Skip to main content

Immunocompetent Molecules and Their Response Network in Horseshoe Crabs

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 708))

Abstract

Horseshoe crab hemocyte selectively responds to bacterial lipopolysaccharides(LPS), which depends critically on the proteolytic activity of the LPS-responsive serine protease zymogen factor C. In response to stimulation by LPS, the hemocyte secretes several kinds of immunocompetent proteins. The coagulation cascade triggered by LPS or β-1,3-D-glucans (BDG) results in the formation of coagulin fibrils that are subsequently stabilized by transglutaminase (TGase)-dependent cross-linking. Invading pathogens are recognized and agglutinated by lectins and then killed by antimicrobial peptides. Moreover, LPS-triggered hemocyte exocytosis is enhanced by a feedback mechanism in which the antimicrobial peptides serve as endogenous mediators. Factor C also acts as an LPS-sensitive complement C3 convertase. In addition, a sub-cuticular epidermis-derived protein forms a TGase-stabilized mesh at sites of injury. Horseshoe crabs have a sophisticated innate immune response network that coordinately effects pathogen recognition and killing, prophenoloxidase activation, complement activation and TGase-dependent wound healing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sekiguchi K, Yamamichi Y, Seshimo H et al. Normal development. In: Sekiguchi K, ed. Biology of Horseshoe Crabs, Tokyo: Science House 1988; 133–224.

    Google Scholar 

  2. Levin J, Hochstein HD, Novitsky TJ. Clotting cells and Limulus Amebocyte Lysate: An amazing analytical tool. In: Sinister CN Jr, Barlow RB, Brockmann HJ, eds. The American Horseshoe Crab, Cambridge, MA: Harvard University Press, 2003; 310–340.

    Google Scholar 

  3. Loeb L. On the blood lymph cells and inflammatory processes of Limulus. J Med Res 1902; 7:145–158.

    PubMed  CAS  Google Scholar 

  4. Loeb L. Amoebocyte tissue and amoeboid movement. Protoplasma 1928; 4:596–625.

    Article  Google Scholar 

  5. Bang FB. A bacterial disease of Limulus polyphemus. Bull Johns Hopkins Hosp 1956; 98:325–351

    PubMed  CAS  Google Scholar 

  6. Levin J, Bang FB. The role of endotoxin in the extracellular coagulation of Limulus blood. Bull Johns Hopkins Hosp 1964; 115:265–274.

    PubMed  CAS  Google Scholar 

  7. Levin J, Bang FB. A description of cellular coagulation in the Limulus. Bull Johns Hopkins Hosp 1964; 115:337–345.

    PubMed  CAS  Google Scholar 

  8. Levin J, Bang FB. Clottable protein in Limulus: Its localization and kinetics of its coagulation by endotoxin. Thromb Diath Haemorrh 1968; 19:186–197.

    PubMed  CAS  Google Scholar 

  9. Young NS, Levin J, Prendergast RA. An invertebrate coagulation system activated by endotoxin: Evidence for enzymatic mediation. J Clin Invest 1972; 51:1790–1797.

    Article  PubMed  CAS  Google Scholar 

  10. Solum NO. The coagulation of Limulus polyphemus hemocytes: A comparison of the clotted and nonclotted forms of the molecule. Thromb Res 1973; 2:55–70.

    Article  CAS  Google Scholar 

  11. Tai JY, Seid RC Jr, Huhn RD et al. Studies on Limulus Amoebocyte Lysate II. J Biol Chem 1977; 252:4773–4776.

    PubMed  CAS  Google Scholar 

  12. Tai JY, Liu T-Y. Studies on Limulus Amoebocyte Lysate. J Biol Chem 1977; 252:2178–2181.

    PubMed  CAS  Google Scholar 

  13. Muta T, Hashimoto R, Miyata T et al. Proclotting enzyme from horseshoe crab hemocytes. J Biol Chem 1990; 265:22426–22433.

    PubMed  CAS  Google Scholar 

  14. Ohki M, Nakamura T, Morita T et al. A new endotoxin sensitive factor associated with hemolymph coagulation system of horseshoe crab (Limulidae). FEBS Lett 1980; 120:217–220.

    Article  PubMed  CAS  Google Scholar 

  15. Nakamura T, Horiuchi T, Morita T et al. Purification and properties of intracellular clotting factor, factor B, from Horseshoe crab (Tachypleus tridentatus) hemocytes. J Biochem 1986; 99:847–857.

    PubMed  CAS  Google Scholar 

  16. Kawabata S, Miura T, Morita T et al. Highly sensitive peptide-4-methylcoumaryl-7-amide substrates for blood-clotting proteases and trypsin. Eur J Biochem 1988; 172:17–25.

    Article  PubMed  CAS  Google Scholar 

  17. Copeland DE, Levin J. The fine structure of the Amebocyte in the blood of Limulus polyphemus: I. Morphology of the normal cell. Biol Bull 1985; 169:449–457.

    Article  Google Scholar 

  18. Toh Y, Mizutani A, Tokunaga F et al. Morphology of the granular hemocytes of the Japanese horseshoe crab Tachypleus tridentatus and immunocytochemical localization of clotting factors and antimicrobial substances. Cell Tissue Res 1991; 266:137–147.

    Article  Google Scholar 

  19. Shigenaga T, Takayenoki Y, Kawasaki S et al. Separation of large and small granules from horseshoe crab (Tachypleus tridentatus) hemocytes and characterization of their components. J Biochem 1993; 114:307–316.

    PubMed  CAS  Google Scholar 

  20. Ariki S, Koori K, Osaki T et al. A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides. Proc Natl Acad Sci USA 2004; 101:953–958.

    Article  PubMed  CAS  Google Scholar 

  21. Iwanaga S, Kawabata S, Muta T. New type of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem 1998; 123:1–15.

    PubMed  CAS  Google Scholar 

  22. Kurata S, Ariki S, Kawabata S. Recognition of pathogens and activation of immune response in Drosophila and horseshoe crab innate immunity. Immunobiol 2006; 211:237–249.

    Article  CAS  Google Scholar 

  23. Koshiba T, Hashii T, Kawabata S. A structural perspective on the interaction between lipopolysaccharide and Factor C, a receptor involved in recognition of Gram-negative bacteria. J Biol Chem 2007; 282:3962–3967.

    Article  PubMed  CAS  Google Scholar 

  24. Tan NS, Patricia MLNG, Yau UH et al. Definition of endotoxin binding sites in horseshoe crab factor C recombinant sushi proteins and neutralization of endotoxin by sushi peptides. FASEB J 2000; 14:1801–1813.

    Article  PubMed  CAS  Google Scholar 

  25. Li P, Wohland T, Ho B et al. Perturbation of lipopolysaccharide (LPS) micelles by sushi 3 (S3) antimicrobial peptide. J Biol Chem 2004; 279:50150–50156.

    Article  PubMed  CAS  Google Scholar 

  26. Ozaki A, Ariki S, Kawabata S. An antimicrobial peptide tachyplesin acts as a secondary secretagogue and amplifies lipopolysaccharide-induced hemocyte exocytosis. FEBS J 2005; 272:3863–3871.

    Article  PubMed  CAS  Google Scholar 

  27. Higashijima T, Uzu S, Nakajima T et al. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem 1988; 263:6491–6494.

    PubMed  CAS  Google Scholar 

  28. Nagai T, Osaki T, Kawabata S. Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 2001; 276:27166–27170.

    Article  PubMed  CAS  Google Scholar 

  29. Hoffmann JA. The immune response of Drosophila. Nature 2003; 426:33–38.

    Article  PubMed  CAS  Google Scholar 

  30. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124:783–801.

    Article  PubMed  CAS  Google Scholar 

  31. Inamori K, Koori, K, Mishima C et al. A horseshoe crab receptor structurally related to Drosophila Toll. J Endotoxin Res 2000; 6:397–399.

    PubMed  CAS  Google Scholar 

  32. Inamori K, Ariki S, Kawabata S. A toll-like receptor in horseshoe crabs. Immunol Rev 2004; 198:106–115.

    Article  PubMed  CAS  Google Scholar 

  33. Wang XW, Tan NS, Ho B et al. Evidence for the ancient origin of the NF-B/IB cascade: Its archaic role in pathogen infection and immunity. Proc Natl Acad Sci USA 2006; 103:4204–4209.

    Article  PubMed  CAS  Google Scholar 

  34. Gokudan S, Muta T, Tsuda R et al. Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci USA 1999; 96:10086–10091.

    Article  PubMed  CAS  Google Scholar 

  35. Bergner A, Oganessyan V, Muta T et al. Crystal structure of coagulogen, the clotting protein form horseshoe crab: a structural homologue of nerve growth factor. EMBO J 1996; 15:6789–6797.

    PubMed  Google Scholar 

  36. Belvin MP, Anderson KV. A conserved signaling pathway-the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 1996; 12:393–416.

    Article  PubMed  CAS  Google Scholar 

  37. Ferrandon D, Imler J-L, Hetru C et al. The Drosophila systemic immune response: sensing and signaling during bacterial and fungal infections. Nature Rev Immunol 2007; 7:862–874.

    Article  CAS  Google Scholar 

  38. Smith CL, DeLotto R. A common domain within the proenzyme regions of the Drosophila snake and easter proteins and Tachypleus proclotting enzyme defines a new subfamily of serine proteases. Protein Sci 1992; 1:1225–1226.

    Article  PubMed  CAS  Google Scholar 

  39. Bergner A, Muta T, Iwanaga S et al. Horseshoe crab coagulation is an invertebrate protein with a nerve growth factor-like domain. Biol Chem 1997; 378:283–287.

    Article  PubMed  CAS  Google Scholar 

  40. Muta T, Oda T, Iwanaga S. Horseshoe crab coagulation factor B. J Biol Chem 1993; 268:21384–21388.

    PubMed  CAS  Google Scholar 

  41. Krem MM, Di Cera E. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci 2002; 27:67–74.

    Article  PubMed  CAS  Google Scholar 

  42. Kawabata S, Osaki T, Iwanaga S. Innate immunity in the horseshoe crab. In: Ezekowitz RAB, Hoffmann JA eds. Innate Immunity, Totowa: Humana Press, 2003:109–125.

    Google Scholar 

  43. Miura Y, Kawabata S, Iwanaga S. A limulus intracellular coagulation inhibitor with characteristics of the serpin superfamily, purification, characterization and cDNA cloning. J Biol Chem 1994; 269:542–547.

    PubMed  CAS  Google Scholar 

  44. Miura Y, Kawabata S, Wakamiya Y et al. A limulus intracellular coagulation inhibitor type 2. Purification, characterization, cDNA cloning and tissue localization. J Biol Chem 1995; 270:558–565.

    Article  PubMed  CAS  Google Scholar 

  45. Lal Agarwala K, Kawabata S, Miura Y et al. Limulus intracellular coagulation inhibitortype 3. Purification, characterization, cDNA cloning and tissue localization. J Biol Chem 1996; 271:23768–23774.

    Article  Google Scholar 

  46. Kanost MR, Jiang H, Yu W-Q. Innate immune response of a lepidopteran insect, Manduca sexta. Immunol Rev 2004; 198:97–105.

    Article  PubMed  CAS  Google Scholar 

  47. Cerenius L, Söderhäll K. The prophenoloxidase-activating system in invertebrates. Immunol Rev 2004; 198:116–126.

    Article  PubMed  CAS  Google Scholar 

  48. Brown GD. Dectin-1: a signaling nonTLR pattern-recognition receptor. Nat Rev Immunol 2006; 6:33–43.

    Article  PubMed  CAS  Google Scholar 

  49. Seki N, Muta T, Oda T et al. Horseshoe crab (1,3)-β-D-glucan-sensitive coagulation factor G. J Biol Chem 1994; 269:1370–1374.

    PubMed  CAS  Google Scholar 

  50. Takaki Y, Seki N, Kawabata S et al. Duplicated binding sites for (1→3)-β-D-glucan in the horseshoe crab coagulation factor G. J Biol Chem 2002; 277:14281–14287.

    Article  PubMed  CAS  Google Scholar 

  51. Fontes CMGA, Clarke JH, Hazlewood GP et al. Identification of tandemly repeated type VI cellulose-binding modules in an endoglucanase from the aerobic soil bacterium Cellvibrio mixtus. Appl Microbiol Biotechnol 1998; 49:552–559.

    Article  PubMed  CAS  Google Scholar 

  52. Ueda Y, Ohwada S, Abe Y et al. Factor G utilizes a carbohydrate-binding cleft that is conserved between horseshoe crab and bacteria for the recognition of β-1,3-D-glucans. J Immunol 2009; 183:3810–3818.

    Article  PubMed  CAS  Google Scholar 

  53. Brown J, O’Callaghan CA, Marshall AS et al. Structure of the fungal β-glucan-binding immune receptor dectin-1: Implications for function. Protein Sci 2007; 16:1042–1052.

    Article  PubMed  CAS  Google Scholar 

  54. Saito T, Kawabata S, Hirata M et al. A novel type of limulus lectin-L6. J Biol Chem 1995; 270:14493–14499.

    Article  PubMed  CAS  Google Scholar 

  55. Okino N, Kawabata S, Saito T et al. Purification, characterization and cDNA cloning of a 27-kDa lectin (L10) from horseshoe crab hemocytes. J Biol Chem 1995; 270:31008–31015.

    Article  PubMed  CAS  Google Scholar 

  56. Saito T, Hatada S, Iwanaga S et al. A newly identified horseshoe crab lectin with specificity for blood group A antigen recognizes specific O-antigens of bacterial lipopolysaccharides. J Biol Chem 1997; 272:30703–30708.

    Article  PubMed  CAS  Google Scholar 

  57. Inamori K, Saito T, Iwaki D et al. A newly identified horseshoe crab lectin with specificity for blood group A antigen recognizes specific O-antigens of bacterial lipopolysaccharides. J Biol Chem 1999; 274:3272–3278.

    Article  PubMed  CAS  Google Scholar 

  58. Chiou ST, Chen YW et al. Isolation and characterization of proteins that bind to galactose, lipopolysaccharide of Escherichia coli and protein A of Staphylococcus aureus from the hemolymph of Tachypleus tridentatus. J Biol Chem 2000; 275:1630–1634.

    Article  PubMed  CAS  Google Scholar 

  59. Chen SC, Yen CH, Yeh MS et al. Biochemical properties and cDNA cloning of two new lectins from the plasma of Tachypleus tridentatus-Tachypleus plasma lectin 1 and 2. J Biol Chem 2001; 276:9631–9639.

    Article  PubMed  CAS  Google Scholar 

  60. Iwaki D, Osaki T, Yoshimitsu M et al. Functional and structural diversities of C-reactive proteins present in horseshoe crab hemolymph plasma. Eur J Biochem 1999; 264:314–326.

    Article  PubMed  CAS  Google Scholar 

  61. Ng PML, Jin ZX, Tan SSH et al. C-reactive protein: a predominant LPS-binding acute phase protein responsive to Pseudomonas infection. J Endotoxin Res 2004; 10:163–174.

    PubMed  CAS  Google Scholar 

  62. Harrington JM, Chou H-T, Gutsmann T et al. Membrane activity of a C-reactive protein. FEBS Lett 2009; 583:1001–1005.

    Article  PubMed  CAS  Google Scholar 

  63. Nagai T, Kawabata S, Shishikura F et al. Purification, characterization and amino acid sequence of an embryonic lectin in perivitelline fluid of the horseshoe crab. J Biol Chem 1999; 274:37673–37678.

    Article  PubMed  CAS  Google Scholar 

  64. Beisel H-G, Kawabata S, Iwanaga S et al. Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO J 1999; 18:2312–2322.

    Article  Google Scholar 

  65. Kairies N, Beisel H-G, Fuentes-Prior P et al. The 2.0-Å crystal structure of tachylectin 5 provides evidence for the common origin of the innate immunity and the blood coagulation systems. Proc Natl Acad Sci USA 2001; 98:13519–13524.

    Article  PubMed  CAS  Google Scholar 

  66. Saito T, Kawabata S, Shigenaga T et al. A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence and antibacterial activity. J Biochem 1995; 117:1131–1137.

    Article  PubMed  CAS  Google Scholar 

  67. Kawabata S, Nagayama R, Hirata M et al. Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin-binding activity. J Biochem 1996; 120:1253–1260.

    PubMed  CAS  Google Scholar 

  68. Kawabata S, Saito T, Saeki K et al cDNA cloning, tissue distribution and subcellular localization of horseshoe crab big defensin. Biol Chem 1997; 378:289–292.

    Article  PubMed  CAS  Google Scholar 

  69. Osaki T, Omotezako M, Nagayama R et al. Horseshoe crab hemocyte-derived antimicrobial peptides, tachystatins, with sequence similarity to spider neurotoxins. J Biol Chem 1999; 274:26172–26178.

    Article  PubMed  CAS  Google Scholar 

  70. Suetake T, Tsuda S, Kawabata S et al. Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J Biol Chem 2000; 275:17929–17932.

    Article  PubMed  CAS  Google Scholar 

  71. Fujitani N, Kawabata S, Osaki T et al. Structure of the antimicrobial peptide tachystatin A. J Biol Chem 2002; 277:23651–23657.

    Article  PubMed  CAS  Google Scholar 

  72. Fujitani N, Kouno T, Nakahara T et al. The solution structure of horseshoe crab antimicrobial peptide tachystatin B with an inhibitory cystine-knot motif. J Pep Sci 2007; 13:269–279.

    Article  CAS  Google Scholar 

  73. Kouno T, Fujitani N, Mizuguchi M et al. A novel β-defensin structure: a potential strategy of big defensin for overcoming resistance by Gram-positive bacteria. Biochemistry 2008; 47:10611–10619.

    Article  PubMed  CAS  Google Scholar 

  74. Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chemical Rev 1996; 96:2563–2605.

    Article  CAS  Google Scholar 

  75. Ashida M, Yamazaki H. Biochemistry of the phenoloxidase system in insects: with special reference to its activation. In: Ohnishi E, Ishizaki H, eds. Molting and Metamorphosis. Berlin: Springer-Verlag, 1990; 239–265.

    Google Scholar 

  76. Nellaiappan K, Sugumaran M. On the presence of prophenoloxidase in the hemolymph of the horseshoe crab, Limulus. Comp Biochem Physiol Part B 1996; 113:163–168.

    Article  CAS  Google Scholar 

  77. Nagai T, Kawabata S. A link between blood coagulation and prophenoloxidase activation in arthropod host defense. J Biol Chem 2000; 275:29264–29267.

    Article  PubMed  CAS  Google Scholar 

  78. Burmester T, Scheller K. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin and dipteran arylphorin receptor. J Mol Evol 1996; 42:713–728.

    Article  PubMed  CAS  Google Scholar 

  79. Aspan A, Huang TS, Cerenius L et al cDNA cloning of prophenoloxidase from the freshwater crayfish Pacifastacus leniusculus and its activation. Proc Natl Acad Sci USA 1995; 92:939–943.

    Article  PubMed  CAS  Google Scholar 

  80. Decker H, Rimke T. Tarantula hemocyanin shows phenoloxidase activity. J Biol Chem 1998; 273:25889–25892.

    Article  PubMed  CAS  Google Scholar 

  81. Lee SY, Lee BL, Söderhäll K. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 2003; 278:7927–7933.

    Article  PubMed  CAS  Google Scholar 

  82. Jiang N, Tan NS, Ho B et al. Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nature Immunol 2007; 8:1114–1122.

    Article  CAS  Google Scholar 

  83. Doolittle RF, Riley M. The amino-terminal sequence of lobster fibrinogen reveals common ancestry with vitellogenins. Biochem Biophys Res Commun 1990; 167:16–19.

    Article  PubMed  CAS  Google Scholar 

  84. Hall M, Wang R, van Antwerpen R et al. The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation in crustacean blood. Proc Natl Acad Sci USA 199; 96:1965–1970.

    Google Scholar 

  85. Lindgren M, Riazi R, Lesch C et al. Fondue and transglutaminase in the Drosophila larval clot. J Insect Physiol 2008; 54:586–598.

    Article  PubMed  CAS  Google Scholar 

  86. Kawasaki H, Nose T, Muta et al. Head-to-tail polymerization of coagulogen, a clottable protein of the horseshoe crab. J Biol Chem 2000; 275:35297–35301.

    Article  PubMed  CAS  Google Scholar 

  87. Tokunaga T, Yamada M, Miyata T et al. Limulus hemocyte transglutaminase: its purification and characterization and identification of the intracellular substrates. J Biol Chem 1993; 268:252–261.

    PubMed  CAS  Google Scholar 

  88. Tokunaga T, Muta T, Iwanaga S et al. Limulus hemocyte transglutaminase: cDNA cloning, amino acid sequence and tissue localization. J Biol Chem 1993; 268:262–268.

    PubMed  CAS  Google Scholar 

  89. Matsuda Y, Osaki T, Hashii T et al. A cysteine-rich protein from an arthropod stabilizes clotting mesh and immobilizes bacteria at injured sites. J Biol Chem 2007; 282:33545–33552.

    Article  PubMed  CAS  Google Scholar 

  90. Osaki T, Okino N, Tokunaga F et al. Proline-rich cell surface antigens of horseshoe crab hemocytes are substrates for protein cross-linking with a clotting protein coagulin. J Biol Chem 2002; 277:40084–40090.

    Article  PubMed  CAS  Google Scholar 

  91. Iijima M, Hashimoto T, Matusda Y et al. Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS J 2005; 272:4774–4786.

    Article  PubMed  CAS  Google Scholar 

  92. Matusda Y, Koshiba T, Osaki T et al. An arthropod cuticular chitin-binding protein endows injured sites with transglutaminase-dependent mesh. J Biol Chem 2007; 282:37316–37324.

    Article  Google Scholar 

  93. Armstrong PB. Adhesion and motility of the blood cells of Limulus. In: Cohen WD, ed. Blood Cells of Marine Invertebrates: Experimental Systems in Cell Biology and Comparative Physiology. New York: Alan R. Liss, Inc., 1985:77–124.

    Google Scholar 

  94. Bursey CR. Histological response to injury in the horseshoe crab, Limulus polyphemus. Can J Zool 1977; 55:1158–1165.

    Article  Google Scholar 

  95. Iwaki D, Kawabata S, Miura et al. Molecular cloning of Limulus α2-macroglobulin. Eur J Biochem 1996; 242:822–831.

    Article  PubMed  CAS  Google Scholar 

  96. Zhu Y, Thangamani S, Ho B et al. The ancient origin of the complement system. EMBO J 2005; 24:382–394.

    Article  PubMed  CAS  Google Scholar 

  97. Ariki S, Takahara S, Shibata T et al. Factor C acts as a lipopolysaccharide-responsive C3 convertase in horseshoe crab complement activation. J Immunol 2008; 181:7794–8001.

    Google Scholar 

  98. Srimal S, Miyata T, Kawabata S et al. The complete amino acid sequence of coagulogen isolated from Southeast Asian horseshoe crab, Carcinoscorpius rotundicauda. J Biochem 1985; 98:305–318.

    PubMed  CAS  Google Scholar 

  99. Saux AL, Ng PML, Koh JJY et al. The macromolecular assembly of pathogen-recognition receptors is impelled by serine proteases, via their complement control protein modules. J Mol Biol 2008; 377:902–913.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kawabata, Si. (2010). Immunocompetent Molecules and Their Response Network in Horseshoe Crabs. In: Söderhäll, K. (eds) Invertebrate Immunity. Advances in Experimental Medicine and Biology, vol 708. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8059-5_7

Download citation

Publish with us

Policies and ethics