Skip to main content

Abstract

This chapter is an overview of frequently used markers in the differential diagnosis of both common and less common tumors of the uterine cervix and corpus, with a focus on the effective markers employed to differentiate adenocarcinoma of the endocervix vs. endometrium, low-grade vs. high-grade endometrial neoplasms, and benign vs. malignant mimics of cervical and endometrial lesions. Other useful panels in the differential diagnosis of gestational trophoblastic lesions in addition to the less common carcinomas of the cervix are also addressed. There are 41 tables in this chapter with immunohistochemical markers answering questions that may arise when examining hematoxylin and eosin-stained sections. A summary of useful and frequently used markers with potential pitfalls is also provided, in addition to some representative photomicrographs. The effective diagnostic panels of antibodies for several entities are highlighted in several tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kommoss F, Schmidt D, Coerdt W, Olert J, Muntefering H. Immunohistochemical expression analysis of inhibin-alpha and -beta subunits in partial and complete moles, trophoblastic tumors, and endometrial decidua. Int J Gynecol Pathol. 2001;20(4):380–5.

    Article  PubMed  CAS  Google Scholar 

  2. Daya D, Sabet L. The use of cytokeratin as a sensitive and reliable marker for trophoblastic tissue. Am J Clin Pathol. 1991;95(2):137–41.

    PubMed  CAS  Google Scholar 

  3. Rush DS, Tan J, Baergen RN, Soslow RA. h-Caldesmon, a novel smooth muscle-specific antibody, distinguishes between cellular leiomyoma and endometrial stromal sarcoma. Am J Surg Pathol. 2001;25(2):253–8.

    Article  PubMed  CAS  Google Scholar 

  4. Parwani AV, Smith Sehdev AE, Kurman RJ, Ronnett BM. Cervical adenoid basal tumors comprised of adenoid basal epithelioma associated with various types of invasive carcinoma: clinicopathologic features, human papillomavirus DNA detection, and P16 expression. Hum Pathol. 2005;36(1):82–90.

    Article  PubMed  CAS  Google Scholar 

  5. Grayson W, Taylor LF, Cooper K. Adenoid cystic and adenoid basal carcinoma of the uterine cervix: comparative morphologic, mucin, and immunohistochemical profile of two rare neoplasms of putative ‘reserve cell’ origin. Am J Surg Pathol. 1999;23(4):448–58.

    Article  PubMed  CAS  Google Scholar 

  6. Acs G, Pasha T, Zhang PJ. WT1 is differentially expressed in serous, endometrioid, clear cell, and mucinous carcinomas of the peritoneum, fallopian tube, ovary, and endometrium. Int J Gynecol Pathol. 2004;23(2):110–8.

    Article  PubMed  Google Scholar 

  7. Agoff SN, Grieco VS, Garcia R, Gown AM. Immunohistochemical distinction of endometrial stromal sarcoma and cellular ­leiomyoma. Appl Immunohistochem Mol Morphol. 2001;9(2):164–9.

    Article  PubMed  CAS  Google Scholar 

  8. Agoff SN, Lin P, Morihara J, Mao C, Kiviat NB, Koutsky LA. p16(INK4a) expression correlates with degree of cervical ­neoplasia: a comparison with Ki-67 expression and detection of high-risk HPV types. Mod Pathol. 2003;16(7):665–73.

    Article  PubMed  Google Scholar 

  9. Albores-Saavedra J, Latif S, Carrick KS, Alvarado-Cabrero I, Fowler MR. CD56 reactivity in small cell carcinoma of the uterine cervix. Int J Gynecol Pathol. 2005;24(2):113–7.

    Article  PubMed  Google Scholar 

  10. Ambros RA, Sherman ME, Zahn CM, Bitterman P, Kurman RJ. Endometrial intraepithelial carcinoma: a distinctive lesion specifically associated with tumors displaying serous differentiation. Hum Pathol. 1995;26(11):1260–7.

    Article  PubMed  CAS  Google Scholar 

  11. Atkins KA, Arronte N, Darus CJ, Rice LW. The use of p16 in enhancing the histologic classification of uterine smooth muscle tumors. Am J Surg Pathol. 2008;32(1):98–102.

    Article  PubMed  Google Scholar 

  12. Bayer-Garner IB, Korourian S. Plasma cells in chronic endometritis are easily identified when stained with syndecan-1. Mod Pathol. 2001;14(9):877–9.

    Article  PubMed  CAS  Google Scholar 

  13. Bodner-Adler B, Bodner K, Czerwenka K, Kimberger O, Leodolter S, Mayerhofer K. Expression of p16 protein in patients with ­uterine smooth muscle tumors: an immunohistochemical analysis. Gynecol Oncol. 2005;96(1):62–6.

    Article  PubMed  CAS  Google Scholar 

  14. Bussaglia E, del Rio E, Matias-Guiu X, Prat J. PTEN mutations in endometrial carcinomas: a molecular and clinicopathologic analysis of 38 cases. Hum Pathol. 2000;31(3):312–7.

    Article  PubMed  CAS  Google Scholar 

  15. Carcangiu ML, Dorji T, Radice P, et al. HNPCC-related ­endometrial carcinomas show a high frequency of non-endometroid types and of high FIGO grade endometrioid carcinomas. Mod Pathol. 2006;19:173A.

    Google Scholar 

  16. Castrillon DH, Sun D, Weremowicz S, Fisher RA, Crum CP, Genest DR. Discrimination of complete hydatidiform mole from its mimics by immunohistochemistry of the paternally imprinted gene product p57KIP2. Am J Surg Pathol. 2001;25(10):1225–30.

    Article  PubMed  CAS  Google Scholar 

  17. Cessna MH, Zhou H, Perkins SL, et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001;25(9):1150–7.

    Article  PubMed  CAS  Google Scholar 

  18. Chu PG, Arber DA, Weiss LM, Chang KL. Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol. 2001;14(5):465–71.

    Article  PubMed  CAS  Google Scholar 

  19. Crisp H, Burton JL, Stewart R, Wells M. Refining the diagnosis of hydatidiform mole: image ploidy analysis and p57KIP2 immunohistochemistry. Histopathology. 2003;43(4):363–73.

    Article  PubMed  CAS  Google Scholar 

  20. Dabbs DJ, Sturtz K, Zaino RJ. The immunohistochemical discrimination of endometrioid adenocarcinomas. Hum Pathol. 1996;27(2):172–7.

    Article  PubMed  CAS  Google Scholar 

  21. Darvishian F, Hummer AJ, Thaler HT, et al. Serous endometrial cancers that mimic endometrioid adenocarcinomas: a clinicopathologic and immunohistochemical study of a group of problematic cases. Am J Surg Pathol. 2004;28(12):1568–78.

    Article  PubMed  Google Scholar 

  22. Elishaev E, Gilks CB, Miller D, Srodon M, Kurman RJ, Ronnett BM. Synchronous and metachronous endocervical and ovarian neoplasms: evidence supporting interpretation of the ovarian neoplasms as metastatic endocervical adenocarcinomas simulating primary ovarian surface epithelial neoplasms. Am J Surg Pathol. 2005;29(3):281–94.

    Article  PubMed  Google Scholar 

  23. Emanuel P, Wang B, Wu M, Burstein DE. p63 Immunohis­tochemistry in the distinction of adenoid cystic carcinoma from basaloid squamous cell carcinoma. Mod Pathol. 2005;18(5):645–50.

    Article  PubMed  Google Scholar 

  24. Fukunaga M. Immunohistochemical characterization of p57(KIP2) expression in early hydatidiform moles. Hum Pathol. 2002;33(12):1188–92.

    Article  PubMed  CAS  Google Scholar 

  25. Goldblum JR, Hart WR. Perianal Paget’s disease: a histologic and immunohistochemical study of 11 cases with and without associated rectal adenocarcinoma. Am J Surg Pathol. 1998;22(2):170–9.

    Article  PubMed  CAS  Google Scholar 

  26. Henderson GS, Brown KA, Perkins SL, Abbott TM, Clayton F. bcl-2 is down-regulated in atypical endometrial hyperplasia and adenocarcinoma. Mod Pathol. 1996;9(4):430–8.

    PubMed  CAS  Google Scholar 

  27. Hurrell DP, McCluggage WG. Uterine leiomyosarcoma with HMB45+ clear cell areas: report of two cases. Histopathology. 2005;47(5):540–2.

    Article  PubMed  CAS  Google Scholar 

  28. Ishikawa M, Fujii T, Masumoto N, et al. Correlation of p16INK4A overexpression with human papillomavirus infection in cervical adenocarcinomas. Int J Gynecol Pathol. 2003;22(4):378–85.

    Article  PubMed  Google Scholar 

  29. Klein WM, Kurman RJ. Lack of expression of c-kit protein (CD117) in mesenchymal tumors of the uterus and ovary. Int J Gynecol Pathol. 2003;22(2):181–4.

    Article  PubMed  Google Scholar 

  30. Kurihara S, Oda Y, Ohishi Y, et al. Endometrial stromal sarcomas and related high-grade sarcomas: immunohistochemical and molecular genetic study of 31 cases. Am J Surg Pathol. 2008;32(8):1228–38.

    Article  PubMed  Google Scholar 

  31. Lax SF, Pizer ES, Ronnett BM, Kurman RJ. Comparison of estrogen and progesterone receptor, Ki-67, and p53 immunoreactivity in uterine endometrioid carcinoma and endometrioid carcinoma with squamous, mucinous, secretory, and ciliated cell differentiation. Hum Pathol. 1998;29(9):924–31.

    Article  PubMed  CAS  Google Scholar 

  32. Leitao MM, Soslow RA, Nonaka D, et al. Tissue microarray immunohistochemical expression of estrogen, progesterone, and androgen receptors in uterine leiomyomata and leiomyosarcoma. Cancer. 2004;101(6):1455–62.

    Article  PubMed  CAS  Google Scholar 

  33. Loddenkemper C, Mechsner S, Foss HD, et al. Use of oxytocin receptor expression in distinguishing between uterine smooth muscle tumors and endometrial stromal sarcoma. Am J Surg Pathol. 2003;27(11):1458–62.

    Article  PubMed  Google Scholar 

  34. McCluggage WG. Immunohistochemical and functional ­biomarkers of value in female genital tract lesions. In: Robboy SJ, Mutter GL, Prat J, Bentley R, Russell P, Anderson MC, editors. Robboy’s pathology of the female reproductive tract. 2nd ed. Churchill Livingstone: London; 2009. p. 999–1010.

    Chapter  Google Scholar 

  35. Mikami Y, Kiyokawa T, Hata S, et al. Gastrointestinal immunophenotype in adenocarcinomas of the uterine cervix and related glandular lesions: a possible link between lobular endocervical glandular hyperplasia/pyloric gland metaplasia and ‘adenoma malignum’. Mod Pathol. 2004;17(8):962–72.

    Article  PubMed  Google Scholar 

  36. Mittal K. Utility of MIB-1 in evaluating cauterized cervical cone biopsy margins. Int J Gynecol Pathol. 1999;18(3):211–4.

    Article  PubMed  CAS  Google Scholar 

  37. Nascimento AF, Hirsch MS, Cviko A, Quade BJ, Nucci MR. The role of CD10 staining in distinguishing invasive endometrial adenocarcinoma from adenocarcinoma involving adenomyosis. Mod Pathol. 2003;16(1):22–7.

    Article  PubMed  Google Scholar 

  38. Norton AJ, Thomas JA, Isaacson PG. Cytokeratin-specific monoclonal antibodies are reactive with tumours of smooth muscle derivation. An immunocytochemical and biochemical study using antibodies to intermediate filament cytoskeletal proteins. Histopathology. 1987;11(5):487–99.

    Article  PubMed  CAS  Google Scholar 

  39. Oliva E. Pure mesenchymal and mixed mullerian tumors of the uterus. In: Nucci MR, Oliva E, editors. Gynecologic pathology. London: Churchill Livingstone Elsevier; 2009. p. 261–327.

    Chapter  Google Scholar 

  40. Oliva E. CD10 expression in the female genital tract: does it have useful diagnostic applications? Adv Anat Pathol. 2004;11(6):310–5.

    Article  PubMed  CAS  Google Scholar 

  41. O’Neill CJ, McBride HA, Connolly LE, McCluggage WG. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology. 2007;50(7):851–8.

    Article  PubMed  Google Scholar 

  42. Park KJ, Bramlage MP, Ellenson LH, Pirog EC. Immunoprofile of adenocarcinomas of the endometrium, endocervix, and ovary with mucinous differentiation. Appl Immunohistochem Mol Morphol. 2009;17(1):8–11.

    Article  PubMed  Google Scholar 

  43. Quade BJ, Yang A, Wang Y, et al. Expression of the p53 homologue p63 in early cervical neoplasia. Gynecol Oncol. 2001;80(1):24–9.

    Article  PubMed  CAS  Google Scholar 

  44. Raspollini MR, Paglierani M, Taddei GL, Villanucci A, Amunni G, Taddei A. The protooncogene c-KIT is expressed in leiomyosarcomas of the uterus. Gynecol Oncol. 2004;93(3):718.

    Article  PubMed  CAS  Google Scholar 

  45. Shi J, Liu H, Wilkerson M, et al. Evaluation of p16INK4a, minichromosome maintenance protein 2, DNA topoisomerase IIalpha, ProEX C, and p16INK4a/ProEX C in cervical squamous intraepithelial lesions. Hum Pathol. 2007;38(9):1335–44.

    Article  PubMed  CAS  Google Scholar 

  46. Shih IM, Kurman RJ. p63 expression is useful in the distinction of epithelioid trophoblastic and placental site trophoblastic tumors by profiling trophoblastic subpopulations. Am J Surg Pathol. 2004;28(9):1177–83.

    Article  PubMed  Google Scholar 

  47. Silva EG, Young RH. Endometrioid neoplasms with clear cells: a report of 21 cases in which the alteration is not of typical secretory type. Am J Surg Pathol. 2007;31(8):1203–8.

    Article  PubMed  Google Scholar 

  48. Sumathi VP, McCluggage WG. CD10 is useful in demonstrating endometrial stroma at ectopic sites and in confirming a diagnosis of endometriosis. J Clin Pathol. 2002;55(5):391–2.

    Article  PubMed  CAS  Google Scholar 

  49. Vang R, Kempson RL. Perivascular epithelioid cell tumor (’PEComa’) of the uterus: a subset of HMB-45-positive epithelioid mesenchymal neoplasms with an uncertain relationship to pure smooth muscle tumors. Am J Surg Pathol. 2002;26(1):1–13.

    Article  PubMed  Google Scholar 

  50. Wang L, Felix JC, Lee JL, et al. The proto-oncogene c-kit is expressed in leiomyosarcomas of the uterus. Gynecol Oncol. 2003;90(2):402–6.

    Article  PubMed  CAS  Google Scholar 

  51. Yaziji H, Gown AM. Immunohistochemical analysis of ­gynecologic tumors. Int J Gynecol Pathol. 2001;20(1):64–78.

    Article  PubMed  CAS  Google Scholar 

  52. Zaino RJ. The fruits of our labors: distinguishing endometrial from endocervical adenocarcinoma. Int J Gynecol Pathol. 2002;21(1):1–3.

    Article  PubMed  Google Scholar 

  53. Zheng W, Cao P, Zheng M, Kramer EE, Godwin TA. p53 ­overexpression and bcl-2 persistence in endometrial carcinoma: comparison of papillary serous and endometrioid subtypes. Gynecol Oncol. 1996;61(2):167–74.

    Article  PubMed  CAS  Google Scholar 

  54. Disep B, Innes BA, Cochrane HR, Tijani S, Bulmer JN. Immunohistochemical characterization of endometrial leucocytes in endometritis. Histopathology. 2004;45(6):625–32.

    Article  PubMed  CAS  Google Scholar 

  55. Euscher E, Nuovo GJ. Detection of kappa- and lambda-expressing cells in the endometrium by in situ hybridization. Int J Gynecol Pathol. 2002;21(4):383–90.

    Article  PubMed  Google Scholar 

  56. Gendler SJ, Spicer AP. Epithelial mucin genes. Annu Rev Physiol. 1995;57:607–34.

    Article  PubMed  CAS  Google Scholar 

  57. Heatley MK. Cytokeratins and cytokeratin staining in diagnostic histopathology. Histopathology. 1996;28(5):479–83.

    Article  PubMed  CAS  Google Scholar 

  58. Kim MA, Lee HS, Yang HK, Kim WH. Cytokeratin expression profile in gastric carcinomas. Hum Pathol. 2004;35(5):576–81.

    Article  PubMed  CAS  Google Scholar 

  59. Leong AS, Vinyuvat S, Leong FJ, et al. Anti-CD38 and VS38 antibodies for detection of plasma cells in the diagnosis of chronic endometritis. Appl Immunohistochem. 1997;5:189.

    Article  CAS  Google Scholar 

  60. McCluggage WG. Recent advances in immunohistochemistry in gynaecological pathology. Histopathology. 2002;40(4):309–26.

    Article  PubMed  CAS  Google Scholar 

  61. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The ­catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31(1):11–24.

    Article  PubMed  CAS  Google Scholar 

  62. Quddus MR, Sung CJ, Zheng W, Lauchlan SC. p53 ­immunoreactivity in endometrial metaplasia with dysfunctional uterine bleeding. Histopathology. 1999;35(1):44–9.

    Article  PubMed  CAS  Google Scholar 

  63. Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T. Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions. Am J Pathol. 1998;153(6):1741–8.

    Article  PubMed  CAS  Google Scholar 

  64. Adegboyega PA, Qiu S. Immunohistochemical profiling of cytokeratin expression by endometrial stroma sarcoma. Hum Pathol. 2008;39(10):1459–64.

    Article  PubMed  CAS  Google Scholar 

  65. Mylonas I, Makovitzky J, Friese K, Jeschke U. Immunohis­tochemical labelling of steroid receptors in normal and malignant human endometrium. Acta Histochem. 2009;111(4):349–59.

    PubMed  Google Scholar 

  66. Al-Hussaini M, Stockman A, Foster H, McCluggage WG. WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology. 2004;44(2):109–15.

    Article  PubMed  CAS  Google Scholar 

  67. Alkushi A, Lim P, Coldman A, Huntsman D, Miller D, Gilks CB. Interpretation of p53 immunoreactivity in endometrial carcinoma: establishing a clinically relevant cut-off level. Int J Gynecol Pathol. 2004;23(2):129–37.

    Article  PubMed  Google Scholar 

  68. Amant F, Steenkiste E, Schurmans K, et al. Immunohistochemical expression of CD10 antigen in uterine adenosarcoma. Int J Gynecol Cancer. 2004;14(6):1118–21.

    Article  PubMed  CAS  Google Scholar 

  69. Brown DC, Theaker JM, Banks PM, Gatter KC, Mason DY. Cytokeratin expression in smooth muscle and smooth muscle tumours. Histopathology. 1987;11(5):477–86.

    Article  PubMed  CAS  Google Scholar 

  70. Cameron RI, Maxwell P, Jenkins D, McCluggage WG. Immunohistochemical staining with MIB1, bcl2 and p16 assists in the distinction of cervical glandular intraepithelial ­neoplasia from tubo-endometrial metaplasia, endometriosis and microglandular hyperplasia. Histopathology. 2002;41(4):313–21.

    Article  PubMed  CAS  Google Scholar 

  71. Castrillon DH, Lee KR, Nucci MR. Distinction between endometrial and endocervical adenocarcinoma: an immunohistochemical study. Int J Gynecol Pathol. 2002;21(1):4–10.

    Article  PubMed  Google Scholar 

  72. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13(9):962–72.

    Article  PubMed  CAS  Google Scholar 

  73. Coosemans A, Nik SA, Caluwaerts S, et al. Upregulation of Wilms’ tumour gene 1 (WT1) in uterine sarcomas. Eur J Cancer. 2007;43(10):1630–7.

    Article  PubMed  CAS  Google Scholar 

  74. Egan JA, Ionescu MC, Eapen E, Jones JG, Marshall DS. Differential expression of WT1 and p53 in serous and endometrioid carcinomas of the endometrium. Int J Gynecol Pathol. 2004;23(2): 119–22.

    Article  PubMed  Google Scholar 

  75. Farhood AI, Abrams J. Immunohistochemistry of endometrial stromal sarcoma. Hum Pathol. 1991;22(3):224–30.

    Article  PubMed  CAS  Google Scholar 

  76. Hameed A, Miller DS, Muller CY, Coleman RL, Albores-Saavedra J. Frequent expression of beta-human chorionic gonadotropin (beta-hCG) in squamous cell carcinoma of the cervix. Int J Gynecol Pathol. 1999;18(4):381–6.

    Article  PubMed  CAS  Google Scholar 

  77. Kalof AN, Evans MF, Simmons-Arnold L, Beatty BG, Cooper K. p16INK4A immunoexpression and HPV in situ hybridization signal patterns: potential markers of high-grade cervical intraepithelial neoplasia. Am J Surg Pathol. 2005;29(5):674–9.

    Article  PubMed  Google Scholar 

  78. Keating JT, Cviko A, Riethdorf S, et al. Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia. Am J Surg Pathol. 2001;25(7):884–91.

    Article  PubMed  CAS  Google Scholar 

  79. Mao TL, Kurman RJ, Huang CC, Lin MC, Shih I. Immunohistochemistry of choriocarcinoma: an aid in differential diagnosis and in elucidating pathogenesis. Am J Surg Pathol. 2007;31(11):1726–32.

    Article  PubMed  Google Scholar 

  80. Marjoniemi VM. Immunohistochemistry in gynaecological pathology: a review. Pathology. 2004;36(2):109–19.

    Article  PubMed  CAS  Google Scholar 

  81. Mittal K, Mesia A, Demopoulos RI. MIB-1 expression is useful in distinguishing dysplasia from atrophy in elderly women. Int J Gynecol Pathol. 1999;18(2):122–4.

    Article  PubMed  CAS  Google Scholar 

  82. McCluggage WG, Oliva E, Herrington CS, McBride H, Young RH. CD10 and calretinin staining of endocervical glandular lesions, endocervical stroma and endometrioid adenocarcinomas of the uterine corpus: CD10 positivity is characteristic of, but not specific for, mesonephric lesions and is not specific for endometrial stroma. Histopathology. 2003;43(2):144–50.

    Article  PubMed  CAS  Google Scholar 

  83. Nucci MR, O’Connell JT, Huettner PC, Cviko A, Sun D, Quade BJ. h-Caldesmon expression effectively distinguishes endometrial stromal tumors from uterine smooth muscle tumors. Am J Surg Pathol. 2001;25(4):455–63.

    Article  PubMed  CAS  Google Scholar 

  84. Negri G, Egarter-Vigl E, Kasal A, Romano F, Haitel A, Mian C. p16INK4a is a useful marker for the diagnosis of adenocarcinoma of the cervix uteri and its precursors: an immunohistochemical study with immunocytochemical correlations. Am J Surg Pathol. 2003;27(2):187–93.

    Article  PubMed  Google Scholar 

  85. Qiu W, Mittal K. Comparison of morphologic and immunohistochemical features of cervical microglandular hyperplasia with low-grade mucinous adenocarcinoma of the endometrium. Int J Gynecol Pathol. 2003;22(3):261–5.

    Article  PubMed  Google Scholar 

  86. Rabban JT, Soslow R, Zaloudek C. Immunohistochemistry of the female genital tract. In: Dabbs DJ, editor. Diagnostic immunohistochemistry, theranostic and genomic applications. 3rd ed. Philadelphia: Elsevier Saunders; 2010. p. 690–720.

    Chapter  Google Scholar 

  87. Schwartz EJ, Longacre TA. Adenomatoid tumors of the female and male genital tracts express WT1. Int J Gynecol Pathol. 2004;23(2):123–8.

    Article  PubMed  Google Scholar 

  88. Suresh UR, Hale RJ, Fox H, Buckley CH. Use of proliferation cell nuclear antigen immunoreactivity for distinguishing hydropic abortions from partial hydatidiform moles. J Clin Pathol. 1993;46(1):48–50.

    Article  PubMed  CAS  Google Scholar 

  89. Wang HL, Lu DW. Detection of human papillomavirus DNA and expression of p16, Rb, and p53 proteins in small cell carcinomas of the uterine cervix. Am J Surg Pathol. 2004;28(7):901–8.

    Article  PubMed  Google Scholar 

  90. Wang TY, Chen BF, Yang YC, et al. Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum Pathol. 2001;32(5):479–86.

    Article  PubMed  CAS  Google Scholar 

  91. Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal ­origin: an immunohistochemical survey of 476 primary and ­metastatic carcinomas. Am J Surg Pathol. 2003;27(3):303–10.

    Article  PubMed  Google Scholar 

  92. Yamamoto S, Tsuda H, Aida S, Shimazaki H, Tamai S, Matsubara O. Immunohistochemical detection of hepatocyte nuclear factor 1beta in ovarian and endometrial clear-cell adenocarcinomas and nonneoplastic endometrium. Hum Pathol. 2007;38(7):1074–80.

    Article  PubMed  CAS  Google Scholar 

  93. Zheng W, Khurana R, Farahmand S, Wang Y, Zhang ZF, Felix JC. p53 immunostaining as a significant adjunct diagnostic method for uterine surface carcinoma: precursor of uterine papillary serous carcinoma. Am J Surg Pathol. 1998;22(12):1463–73.

    Article  PubMed  CAS  Google Scholar 

  94. Iwata J, Fletcher CD. Immunohistochemical detection of ­cytokeratin and epithelial membrane antigen in leiomyosarcoma: a systematic study of 100 cases. Pathol Int. 2000;50(1):7–14.

    Article  PubMed  CAS  Google Scholar 

  95. Fukunaga M, Nomura K, Endo Y, Ushigome S, Aizawa S. Carcinosarcoma of the uterus with extensive neuroectodermal ­differentiation. Histopathology. 1996;29(6):565–70.

    Article  PubMed  CAS  Google Scholar 

  96. Kanamori T, Takakura K, Mandai M, Kariya M, Fukuhara K, Sakaguchi M, et al. Increased expression of calcium-binding ­protein S100 in human uterine smooth muscle tumours. Mol Hum Reprod. 2004;10(10):735–42.

    Article  PubMed  CAS  Google Scholar 

  97. Liang SX, Patel K, Pearl M, Liu J, Zheng W, Tornos C. Sertoliform endometrioid carcinoma of the endometrium with dual immunophenotypes for epithelial membrane antigen and inhibin alpha: case report and literature review. Int J Gynecol Pathol. 2007;26(3):291–7.

    Article  PubMed  Google Scholar 

  98. Xu JY, Hashi A, Kondo T, et al. Absence of human papillomavirus infection in minimal deviation adenocarcinoma and lobular endocervical glandular hyperplasia. Int J Gynecol Pathol. 2005;24(3):296–302.

    Article  PubMed  Google Scholar 

  99. Cina SJ, Richardson MS, Austin RM, Kurman RJ. Immuno­histochemical staining for Ki-67 antigen, carcinoembryonic ­antigen, and p53 in the differential diagnosis of glandular lesions of the cervix. Mod Pathol. 1997;10(3):176–80.

    PubMed  CAS  Google Scholar 

  100. Rabban JT, McAlhany S, Lerwill MF, Grenert JP, Zaloudek CJ. PAX2 distinguishes benign mesonephric and mullerian glandular lesions of the cervix from endocervical adenocarcinoma, including minimal deviation adenocarcinoma. Am J Surg Pathol. 2010;34(2):137–46.

    Article  PubMed  Google Scholar 

  101. Chekmareva M, Ellenson LH, Pirog EC. Immunohistochemical differences between mucinous and microglandular adenocarcinomas of the endometrium and benign endocervical epithelium. Int J Gynecol Pathol. 2008;27(4):547–54.

    Article  PubMed  Google Scholar 

  102. Mikami Y, Hata S, Fujiwara K, Imajo Y, Kohno I, Manabe T. Florid endocervical glandular hyperplasia with intestinal and pyloric gland metaplasia: worrisome benign mimic of “adenoma malignum”. Gynecol Oncol. 1999;74(3):504–11.

    Article  PubMed  CAS  Google Scholar 

  103. Klaes R, Benner A, Friedrich T, et al. p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol. 2002;26(11):1389–99.

    Article  PubMed  Google Scholar 

  104. Klaes R, Friedrich T, Spitkovsky D, et al. Overexpression of p16 (INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2002;92:276.

    Article  Google Scholar 

  105. Kruse AJ, Baak JP, Helliesen T, Kjellevold KH, Bol MG, Janssen EA. Evaluation of MIB-1-positive cell clusters as a diagnostic marker for cervical intraepithelial neoplasia. Am J Surg Pathol. 2002;26(11):1501–7.

    Article  PubMed  Google Scholar 

  106. Nucci MR, Castrillon DH, Bai H, et al. Biomarkers in diagnostic obstetric and gynecologic pathology: a review. Adv Anat Pathol. 2003;10(2):55–68.

    Article  PubMed  Google Scholar 

  107. McCluggage WG, Buhidma M, Tang L, Maxwell P, Bharucha H. Monoclonal antibody MIB1 in the assessment of cervical squamous intraepithelial lesions. Int J Gynecol Pathol. 1996;15(2):131–6.

    Article  PubMed  CAS  Google Scholar 

  108. Tringler B, Gup CJ, Singh M, et al. Evaluation of p16INK4a and pRb expression in cervical squamous and glandular neoplasia. Hum Pathol. 2004;35(6):689–96.

    Article  PubMed  CAS  Google Scholar 

  109. Lee KR, Sun D, Crum CP. Endocervical intraepithelial glandular atypia (dysplasia): a histopathologic, human papillomavirus, and MIB-1 analysis of 25 cases. Hum Pathol. 2000;31(6):656–64.

    Article  PubMed  CAS  Google Scholar 

  110. O’Neill CJ, McCluggage WG. p16 expression in the female genital tract and its value in diagnosis. Adv Anat Pathol. 2006;13(1):8–15.

    Article  PubMed  Google Scholar 

  111. Pirog EC, Isacson C, Szabolcs MJ, Kleter B, Quint W, Richart RM. Proliferative activity of benign and neoplastic endocervical epithelium and correlation with HPV DNA detection. Int J Gynecol Pathol. 2002;21(1):22–6.

    Article  PubMed  Google Scholar 

  112. Horn LC, Richter CE, Einenkel J, Tannapfel A, Liebert UG, Leo C. p16, p14, p53, cyclin D1, and steroid hormone receptor expression and human papillomaviruses analysis in primary squamous cell carcinoma of the endometrium. Ann Diagn Pathol. 2006;10(4):193–6.

    Article  PubMed  Google Scholar 

  113. Wang NP, Zee S, Zarbo RJ, et al. Coordinate expression of cytokeratins 7 and 20 definte unique subsets of carcinomas. Appl Immunohistochem. 1995;3:99.

    Google Scholar 

  114. Riethdorf L, Riethdorf S, Lee KR, Cviko A, Loning T, Crum CP. Human papillomaviruses, expression of p16, and early endocervical glandular neoplasia. Hum Pathol. 2002;33(9):899–904.

    Article  PubMed  CAS  Google Scholar 

  115. Thamboo TP, Wee A. Hep Par 1 expression in carcinoma of the cervix: implications for diagnosis and prognosis. J Clin Pathol. 2004;57(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  116. Gilks CB, Young RH, Aguirre P, DeLellis RA, Scully RE. Adenoma malignum (minimal deviation adenocarcinoma) of the uterine cervix. A clinicopathological and immunohistochemical analysis of 26 cases. Am J Surg Pathol. 1989;13(9):717–29.

    Article  PubMed  CAS  Google Scholar 

  117. Mikami Y, Kiyokawa T, Moriya T, Sasano H. Immunophenotypic alteration of the stromal component in minimal deviation adenocarcinoma (“adenoma malignum”) and endocervical glandular hyperplasia: a study using oestrogen receptor and alpha-smooth muscle actin double immunostaining. Histopathology. 2005;46(2):130–6.

    Article  PubMed  CAS  Google Scholar 

  118. Utsugi K, Hirai Y, Takeshima N, Akiyama F, Sakurai S, Hasumi K. Utility of the monoclonal antibody HIK1083 in the diagnosis of adenoma malignum of the uterine cervix. Gynecol Oncol. 1999;75(3):345–8.

    Article  PubMed  CAS  Google Scholar 

  119. Ordi J, Nogales FF, Palacin A, et al. Mesonephric adenocarcinoma of the uterine corpus: CD10 expression as evidence of mesonephric differentiation. Am J Surg Pathol. 2001;25(12):1540–5.

    Article  PubMed  CAS  Google Scholar 

  120. Ordi J, Romagosa C, Tavassoli FA, et al. CD10 expression in epithelial tissues and tumors of the gynecologic tract: a useful marker in the diagnosis of mesonephric, trophoblastic, and clear cell tumors. Am J Surg Pathol. 2003;27(2):178–86.

    Article  PubMed  Google Scholar 

  121. Silver SA, Devouassoux-Shisheboran M, Mezzetti TP, Tavassoli FA. Mesonephric adenocarcinomas of the uterine cervix: a study of 11 cases with immunohistochemical findings. Am J Surg Pathol. 2001;25(3):379–87.

    Article  PubMed  CAS  Google Scholar 

  122. Chiesa-Vottero AG, Malpica A, Deavers MT, Broaddus R, Nuovo GJ, Silva EG. Immunohistochemical overexpression of p16 and p53 in uterine serous carcinoma and ovarian high-grade serous carcinoma. Int J Gynecol Pathol. 2007;26(3):328–33.

    Article  PubMed  Google Scholar 

  123. Fukuchi T, Sakamoto M, Tsuda H, Maruyama K, Nozawa S, Hirohashi S. Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res. 1998;58(16):3526–8.

    PubMed  CAS  Google Scholar 

  124. Goldstein NS, Uzieblo A. WT1 immunoreactivity in uterine papillary serous carcinomas is different from ovarian serous carcinomas. Am J Clin Pathol. 2002;117(4):541–5.

    Article  PubMed  Google Scholar 

  125. Lax SF, Kendall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer. 2000;88(4):814–24.

    Article  PubMed  CAS  Google Scholar 

  126. Mutter GL, Ince TA, Baak JP, Kust GA, Zhou XP, Eng C. Molecular identification of latent precancers in histologically normal endometrium. Cancer Res. 2001;61(11):4311–4.

    PubMed  CAS  Google Scholar 

  127. Pallares J, Bussaglia E, Martinez-Guitarte JL, et al. Immunohistochemical analysis of PTEN in endometrial carcinoma: a tissue microarray study with a comparison of four commercial antibodies in correlation with molecular abnormalities. Mod Pathol. 2005;18(5):719–27.

    Article  PubMed  CAS  Google Scholar 

  128. Peiro G, Diebold J, Lohse P, et al. Microsatellite instability, loss of heterozygosity, and loss of hMLH1 and hMSH2 protein expression in endometrial carcinoma. Hum Pathol. 2002;33(3):347–54.

    Article  PubMed  CAS  Google Scholar 

  129. Schlosshauer PW, Ellenson LH, Soslow RA. Beta-catenin and E-cadherin expression patterns in high-grade endometrial carcinoma are associated with histological subtype. Mod Pathol. 2002;15(10):1032–7.

    Article  PubMed  Google Scholar 

  130. Siami K, McCluggage WG, Ordonez NG, et al. Thyroid transcription factor-1 expression in endometrial and endocervical adenocarcinomas. Am J Surg Pathol. 2007;31(11):1759–63.

    Article  PubMed  Google Scholar 

  131. Soslow RA, Shen PU, Chung MH, Isacson C, Baergen RN. Cyclin D1 expression in high-grade endometrial carcinomas–association with histologic subtype. Int J Gynecol Pathol. 2000;19(4):329–34.

    Article  PubMed  CAS  Google Scholar 

  132. Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are ­frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57(18):3935–40.

    PubMed  CAS  Google Scholar 

  133. Wani Y, Notohara K, Saegusa M, Tsukayama C. Aberrant Cdx2 expression in endometrial lesions with squamous differentiation: important role of Cdx2 in squamous morula formation. Hum Pathol. 2008;39(7):1072–9.

    Article  PubMed  CAS  Google Scholar 

  134. Dupont J, Wang X, Marshall DS, et al. Wilms tumor gene (WT1) and p53 expression in endometrial carcinomas: a study of 130 cases using a tissue microarray. Gynecol Oncol. 2004;94(2):449–55.

    Article  PubMed  CAS  Google Scholar 

  135. Hashi A, Yuminamochi T, Murata S, Iwamoto H, Honda T, Hoshi K. Wilms tumor gene immunoreactivity in primary serous carcinomas of the fallopian tube, ovary, endometrium, and peritoneum. Int J Gynecol Pathol. 2003;22(4):374–7.

    Article  PubMed  Google Scholar 

  136. Liang SX, Chambers SK, Cheng L, Zhang S, Zhou Y, Zheng W. Endometrial glandular dysplasia: a putative precursor lesion of uterine papillary serous carcinoma. Part II: molecular features. Int J Surg Pathol. 2004;12(4):319–31.

    Article  PubMed  CAS  Google Scholar 

  137. McCluggage WG. WT1 is of value in ascertaining the site of ­origin of serous carcinomas within the female genital tract. Int J Gynecol Pathol. 2004;23(2):97–9.

    Article  PubMed  Google Scholar 

  138. Sherman ME, Bitterman P, Rosenshein NB, Delgado G, Kurman RJ. Uterine serous carcinoma. A morphologically diverse ­neoplasm with unifying clinicopathologic features. Am J Surg Pathol. 1992;16(6):600–10.

    Article  PubMed  CAS  Google Scholar 

  139. Slomovitz BM, Broaddus RR, Burke TW, et al. Her-2/neu overexpression and amplification in uterine papillary serous carcinoma. J Clin Oncol. 2004;22(15):3126–32.

    Article  PubMed  CAS  Google Scholar 

  140. Tashiro H, Isacson C, Levine R, Kurman RJ, Cho KR, Hedrick L. p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am J Pathol. 1997;150(1):177–85.

    PubMed  CAS  Google Scholar 

  141. Zheng W, Yi X, Fadare O, et al. The oncofetal protein IMP3: a novel biomarker for endometrial serous carcinoma. Am J Surg Pathol. 2008;32(2):304–15.

    Article  PubMed  Google Scholar 

  142. Lax SF, Pizer ES, Ronnett BM, Kurman RJ. Clear cell carcinoma of the endometrium is characterized by a distinctive profile of p53, Ki-67, estrogen, and progesterone receptor expression. Hum Pathol. 1998;29(6):551–8.

    Article  PubMed  CAS  Google Scholar 

  143. Jung CK, Jung JH, Lee A, et al. Diagnostic use of nuclear beta-catenin expression for the assessment of endometrial stromal tumors. Mod Pathol. 2008;21(6):756–63.

    Article  PubMed  CAS  Google Scholar 

  144. McCluggage WG, Sumathi VP, Maxwell P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology. 2001;39(3):273–8.

    Article  PubMed  CAS  Google Scholar 

  145. Oliva E, Young RH, Clement PB, Bhan AK, Scully RE. Cellular benign mesenchymal tumors of the uterus. A comparative ­morphologic and immunohistochemical analysis of 33 highly ­cellular leiomyomas and six endometrial stromal nodules, two frequently confused tumors. Am J Surg Pathol. 1995;19(7):757–68.

    Article  PubMed  CAS  Google Scholar 

  146. Sumathi VP, Al-Hussaini M, Connolly LE, Fullerton L, McCluggage WG. Endometrial stromal neoplasms are immunoreactive with WT-1 antibody. Int J Gynecol Pathol. 2004;23(3):241–7.

    Article  PubMed  CAS  Google Scholar 

  147. Mikami Y, Hata S, Kiyokawa T, Manabe T. Expression of CD10 in malignant mullerian mixed tumors and adenosarcomas: an immunohistochemical study. Mod Pathol. 2002;15(9):923–30.

    Article  PubMed  Google Scholar 

  148. Soslow RA, Ali A, Oliva E. Mullerian adenosarcomas: an immunophenotypic analysis of 35 cases. Am J Surg Pathol. 2008;32(7):1013–21.

    Article  PubMed  Google Scholar 

  149. Gannon BR, Manduch M, Childs TJ. Differential immunoreactivity of p16 in leiomyosarcomas and leiomyoma variants. Int J Gynecol Pathol. 2008;27(1):68–73.

    Article  PubMed  Google Scholar 

  150. Mittal K, Demopoulos RI. MIB-1 (Ki-67), p53, estrogen receptor, and progesterone receptor expression in uterine smooth muscle tumors. Hum Pathol. 2001;32(9):984–7.

    Article  PubMed  CAS  Google Scholar 

  151. Oliva E, Clement PB, Young RH. Epithelioid endometrial and endometrioid stromal tumors: a report of four cases emphasizing their distinction from epithelioid smooth muscle tumors and other oxyphilic uterine and extrauterine tumors. Int J Gynecol Pathol. 2002;21(1):48–55.

    Article  PubMed  Google Scholar 

  152. Silva EG, Deavers MT, Bodurka DC, Malpica A. Uterine epithelioid leiomyosarcomas with clear cells: reactivity with HMB-45 and the concept of PEComa. Am J Surg Pathol. 2004;28(2):244–9.

    Article  PubMed  Google Scholar 

  153. Winter 3rd WE, Seidman JD, Krivak TC, et al. Clinicopathological analysis of c-kit expression in carcinosarcomas and leiomyosarcomas of the uterine corpus. Gynecol Oncol. 2003;91(1):3–8.

    Article  PubMed  CAS  Google Scholar 

  154. Otis CN. Uterine adenomatoid tumors: immunohistochemical characteristics with emphasis on Ber-EP4 immunoreactivity and distinction from adenocarcinoma. Int J Gynecol Pathol. 1996;15(2):146–51.

    Article  PubMed  CAS  Google Scholar 

  155. Fadare O. Perivascular epithelioid cell tumors (PEComas) and smooth muscle tumors of the uterus. Am J Surg Pathol. 2007;31(9):1454–5.

    Article  PubMed  Google Scholar 

  156. Mao TL, Seidman JD, Kurman RJ, Shih I. Cyclin E and p16 immunoreactivity in epithelioid trophoblastic tumor – an aid in differential diagnosis. Am J Surg Pathol. 2006;30(9):1105–10.

    Article  PubMed  Google Scholar 

  157. McCluggage WG, Ashe P, McBride H, Maxwell P, Sloan JM. Localization of the cellular expression of inhibin in trophoblastic tissue. Histopathology. 1998;32(3):252–6.

    Article  PubMed  CAS  Google Scholar 

  158. Shih IM, Kurman RJ. The pathology of intermediate trophoblastic tumors and tumor-like lesions. Int J Gynecol Pathol. 2001;20(1):31–47.

    Article  PubMed  CAS  Google Scholar 

  159. Singer G, Kurman RJ, McMaster MT, Shih I. HLA-G immunoreactivity is specific for intermediate trophoblast in gestational trophoblastic disease and can serve as a useful marker in differential diagnosis. Am J Surg Pathol. 2002;26(7):914–20.

    Article  PubMed  Google Scholar 

  160. Pirog EC, Baergen RN, Soslow RA, et al. Diagnostic accuracy of cervical low-grade squamous intraepithelial lesions is improved with MIB-1 immunostaining. Am J Surg Pathol. 2002;26(1):70–5.

    Article  PubMed  Google Scholar 

  161. McCluggage WG, Maxwell P. bcl-2 and p21 immunostaining of cervical tubo-endometrial metaplasia. Histopathology. 2002;40(1):107–8.

    Article  PubMed  Google Scholar 

  162. McCluggage WG, Maxwell P, McBride HA, Hamilton PW, Bharucha H. Monoclonal antibodies Ki-67 and MIB1 in the distinction of tuboendometrial metaplasia from endocervical adenocarcinoma and adenocarcinoma in situ in formalin-fixed material. Int J Gynecol Pathol. 1995;14(3):209–16.

    Article  PubMed  CAS  Google Scholar 

  163. Marques T, Andrade LA, Vassallo J. Endocervical tubal metaplasia and adenocarcinoma in situ: role of immunohistochemistry for carcinoembryonic antigen and vimentin in differential diagnosis. Histopathology. 1996;28(6):549–50.

    Article  PubMed  CAS  Google Scholar 

  164. McCluggage WG, Sumathi VP, McBride HA, Patterson A. A panel of immunohistochemical stains, including carcinoembryonic ­antigen, vimentin, and estrogen receptor, aids the distinction between primary endometrial and endocervical adenocarcinomas. Int J Gynecol Pathol. 2002;21(1):11–5.

    Article  PubMed  Google Scholar 

  165. Kamoi S, AlJuboury MI, Akin MR, Silverberg SG. Immuno­histochemical staining in the distinction between primary ­endometrial and endocervical adenocarcinomas: another viewpoint. Int J Gynecol Pathol. 2002;21(3):217–23.

    Article  PubMed  Google Scholar 

  166. McCluggage WG, Jenkins D. Immunohistochemical staining with p16 may assist in the distinction between endometrial and endocervical adenocarcinoma. Int J Gynecol Pathol. 2003;22:128.

    Google Scholar 

  167. Staebler A, Sherman ME, Zaino RJ, Ronnett BM. Hormone ­receptor immunohistochemistry and human papillomavirus in situ hybridization are useful for distinguishing endocervical and ­endometrial adenocarcinomas. Am J Surg Pathol. 2002;26(8):998–1006.

    Article  PubMed  Google Scholar 

  168. Vang R, Whitaker BP, Farhood AI, Silva EG, Ro JY, Deavers MT. Immunohistochemical analysis of clear cell carcinoma of the gynecologic tract. Int J Gynecol Pathol. 2001;20(3):252–9.

    Article  PubMed  CAS  Google Scholar 

  169. Vang R, Barner R, Wheeler DT, Strauss BL. Immunohistochemical staining for Ki-67 and p53 helps distinguish endometrial Arias-Stella reaction from high-grade carcinoma, including clear cell carcinoma. Int J Gynecol Pathol. 2004;23(3):223–33.

    Article  PubMed  Google Scholar 

  170. Oliva E, Young RH, Amin MB, Clement PB. An immunohistochemical analysis of endometrial stromal and smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol. 2002;26(4):403–12.

    Article  PubMed  Google Scholar 

  171. Fisher RA, Hodges MD, Rees HC, et al. The maternally transcribed gene p57(KIP2) (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. Hum Mol Genet. 2002;11(26):3267–72.

    Article  PubMed  CAS  Google Scholar 

  172. Jun SY, Ro JY, Kim KR. p57kip2 is useful in the classification and differential diagnosis of complete and partial hydatidiform moles. Histopathology. 2003;43(1):17–25.

    Article  PubMed  Google Scholar 

  173. Sebire NJ, Rees HC, Peston D, Seckl MJ, Newlands ES, Fisher RA. p57(KIP2) immunohistochemical staining of gestational trophoblastic tumours does not identify the type of the causative pregnancy. Histopathology. 2004;45(2):135–41.

    Article  PubMed  CAS  Google Scholar 

  174. Ben-Izhak O, Stark P, Levy R, Bergman R, Lichtig C. Epithelial markers in malignant melanoma. A study of primary lesions and their metastases. Am J Dermatopathol. 1994;16(3):241–6.

    Article  PubMed  CAS  Google Scholar 

  175. Shih IM, Kurman RJ. Immunohistochemical localization of inhibin-alpha in the placenta and gestational trophoblastic lesions. Int J Gynecol Pathol. 1999;18(2):144–50.

    Article  PubMed  CAS  Google Scholar 

  176. Shih IM, Kurman RJ. Ki-67 labeling index in the differential diagnosis of exaggerated placental site, placental site trophoblastic tumor, and choriocarcinoma: a double immunohistochemical staining technique using Ki-67 and Mel-CAM antibodies. Hum Pathol. 1998;29(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  177. Wong SC, Chan AT, Chan JK, Lo YM. Nuclear beta-catenin and Ki-67 expression in choriocarcinoma and its pre-malignant form. J Clin Pathol. 2006;59(4):387–92.

    Article  PubMed  CAS  Google Scholar 

  178. Irving JA, Catasus L, Gallardo A, et al. Synchronous endometrioid carcinomas of the uterine corpus and ovary: alterations in the beta-catenin (CTNNB1) pathway are associated with independent primary tumors and favorable prognosis. Hum Pathol. 2005;36(6):605–19.

    Article  PubMed  CAS  Google Scholar 

  179. Cappellari JO, Geisinger KR, Albertson DA, Wolfman NT, Kute TE. Malignant papillary cystic tumor of the pancreas. Cancer. 1990;66(1):193–8.

    Article  PubMed  CAS  Google Scholar 

  180. Lagendijk JH, Mullink H, Van Diest PJ, Meijer GA, Meijer CJ. Tracing the origin of adenocarcinomas with unknown primary using immunohistochemistry: differential diagnosis between colonic and ovarian carcinomas as primary sites. Hum Pathol. 1998;29(5):491–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna G. Kaspar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kaspar, H.G., Kaspar, H.G. (2011). Uterus. In: Lin, F., Prichard, J. (eds) Handbook of Practical Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8062-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8062-5_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8061-8

  • Online ISBN: 978-1-4419-8062-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics