  5. Adachi Y, Horie Y, Kitamura Y, et al. CD1a expression in PEComas. Pathol Int. 2008;58(3):169–73.

    Article  PubMed  Google Scholar 

  6. Albritton KH, Randall RL. Prospects for targeted therapy of synovial sarcoma. J Pediatr Hematol Oncol. 2005;27(4):219–22.

    Article  PubMed  Google Scholar 

  7. de Vreeze RS, de Jong D, Tielen IH, et al. Primary retroperitoneal myxoid/round cell liposarcoma is a nonexisting disease: an immunohistochemical and molecular biological analysis. Mod Pathol. 2009;22:223–31.

    Article  PubMed  CAS  Google Scholar 

  8. Haimoto H, Kato K, Suzuki F, Nagura H. The ultrastructural changes of S-100 protein localization during lipolysis in adipocytes. An immunoelectron-microscopic study. Am J Pathol. 1985;121(2):185–91.

    PubMed  CAS  Google Scholar 

  9. Suster S, Fisher C. Immunoreactivity for the human hematopoietic progenitor cell antigen (CD34) in lipomatous tumors. Am J Surg Pathol. 1997;21(2):195–200.

    Article  PubMed  CAS  Google Scholar 

  10. Templeton SF, Solomon Jr AR. Spindle cell lipoma is strongly CD34 positive. An immunohistochemical study. J Cutan Pathol. 1996;23(6):546–50.

    Article  PubMed  CAS  Google Scholar 

  11. Binh MB, Garau XS, Guillou L, Aurias A, Coindre JM. Reproducibility of MDM2 and CDK4 staining in soft tissue tumors. Am J Clin Pathol. 2006;125(5):693–7.

    Article  PubMed  Google Scholar 

  12. Binh MB, Sastre-Garau X, Guillou L, et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol. 2005;29(10):1340–7.

    Article  PubMed  Google Scholar 

  13. Hostein I, Pelmus M, Aurias A, Pedeutour F, Mathoulin-Pelissier S, Coindre JM. Evaluation of MDM2 and CDK4 amplification by real-time PCR on paraffin wax-embedded material: a potential tool for the diagnosis of atypical lipomatous tumours/well-differentiated liposarcomas. J Pathol. 2004;202(1):95–102.

    Article  PubMed  CAS  Google Scholar 

  14. Benassi MS, Campanacci L, Gamberi G, et al. Cytokeratin expression and distribution in adamantinoma of the long bones and osteofibrous dysplasia of tibia and fibula. An immunohistochemical study correlated to histogenesis. Histopathology. 1994;25(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  15. Hisaoka M, Tsuji S, Morimitsu Y, et al. Detection of TLS/FUS-CHOP fusion transcripts in myxoid and round cell liposarcomas by nested reverse transcription-polymerase chain reaction using archival paraffin-embedded tissues. Diagn Mol Pathol. 1998;7(2):96–101.

    Article  PubMed  CAS  Google Scholar 

  16. Oikawa K, Ishida T, Imamura T, et al. Generation of the novel monoclonal antibody against TLS/EWS-CHOP chimeric oncoproteins that is applicable to one of the most sensitive assays for myxoid and round cell liposarcomas. Am J Surg Pathol. 2006;30(3):351–6.

    PubMed  Google Scholar 

  17. Montgomery EA, Meis JM. Nodular fasciitis. Its morphologic spectrum and immunohistochemical profile. Am J Surg Pathol. 1991;15(10):942–8.

    Article  PubMed  CAS  Google Scholar 

  18. Folpe AL, Veikkola T, Valtola R, Weiss SW. Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi’s ­sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod Pathol. 2000;13(2):180–5.

    Article  PubMed  CAS  Google Scholar 

  19. Bhattacharya B, Dilworth HP, Iacobuzio-Donahue C, et al. Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol. 2005;29(5):653–9.

    Article  PubMed  Google Scholar 

  20. Carlson JW, Fletcher CD. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology. 2007;51(4):509–14.

    Article  PubMed  CAS  Google Scholar 

  21. Ceballos KM, Nielsen GP, Selig MK, O’Connell JX. Is anti-­h-caldesmon useful for distinguishing smooth muscle and myofibroblastic tumors? An immunohistochemical study. Am J Clin Pathol. 2000;114(5):746–53.

    Article  PubMed  CAS  Google Scholar 

  22. Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 2007;31(4):509–20.

    Article  PubMed  Google Scholar 

  23. Coffin CM, Watterson J, Priest JR, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol. 1995;19(8):859–72.

    Article  PubMed  CAS  Google Scholar 

  24. Cook JR, Dehner LP, Collins MH, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol. 2001;25(11):1364–71.

    Article  PubMed  CAS  Google Scholar 

  25. Harik LR, Merino C, Coindre JM, Amin MB, Pedeutour F, Weiss SW. Pseudosarcomatous myofibroblastic proliferations of the bladder: a clinicopathologic study of 42 cases. Am J Surg Pathol. 2006;30(7):787–94.

    Article  PubMed  Google Scholar 

  26. Miettinen M, Rapola J. Immunohistochemical spectrum of rhabdomyosarcoma and rhabdomyosarcoma-like tumors. Expression of cytokeratin and the 68-kD neurofilament protein. Am J Surg Pathol. 1989;13(2):120–32.

    Article  PubMed  CAS  Google Scholar 

  27. Daimaru Y, Hashimoto H, Enjoji M. Myofibromatosis in adults (adult counterpart of infantile myofibromatosis). Am J Surg Pathol. 1989;13(10):859–65.

    Article  PubMed  CAS  Google Scholar 

  28. Meis-Kindblom JM, Kindblom LG. Acral myxoinflammatory fibroblastic sarcoma: a low-grade tumor of the hands and feet. Am J Surg Pathol. 1998;22(8):911–24.

    Article  PubMed  CAS  Google Scholar 

  29. Fletcher CD, Tsang WY, Fisher C, Lee KC, Chan JK. Angiomyofibroblastoma of the vulva. A benign neoplasm distinct from aggressive angiomyxoma. Am J Surg Pathol. 1992;16(4):373–82.

    Article  PubMed  CAS  Google Scholar 

  30. Laskin WB, Fetsch JF, Mostofi FK. Angiomyofibroblastomalike tumor of the male genital tract: analysis of 11 cases with comparison to female angiomyofibroblastoma and spindle cell lipoma. Am J Surg Pathol. 1998;22(1):6–16.

    Article  PubMed  CAS  Google Scholar 

  31. Laskin WB, Fetsch JF, Tavassoli FA. Angiomyofibroblastoma of the female genital tract: analysis of 17 cases including a lipomatous variant. Hum Pathol. 1997;28(9):1046–55.

    Article  PubMed  CAS  Google Scholar 

  32. Nielsen GP, Rosenberg AE, Young RH, Dickersin GR, Clement PB, Scully RE. Angiomyofibroblastoma of the vulva and vagina. Mod Pathol. 1996;9(3):284–91.

    PubMed  CAS  Google Scholar 

  33. Ockner DM, Sayadi H, Swanson PE, Ritter JH, Wick MR. Genital angiomyofibroblastoma. Comparison with aggressive angiomyxoma and other myxoid neoplasms of skin and soft tissue. Am J Clin Pathol. 1997;107(1):36–44.

    PubMed  CAS  Google Scholar 

  34. Iwasa Y, Fletcher CD. Cellular angiofibroma: clinicopathologic and immunohistochemical analysis of 51 cases. Am J Surg Pathol. 2004;28(11):1426–35.

    Article  PubMed  Google Scholar 

  35. Lee AH, Sworn MJ, Theaker JM, Fletcher CD. Myofibroblastoma of breast: an immunohistochemical study. Histopathology. 1993;22(1):75–8.

    Article  PubMed  CAS  Google Scholar 

  36. Mentzel T, Calonje E, Wadden C, et al. Myxofibrosarcoma. Clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol. 1996;20(4):391–405.

    Article  PubMed  CAS  Google Scholar 

  37. Goodlad JR, Mentzel T, Fletcher CD. Low grade fibromyxoid sarcoma: clinicopathological analysis of eleven new cases in support of a distinct entity. Histopathology. 1995;26(3):229–37.

    Article  PubMed  CAS  Google Scholar 

  38. Lane KL, Shannon RJ, Weiss SW. Hyalinizing spindle cell tumor with giant rosettes: a distinctive tumor closely resembling low-grade fibromyxoid sarcoma. Am J Surg Pathol. 1997;21(12):1481–8.

    Article  PubMed  CAS  Google Scholar 

  39. Fukunaga M, Fukunaga N. Low-grade myxofibrosarcoma: progression in recurrence. Pathol Int. 1997;47(2–3):161–5.

    Article  PubMed  CAS  Google Scholar 

  40. Nascimento AG. A clinicopathologic and immunohistochemical comparative study of cutaneous and intramuscular forms of juvenile xanthogranuloma. Am J Surg Pathol. 1997;21(6):645–52.

    Article  PubMed  CAS  Google Scholar 

  41. Sonoda T, Hashimoto H, Enjoji M. Juvenile xanthogranuloma. Clinicopathologic analysis and immunohistochemical study of 57 patients. Cancer. 1985;56(9):2280–6.

    Article  PubMed  CAS  Google Scholar 

  42. Kanner WA, Brill II LB, Patterson JW, Wick MR. CD10, p63 and CD99 expression in the differential diagnosis of atypical fibroxanthoma, spindle cell squamous cell carcinoma and desmoplastic melanoma. J Cutan Pathol. 2010;37:744–50.

    Article  PubMed  Google Scholar 

  43. Longacre TA, Smoller BR, Rouse RV. Atypical fibroxanthoma. Multiple immunohistologic profiles. Am J Surg Pathol. 1993;17(12):1199–209.

    Article  PubMed  CAS  Google Scholar 

  44. Altman DA, Nickoloff BJ, Fivenson DP. Differential expression of factor XIIIa and CD34 in cutaneous mesenchymal tumors. J Cutan Pathol. 1993;20(2):154–8.

    Article  PubMed  CAS  Google Scholar 

  45. Goldblum JR, Reith JD, Weiss SW. Sarcomas arising in dermatofibrosarcoma protuberans: a reappraisal of biologic behavior in eighteen cases treated by wide local excision with extended clinical follow up. Am J Surg Pathol. 2000;24(8):1125–30.

    Article  PubMed  CAS  Google Scholar 

  46. Hollowood K, Holley MP, Fletcher CD. Plexiform fibrohistiocytic tumour: clinicopathological, immunohistochemical and ultrastructural analysis in favour of a myofibroblastic lesion. Histopathology. 1991;19(6):503–13.

    Article  PubMed  CAS  Google Scholar 

  47. Moosavi C, Jha P, Fanburg-Smith JC. An update on plexiform fibrohistiocytic tumor and addition of 66 new cases from the Armed Forces Institute of Pathology, in honor of Franz M. Enzinger, MD. Ann Diagn Pathol. 2007;11(5):313–9.

    Article  PubMed  Google Scholar 

  48. Remstein ED, Arndt CA, Nascimento AG. Plexiform fibrohistiocytic tumor: clinicopathologic analysis of 22 cases. Am J Surg Pathol. 1999;23(6):662–70.

    Article  PubMed  CAS  Google Scholar 

  49. O’Connell JX, Wehrli BM, Nielsen GP, Rosenberg AE. Giant cell tumors of soft tissue: a clinicopathologic study of 18 benign and malignant tumors. Am J Surg Pathol. 2000;24(3):386–95.

    Article  PubMed  Google Scholar 

  50. Coindre JM, Hostein I, Maire G, et al. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histological review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol. 2004;203(3):822–30.

    Article  PubMed  CAS  Google Scholar 

  51. Fanburg-Smith JC, Miettinen M. Angiomatoid “malignant” fibrous histiocytoma: a clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum Pathol. 1999;30(11):1336–43.

    Article  PubMed  CAS  Google Scholar 

  52. Fletcher CD, Gustafson P, Rydholm A, Willen H, Akerman M. Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol. 2001;19(12):3045–50.

    PubMed  CAS  Google Scholar 

  53. Khalidi HS, Singleton TP, Weiss SW. Inflammatory malignant fibrous histiocytoma: distinction from Hodgkin’s disease and non-Hodgkin’s lymphoma by a panel of leukocyte markers. Mod Pathol. 1997;10(5):438–42.

    PubMed  CAS  Google Scholar 

  54. Nielsen GP, Rosenberg AE, Koerner FC, Young RH, Scully RE. Smooth-muscle tumors of the vulva. A clinicopathological study of 25 cases and review of the literature. Am J Surg Pathol. 1996;20(7):779–93.

    Article  PubMed  CAS  Google Scholar 

  55. Paal E, Miettinen M. Retroperitoneal leiomyomas: a clinicopathologic and immunohistochemical study of 56 cases with a comparison to retroperitoneal leiomyosarcomas. Am J Surg Pathol. 2001;25(11):1355–63.

    Article  PubMed  CAS  Google Scholar 

  56. Perez-Montiel MD, Plaza JA, Dominguez-Malagon H, Suster S. Differential expression of smooth muscle myosin, smooth muscle actin, h-caldesmon, and calponin in the diagnosis of myofibroblastic and smooth muscle lesions of skin and soft tissue. Am J Dermatopathol. 2006;28(2):105–11.

    Article  PubMed  Google Scholar 

  57. Jenson HB, Montalvo EA, McClain KL, et al. Characterization of natural Epstein–Barr virus infection and replication in smooth muscle cells from a leiomyosarcoma. J Med Virol. 1999;57(1):36–46.

    Article  PubMed  CAS  Google Scholar 

  58. Kapadia SB, Meis JM, Frisman DM, Ellis GL, Heffner DK. Fetal rhabdomyoma of the head and neck: a clinicopathologic and immunophenotypic study of 24 cases. Hum Pathol. 1993;24(7):754–65.

    Article  PubMed  CAS  Google Scholar 

  59. Folpe AL. MyoD1 and myogenin expression in human neoplasia: a review and update. Adv Anat Pathol. 2002;9(3):198–203.

    Article  PubMed  Google Scholar 

  60. Parham DM, Webber B, Holt H, Williams WK, Maurer H. Immunohistochemical study of childhood rhabdomyosarcomas and related neoplasms. Results of an Intergroup Rhabdomyosarcoma study project. Cancer. 1991;67(12):3072–80.

    Article  PubMed  CAS  Google Scholar 

  61. Wexler LH, Ladanyi M. Diagnosing alveolar rhabdomyosarcoma: morphology must be coupled with fusion confirmation. J Clin Oncol. 2010;28(13):2126–8.

    Article  PubMed  Google Scholar 

  62. Williamson D, Missiaglia E, de Reynies A, et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010;28(13):2151–8.

    Article  PubMed  Google Scholar 

  63. Renshaw AA. O13 (CD99) in spindle cell tumors. Reactivity with hemangiopericytoma, solitary fibrous tumor, synovial sarcoma, and meningioma but rarely with sarcomatoid mesothelioma. Appl Immunohistochem. 1995;3:250–6.

    Google Scholar 

  64. Tihan T, Viglione M, Rosenblum MK, Olivi A, Burger PC. Solitary fibrous tumors in the central nervous system. A clinicopathologic review of 18 cases and comparison to meningeal hemangiopericytomas. Arch Pathol Lab Med. 2003;127(4):432–9.

    PubMed  Google Scholar 

  65. van de Rijn M, Lombard CM, Rouse RV. Expression of CD34 by solitary fibrous tumors of the pleura, mediastinum, and lung. Am J Surg Pathol. 1994;18(8):814–20.

    Article  PubMed  Google Scholar 

  66. Shidham VB, Chivukula M, Gupta D, Rao RN, Komorowski R. Immunohistochemical comparison of gastrointestinal stromal tumor and solitary fibrous tumor. Arch Pathol Lab Med. 2002;126(10):1189–92.

    PubMed  Google Scholar 

  67. Nuovo M, Grimes M, Knowles D. Glomus tumors: a clinicopathologic and immunohistochemical analysis of forty cases. Surg Pathol. 1990;3:31–45.

    Google Scholar 

  68. Fletcher CD, Beham A, Schmid C. Spindle cell haemangioendothelioma: a clinicopathological and immunohistochemical study indicative of a non-neoplastic lesion. Histopathology. 1991;18(4):291–301.

    Article  PubMed  CAS  Google Scholar 

  69. Folpe AL, Chand EM, Goldblum JR, Weiss SW. Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol. 2001;25(8):1061–6.

    Article  PubMed  CAS  Google Scholar 

  70. Mentzel T, Mazzoleni G, Dei Tos AP, Fletcher CD. Kaposiform hemangioendothelioma in adults. Clinicopathologic and immunohistochemical analysis of three cases. Am J Clin Pathol. 1997;108(4):450–55.

    PubMed  CAS  Google Scholar 

  71. Middleton LP, Duray PH, Merino MJ. The histological spectrum of hemangiopericytoma: application of immunohistochemical analysis including proliferative markers to facilitate diagnosis and predict prognosis. Hum Pathol. 1998;29(6):636–40.

    Article  PubMed  CAS  Google Scholar 

  72. Calonje E, Fletcher CD, Wilson-Jones E, Rosai J. Retiform hemangioendothelioma. A distinctive form of low-grade angiosarcoma delineated in a series of 15 cases. Am J Surg Pathol. 1994;18(2):115–25.

    Article  PubMed  CAS  Google Scholar 

  73. Dabska M. Malignant endovascular papillary angioendothelioma of the skin in childhood. Clinicopathologic study of 6 cases. Cancer. 1969;24(3):503–10.

    Article  PubMed  CAS  Google Scholar 

  74. Duke D, Dvorak A, Harris TJ, Cohen LM. Multiple retiform hemangioendotheliomas. A low-grade angiosarcoma. Am J Dermatopathol. 1996;18(6):606–10.

    Article  PubMed  CAS  Google Scholar 

  75. Fanburg-Smith JC, Michal M, Partanen TA, Alitalo K, Miettinen M. Papillary intralymphatic angioendothelioma (PILA): a report of twelve cases of a distinctive vascular tumor with phenotypic features of lymphatic vessels. Am J Surg Pathol. 1999;23(9):1004–10.

    Article  PubMed  CAS  Google Scholar 

  76. Mentzel T, Beham A, Calonje E, Katenkamp D, Fletcher CD. Epithelioid hemangioendothelioma of skin and soft tissues: clinicopathologic and immunohistochemical study of 30 cases. Am J Surg Pathol. 1997;21(4):363–74.

    Article  PubMed  CAS  Google Scholar 

  77. Fletcher CD, Beham A, Bekir S, Clarke AM, Marley NJ. Epithelioid angiosarcoma of deep soft tissue: a distinctive tumor readily mistaken for an epithelial neoplasm. Am J Surg Pathol. 1991;15(10):915–24.

    Article  PubMed  CAS  Google Scholar 

  78. Hammock L, Reisenauer A, Wang W, Cohen C, Birdsong G, Folpe AL. Latency-associated nuclear antigen expression and human herpesvirus-8 polymerase chain reaction in the evaluation of Kaposi sarcoma and other vascular tumors in HIV-positive patients. Mod Pathol. 2005;18(4):463–8.

    Article  PubMed  CAS  Google Scholar 

  79. Weiss SW, Langloss JM, Enzinger FM. Value of S-100 protein in the diagnosis of soft tissue tumors with particular reference to benign and malignant Schwann cell tumors. Lab Invest. 1983;49(3):299–308.

    PubMed  CAS  Google Scholar 

  80. Wick MR, Swanson PE, Scheithauer BW, Manivel JC. Malignant peripheral nerve sheath tumor. An immunohistochemical study of 62 cases. Am J Clin Pathol. 1987;87(4):425–33.

    PubMed  CAS  Google Scholar 

  81. Le BH, Boyer PJ, Lewis JE, Kapadia SB. Granular cell tumor: immunohistochemical assessment of inhibin-alpha, protein gene product 9.5, S100 protein, CD68, and Ki-67 proliferative index with clinical correlation. Arch Pathol Lab Med. 2004;128(7):771–5.

    PubMed  CAS  Google Scholar 

  82. Fetsch JF, Laskin WB, Hallman JR, Lupton GP, Miettinen M. Neurothekeoma: an analysis of 178 tumors with detailed immunohistochemical data and long-term patient follow-up information. Am J Surg Pathol. 2007;31(7):1103–14.

    Article  PubMed  Google Scholar 

  83. Laskin WB, Fetsch JF, Miettinen M. The “neurothekeoma”: immunohistochemical analysis distinguishes the true nerve sheath myxoma from its mimics. Hum Pathol. 2000;31(10):1230–41.

    Article  PubMed  CAS  Google Scholar 

  84. Rankine AJ, Filion PR, Platten MA, Spagnolo DV. Perineurioma: a clinicopathological study of eight cases. Pathology. 2004;36(4):309–15.

    Article  PubMed  Google Scholar 

  85. Miettinen M, Chatten J, Paetau A, Stevenson A. Monoclonal antibody NB84 in the differential diagnosis of neuroblastoma and other small round cell tumors. Am J Surg Pathol. 1998;22(3):327–32.

    Article  PubMed  CAS  Google Scholar 

  86. Wirnsberger GH, Becker H, Ziervogel K, Hofler H. Diagnostic immunohistochemistry of neuroblastic tumors. Am J Surg Pathol. 1992;16(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  87. Hisaoka M, Ishida T, Kuo TT, et al. Clear cell sarcoma of soft ­tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32(3):452–60.

    Article  PubMed  Google Scholar 

  88. Meis-Kindblom JM. Clear cell sarcoma of tendons and aponeuroses: a historical perspective and tribute to the man behind the entity. Adv Anat Pathol. 2006;13(6):286–92.

    Article  PubMed  Google Scholar 

  89. Fetsch JF, Laskin WB, Lefkowitz M, Kindblom LG, Meis-Kindblom JM. Aggressive angiomyxoma: a clinicopathologic study of 29 female patients. Cancer. 1996;78(1):79–90.

    Article  PubMed  CAS  Google Scholar 

  90. Miettinen M, Finnell V, Fetsch JF. Ossifying fibromyxoid tumor of soft parts – a clinicopathologic and immunohistochemical study of 104 cases with long-term follow-up and a critical review of the literature. Am J Surg Pathol. 2008;32(7):996–1005.

    Article  PubMed  Google Scholar 

  91. Hornick JL, Fletcher CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am J Surg Pathol. 2003;27(9):1183–96.

    Article  PubMed  Google Scholar 

  92. Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98(11):6500–5.

    Article  PubMed  CAS  Google Scholar 

  93. Laskin WB, Miettinen M. Epithelioid sarcoma: new insights based on an extended immunohistochemical analysis. Arch Pathol Lab Med. 2003;127(9):1161–8.

    PubMed  Google Scholar 

  94. Miettinen M, Fanburg-Smith JC, Virolainen M, Shmookler BM, Fetsch JF. Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Hum Pathol. 1999;30(8):934–42.

    Article  PubMed  CAS  Google Scholar 

  95. Argani P, Lal P, Hutchinson B, Lui MY, Reuter VE, Ladanyi M. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003;27(6):750–61.

    Article  PubMed  Google Scholar 

  96. Ladanyi M, Argani P, Hutchinson B, Jhanwar VE. Prominent nuclear immunoreactivity for TF3 as a specific marker for alveolar soft part sarcoma and pediatric renal tumors containing TFE3 gene fusions. Mod Pathol. 2002;15:312A.

    Google Scholar 

  97. Folpe AL, Goldblum JR, Rubin BP, et al. Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol. 2005;29(8):1025–33.

    PubMed  Google Scholar 

  98. Folpe AL, Hill CE, Parham DM, O’Shea PA, Weiss SW. Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing’s sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol. 2000;24(12):1657–62.

    Article  PubMed  CAS  Google Scholar 

  99. Jagdis A, Rubin BP, Tubbs RR, Pacheco M, Nielsen TO. Prospective evaluation of TLE1 as a diagnostic immunohistochemical marker in synovial sarcoma. Am J Surg Pathol. 2009;33(12):1743–51.

    Article  PubMed  Google Scholar 

  100. Knosel T, Heretsch S, Altendorf-Hofmann A, et al. TLE1 is a robust diagnostic biomarker for synovial sarcomas and correlates with t(X;18): analysis of 319 cases. Eur J Cancer. 2010;46(6):1170.

    Article  PubMed  CAS  Google Scholar 

  101. Kosemehmetoglu K, Vrana JA, Folpe AL. TLE1 expression is not specific for synovial sarcoma: a whole section study of 163 soft tissue and bone neoplasms. Mod Pathol. 2009;22(7):872–8.

    Article  PubMed  CAS  Google Scholar 

  102. Pelmus M, Guillou L, Hostein I, Sierankowski G, Lussan C, Coindre JM. Monophasic fibrous and poorly differentiated synovial sarcoma: immunohistochemical reassessment of 60 t(X;18)(SYT-SSX)-positive cases. Am J Surg Pathol. 2002;26(11):1434–40.

    Article  PubMed  Google Scholar 

  103. Terry J, Saito T, Subramanian S, et al. TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol. 2007;31(2):240–6.

    Article  PubMed  Google Scholar 

  104. Ordonez NG. Desmoplastic small round cell tumor. I: A histopathologic study of 39 cases with emphasis on unusual histological patterns. Am J Surg Pathol. 1998;22(11):1303–13.

    Article  PubMed  CAS  Google Scholar 

  105. Ordonez NG. Desmoplastic small round cell tumor. II: An ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am J Surg Pathol. 1998;22(11):1314–27.

    Article  PubMed  CAS  Google Scholar 

  106. Fanburg-Smith JC, Hengge M, Hengge UR, Smith Jr JS, Miettinen M. Extrarenal rhabdoid tumors of soft tissue: a clinicopathologic and immunohistochemical study of 18 cases. Ann Diagn Pathol. 1998;2(6):351–62.

    Article  PubMed  CAS  Google Scholar 

  107. Hoot AC, Russo P, Judkins AR, Perlman EJ, Biegel JA. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol. 2004;28(11):1485–91.

    Article  PubMed  Google Scholar 

  108. Granter SR, Renshaw AA, Fletcher CD, Bhan AK, Rosenberg AE. CD99 reactivity in mesenchymal chondrosarcoma. Hum Pathol. 1996;27(12):1273–6.

    Article  PubMed  CAS  Google Scholar 

  109. Hoang MP, Suarez PA, Donner LR, et al. Mesenchymal chondrosarcoma: a small cell neoplasm with polyphenotypic differentiation. Int J Surg Pathol. 2000;8(4):291.

    Article  PubMed  Google Scholar 

  110. Oakley GJ, Fuhrer K, Seethala RR. Brachyury, SOX-9, and podoplanin, new markers in the skull base chordoma vs chondrosarcoma differential: a tissue microarray-based comparative analysis. Mod Pathol. 2008;21(12):1461–9.

    Article  PubMed  CAS  Google Scholar 

  111. Swanson PE, Lillemoe TJ, Manivel JC, Wick MR. Mesenchymal chondrosarcoma. An immunohistochemical study. Arch Pathol Lab Med. 1990;114(9):943–8.

    PubMed  CAS  Google Scholar 

  112. Wehrli BM, Huang W, De Crombrugghe B, Ayala AG, Czerniak B. Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum Pathol. 2003;34(3):263–9.

    Article  PubMed  CAS  Google Scholar 

  113. Rosenberg AE, Brown GA, Bhan AK, Lee JM. Chondroid chordoma – a variant of chordoma. A morphologic and immunohistochemical study. Am J Clin Pathol. 1994;101(1):36–41.

    PubMed  CAS  Google Scholar 

  114. Tirabosco R, Mangham DC, Rosenberg AE, et al. Brachyury expression in extra-axial skeletal and soft tissue chordomas: a marker that distinguishes chordoma from mixed tumor/myoepithelioma/parachordoma in soft tissue. Am J Surg Pathol. 2008;32(4):572–80.

    Article  PubMed  Google Scholar 

  115. Hazelbag HM, Fleuren GJ, vd Broek LJ, Taminiau AH, Hogendoorn PC. Adamantinoma of the long bones: keratin subclass immunoreactivity pattern with reference to its histogenesis. Am J Surg Pathol. 1993;17(12):1225–33.

    Article  PubMed  CAS  Google Scholar 

  116. Jain D, Jain VK, Vasishta RK, et al. Adamantinoma: a clinicopathological review and update. Diagn Pathol. 2008;3:8.

    Article  PubMed  CAS  Google Scholar 

  117. Jundt G, Remberger K, Roessner A, Schulz A, Bohndorf K. Adamantinoma of long bones. A histopathological and immunohistochemical study of 23 cases. Pathol Res Pract. 1995;191(2):112–20.

    Article  PubMed  CAS  Google Scholar 

  118. Kenn W, Eck M, Allolio B, et al. Erdheim–Chester disease: evidence for a disease entity different from Langerhans cell histiocytosis? Three cases with detailed radiological and immunohistochemical analysis. Hum Pathol. 2000;31(6):734–9.

    Article  PubMed  CAS  Google Scholar 

  119. Lau SK, Chu PG, Weiss LM. Immunohistochemical expression of Langerin in Langerhans cell histiocytosis and non-Langerhans cell histiocytic disorders. Am J Surg Pathol. 2008;32(4):615–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobo Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhu, S., Miettinen, M. (2011). Soft Tissue and Bone Tumors. In: Lin, F., Prichard, J. (eds) Handbook of Practical Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8062-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8062-5_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8061-8

  • Online ISBN: 978-1-4419-8062-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics