Skip to main content

Bivalve Immunity

  • Chapter
Invertebrate Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 708))

Abstract

Bivalves are comprised of animals unclosed in two shell valves, such as mussels, oysters, scallops and clams. There are about 7,500 bivalve species and some of them are of commercial importance. Recently, interest in bivalve immunity has increased due to the importance in worldwide aquaculture and their role inaquatic environmental science and their position in phylogenetic research. This chapter provides a short review of bivalve immunity, including cellular and humoral immunity and the key components and the interactions involved in humoral immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunn CW, Hejnol A, Matus DQ et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008; 452:745–749.

    PubMed  CAS  Google Scholar 

  2. Bebianno MJ, Geret F, Hoarau P et al. Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers 2004; 9:305–330.

    PubMed  CAS  Google Scholar 

  3. Tanguy A, Bierne N, Saavedra C et al. Increasing genomic information in bivalves through new EST collections in four species: development of new genetic markers for environmental studies and genome evolution. Gene 2008; 408:27–36.

    PubMed  CAS  Google Scholar 

  4. Gueguen Y, Cadoret JP, Flament D et al. Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 2003; 303:139–145.

    PubMed  CAS  Google Scholar 

  5. Loker ES, Adema CM, Zhang SM et al. Invertebrate immune systems—not homogeneous, not simple, not well understood. Immunol Rev 2004; 198:10–24.

    PubMed  Google Scholar 

  6. Wootton EC, Dyrynda EA, Ratcliffe NA. Bivalve immunity: comparisons between the marine mussel (Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua). Fish Shellfish Immunol 2003; 15:195–210.

    PubMed  CAS  Google Scholar 

  7. Canesi L, Gallo G, Gavioli M et al. Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech 2002; 57:469–476.

    PubMed  Google Scholar 

  8. Takahashi KG, Muroga K. Cellular Defense Mechanisms in Bivalve Molluscs. Fish Pathology 2008; 43:1–17.

    Google Scholar 

  9. Cheng TC, ed. Bivalves. London: Acdemic Press; 1981. Ratcliffe NA, Rowley AF, eds. Invertebrate blood cell.

    Google Scholar 

  10. Cajaraville MP, Pal SG. Morphofunctional study of the haemocytes of the bivalve mollusc Mytilus galloprovincialis with emphasis on the endolysosomal compartment. Cell Struct Funct 1995; 20:355–367.

    PubMed  CAS  Google Scholar 

  11. Lopez C, Carballal MJ, Azevedo C et al. Morphological characterization of the hemocytes of the clam, Ruditapes decussatus (Mollusca: Bivalvia). J Invertebr Pathol 1997; 69:51–57.

    PubMed  CAS  Google Scholar 

  12. Donaghy L, Kim BK, Hong HK et al. Flow cytometry studies on the populations and immune parameters of the hemocytes of the Suminoe oyster, Crassostrea ariakensis. Fish Shellfish Immunol 2009; 27:296–301.

    PubMed  CAS  Google Scholar 

  13. Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol 2007; 25:697–743.

    PubMed  CAS  Google Scholar 

  14. Schneeweiss H, Renwrantz L. Analysis of the attraction of haemocytes from Mytilus edulis by molecules of bacterial origin. Dev Comp Immunol 1993; 17:377–387.

    PubMed  CAS  Google Scholar 

  15. Cochennec-Laureau N, Auffret M, Renault T et al. Changes in circulating and tissue-infiltrating hemocyte parameters of European flat oysters, Ostrea edulis, naturally infected with Bonamia ostreae. J Invertebr Pathol 2003; 83:23–30.

    PubMed  Google Scholar 

  16. Garcia-Garcia E, Prado-Alvarez M, Novoa B et al. Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC and ERK kinase families. Dev Comp Immunol 2008; 32:637–653.

    PubMed  CAS  Google Scholar 

  17. Chu FE, ed. Defense mechanisms of marine bivalves. Enfield Science Publishers Inc; 2000. Fingerman M, Nagabhushanam R, eds. Recent advances in marine biotechnology No. 5.

    Google Scholar 

  18. Bugge DM, Hegaret H, Wikfors GH et al. Oxidative burst in hard clam (Mercenariamercenaria) haemocytes. Fish Shellfish Immunol 2007; 23:188–196.

    PubMed  CAS  Google Scholar 

  19. Olafsen JA. Role of lectins (C-reactive protein) in defense of marine bivalves against bacteria. Adv Exp Med Biol 1995; 371A:343–348.

    PubMed  CAS  Google Scholar 

  20. Batista FM, Boudry P, Dos Santos A et al. Infestation of the cupped oysters Crassostrea angulata, C. gigas and their first-generation hybrids by the copepod Myicola ostreae: differences in susceptibility and host response. Parasitology 2009; 136:537–543.

    PubMed  CAS  Google Scholar 

  21. Laruelle F, Molloy DP, Roitman VA. Histological analysis of trematodes in Dreissena polymorpha: their location, pathogenicity and distinguishing morphological characteristics. J Parasitol 2002; 88:856–863.

    PubMed  Google Scholar 

  22. Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197–216.

    PubMed  CAS  Google Scholar 

  23. Medzhitov R, Janeway CA, Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296:298–300.

    PubMed  CAS  Google Scholar 

  24. Medzhitov R, Janeway C, Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000; 173:89–97.

    PubMed  CAS  Google Scholar 

  25. Itoh N, Takahashi KG. A novel peptidoglycan recognition protein containing a goose-type lysozyme domain from the Pacific oyster, Crassostrea gigas. Mol Immunol 2009; 46:1768–1774.

    PubMed  CAS  Google Scholar 

  26. Ni D, Song L, Wu L et al. Molecular cloning and mRNA expression of peptidoglycan recognition protein (PGRP) gene in bay scallop (Argopecten irradians, Lamarck 1819). Dev Comp Immunol 2007; 31:548–558.

    PubMed  CAS  Google Scholar 

  27. Wang L, Song L, Zhao J et al. Expressed sequence tags from the zhikong scallop (Chlamys farreri): discovery and annotation of host-defense genes. Fish Shellfish Immunol 2009; 26:744–750.

    PubMed  CAS  Google Scholar 

  28. Christophides GK, Zdobnov E, Barillas-Mury C et al. Immunity-related genes and gene families in Anopheles gambiae. Science 2002; 298:159–165.

    PubMed  CAS  Google Scholar 

  29. Jayaraj S S, Thiagarajan R, Arumugam M et al. Isolation, purification and characterization of beta-1,3-glucan binding protein from the plasma of marine mussel Perna viridis. Fish Shellfish Immunol 2008; 24:715–725.

    PubMed  CAS  Google Scholar 

  30. Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J 2005; 272:6179–6217.

    PubMed  CAS  Google Scholar 

  31. Yamaura K, Takahashi KG, Suzuki T. Identification and tissue expression analysis of C-type lectin and galectin in the Pacific oyster, Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:168–175.

    PubMed  Google Scholar 

  32. Watanabe A, Miyazawa S, Kitami M et al. Characterization of a novel C-type lectin, Bombyx mori multibinding protein, from the B. morihemolymph: mechanism of wide-range microorganism recognition and role in immunity. J Immunol 2006; 177:4594–4604.

    PubMed  CAS  Google Scholar 

  33. Kim JY, Adhya M, Cho SK et al. Characterization, tissue expression and immunohistochemical localization of MCL3, a C-type lectin produced by Perkinsus olseni-infected Manila clams (Ruditapes philippinarum). Fish Shellfish Immunol 2008; 25:598–603.

    PubMed  CAS  Google Scholar 

  34. Takahashi KG, Kuroda T, Muroga K. Purification and antibacterial characterization of a novel isoform of the Manila clam lectin (MCL-4) from the plasma of the Manila clam, Ruditapes philippinarum. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:45–52.

    PubMed  Google Scholar 

  35. Minamikawa M, Hine M, Russell S et al. Isolation and partial characterization of a calcium-dependent lectin (chiletin) from the haemolymph of the flat oyster, Ostrea chilensis. Fish Shellfish Immunol 2004; 17:463–476.

    PubMed  CAS  Google Scholar 

  36. Gourdine JP, Cioci G, Miguet L et al. High affinity interaction between a bivalve C-type lectin and a biantennary complex-type N-glycan revealed by crystallography and microcalorimetry. J Biol Chem 2008; 283:30112–30120.

    PubMed  CAS  Google Scholar 

  37. Tasumi S, Vasta GR. A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J Immunol 2007; 179:3086–3098.

    PubMed  CAS  Google Scholar 

  38. Song X, Zhang H, Zhao J et al. An immune responsive multidomain galectin from bay scallop Argopectens irradians. Fish and Shellfish Immunology 2010;In Press, Corrected Proof.

    Google Scholar 

  39. Kim JY, Kim YM, Cho SK et al. Noble tandem-repeat galectin of Manila clam Ruditapes philippinarum is induced upon infection with the protozoan parasite Perkinsus olseni. Dev Comp Immunol 2008; 32:1131–1141.

    PubMed  CAS  Google Scholar 

  40. Blandin S, Levashina EA. Thioester-containing proteins and insect immunity. Mol Immunol 2004; 40:903–908.

    PubMed  CAS  Google Scholar 

  41. Prado-Alvarez M, Rotllant J, Gestal C et al. Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus. Fish Shellfish Immunol 2009; 26:305–315.

    PubMed  CAS  Google Scholar 

  42. Zhang H, Song L, Li C et al. Molecular cloning and characterization of a thioester-containing protein from Zhikong scallop Chlamys farreri. Mol Immunol 2007; 44:3492–3500.

    PubMed  CAS  Google Scholar 

  43. Dishaw LJ, Smith SL, Bigger CH. Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics 2005; 57:535–548.

    PubMed  CAS  Google Scholar 

  44. Zhang H, Wang L, Song L et al. The genomic structure, alternative splicing and immune response of Chlamys farreri thioester-containing protein. Dev Comp Immunol 2009.

    Google Scholar 

  45. Mukhopadhyay S, Gordon S. The role of scavenger receptors in pathogen recognition and innate immunity. Immunobiology 2004; 209:39–49.

    PubMed  CAS  Google Scholar 

  46. Tanguy A, Guo X, Ford SE. Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene 2004; 338:121–131.

    PubMed  CAS  Google Scholar 

  47. Song L, Xu W, Li C et al. Development of expressed sequence tags from the bay scallop, Argopecten irradians irradians. Mar Biotechnol (NY) 2006; 8:161–169.

    CAS  Google Scholar 

  48. Mickael Perrigault ATaBA. Identification and expression of differentially expressed genes in the hard clam, Mercenaria mercenaria, in response to quahog parasite unknown (QPX). BMC Genomics 2009; 10.

    Google Scholar 

  49. Qiu L, Song L, Xu W et al. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri. Fish Shellfish Immunol 2007; 22:451–466.

    PubMed  CAS  Google Scholar 

  50. Moynagh PN. The NF-kappaB pathway. J Cell Sci 2005; 118:4589–4592.

    PubMed  CAS  Google Scholar 

  51. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2:725–734.

    PubMed  CAS  Google Scholar 

  52. Montagnani C, Labreuche Y, Escoubas J. Cg-I¦ÊB, a new member of the I¦ÊB protein family characterized in the pacific oyster Crassostrea gigas. Developmental and Comparative Immunology 2008; 32:182–190.

    PubMed  CAS  Google Scholar 

  53. Wu X, Xiong X, Xie L et al. Pf-Rel, a Rel/nuclear factor-kappaB homolog identified from the pearl oyster, Pinctada fucata. Acta Biochim Biophys Sin (Shanghai) 2007; 39:533–539.

    CAS  Google Scholar 

  54. Xiong X, Feng Q, Chen L et al. Cloning and characterization of an IKK homologue from pearl oyster, Pinctada fucata. Dev Comp Immunol 2008; 32:15–25.

    PubMed  CAS  Google Scholar 

  55. Zhang D, Jiang S, Qiu L et al. Molecular characterization and expression analysis of the IkappaB gene from pearl oyster Pinctada fucata. Fish Shellfish Immunol 2009; 26:84–90.

    PubMed  Google Scholar 

  56. Lamprou I, Mamali I, Dallas K et al. Distinct signalling pathways promote phagocytosis of bacteria, latex beads and lipopolysaccharide in medfly haemocytes. Immunology 2007; 121:314–327.

    PubMed  CAS  Google Scholar 

  57. Johnson G, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK and p38 protein kinases. Science’s STKE 2002; 298:1911.

    CAS  Google Scholar 

  58. Canesi L, Betti M, Ciacci C et al. Tyrosine kinase-mediated cell signalling in the activation of Mytilus hemocytes: possible role of STAT-like proteins. Biol Cell 2003; 95:603–613.

    PubMed  CAS  Google Scholar 

  59. Kang YS, Kim YM, Park KI et al. Analysis of EST and lectin expressions in hemocytes of Manila clams (Ruditapes philippinarum) (Bivalvia: Mollusca) infected with Perkinsus olseni. Dev Comp Immunol 2006; 30:1119–1131.

    PubMed  CAS  Google Scholar 

  60. Huang S, Yuan S, Guo L et al. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res 2008; 18:1112–1126.

    PubMed  CAS  Google Scholar 

  61. Pujol N, Link EM, Liu LX et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current Biology 2001; 11:809–821.

    PubMed  CAS  Google Scholar 

  62. Qiu L, Song L, Yu Y et al. Identification and characterization of amyeloid differentiation factor 88 (MyD88) cDNA from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 2007; 23:614–623.

    PubMed  CAS  Google Scholar 

  63. Gueguen Y, Cadoret J-P, Flament D et al. Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 2003; 303:139–145.

    PubMed  CAS  Google Scholar 

  64. Qiu L, Song L, Yu Y et al. Identification and expression of TRAF6 (TNF receptor-associated factor 6) gene in Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 2009; 26:359–367.

    PubMed  CAS  Google Scholar 

  65. Goetz SRGGSWF. Analysis of Genes Isolated from Plated Hemocytes of the Pacific Oyster, Crassostreas gigas. Mar Biotechnol (NY) 2009; 11:24–44.

    Google Scholar 

  66. Morgan BP. The Human Complement System in Health and Disease. Annals of the Rheumatic Diseases 1998; 57:581–581.

    Google Scholar 

  67. Huber-Lang M, Sarma JV, Zetoune FS et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 2006; 12:682–687.

    PubMed  CAS  Google Scholar 

  68. Prado-Alvarez M, Rotllant J, Gestal C et al. Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus. Fish and Shellfish Immunology 2009; 26:305–315.

    PubMed  CAS  Google Scholar 

  69. Zhang H, Song L, Li C et al. A novel C1q-domain-containing protein from Zhikong scallop Chlamys farreri with lipopolysaccharide binding activity. Fish and Shellfish Immunology 2008.

    Google Scholar 

  70. Zhang H, Wang L, Song L et al. A fibrinogen-related protein from bay scallop Argopecten irradians involved in innate immunity as pattern recognition receptor. Fish Shellfish Immunol 2009; 26:56–64.

    PubMed  CAS  Google Scholar 

  71. Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 2004; 198:169–184.

    PubMed  CAS  Google Scholar 

  72. Li C, Zhao J, Song L. A review of advances in research on marine molluscan antimicrobial peptides and their potential application in aquaculture. Molluscan Research 2009; 29:17–26.

    Google Scholar 

  73. Mitta G, Vandenbulcke F, Roch P. Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett 2000; 486:185–190.

    PubMed  CAS  Google Scholar 

  74. Costa MM, Dios S, Alonso-Gutierrez J et al. Evidence of high individual diversity on myticin C in mussel (Mytilus galloprovincialis). Dev Comp Immunol 2009; 33:162–170.

    PubMed  CAS  Google Scholar 

  75. Charlet M, Chernysh S, Philippe H et al. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 1996; 271:21808–21813.

    PubMed  CAS  Google Scholar 

  76. Gonzalez M, Gueguen Y, Desserre G et al. Molecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas. Dev Comp Immunol 2007; 31:332–339.

    PubMed  CAS  Google Scholar 

  77. Zhao J, Song L, Li C et al. Molecular cloning, expression of a big defensin gene from bay scallop Argopecten irradians and the antimicrobial activity of its recombinant protein. Mol Immunol 2007; 44:360–368.

    PubMed  CAS  Google Scholar 

  78. Prager EM, Jolles P. Animal lysozymes c and g: an overview. EXS 1996; 75:9–31.

    PubMed  CAS  Google Scholar 

  79. Bachali S, Jager M, Hassanin A et al. Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J Mol Evol 2002; 54:652–664.

    PubMed  CAS  Google Scholar 

  80. Zhao J, Song L, Li C et al. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri and lytic activity of the recombinant protein. Mol Immunol 2007; 44:1198–1208.

    PubMed  CAS  Google Scholar 

  81. Nilsen IW, Overbo K, Sandsdalen E et al. Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antibacterial activity. FEBS Lett 1999; 464:153–158.

    PubMed  CAS  Google Scholar 

  82. Takeshita K, Hashimoto Y, Thujihata Y et al. Determination of the complete cDNA sequence, construction of expression systems and elucidation of fibrinolytic activity for Tapes japonica lysozyme. Protein Expr Purif 2004; 36:254–262.

    PubMed  CAS  Google Scholar 

  83. Xue QG, Schey KL, Volety AK et al. Purification and characterization of lysozyme from plasma of the eastern oyster (Crassostrea virginica). Comp Biochem Physiol B Biochem Mol Biol 2004; 139:11–25.

    PubMed  Google Scholar 

  84. Haug T, Stensvag K, Olsen MO et al. Antibacterial activities in various tissues of the horse mussel, Modiolus modiolus. J Invertebr Pathol 2004; 85:112–119.

    PubMed  CAS  Google Scholar 

  85. McHenery JG, Birkbeck TH. Characterization of the lysozyme of Mytilus edulis (L). Comp Biochem Physiol B 1982; 71:583–589.

    PubMed  CAS  Google Scholar 

  86. Bulgakov AA, Park KI, Choi KS et al. Purification and characterisation of a lectin isolated from the Manila clam Ruditapes philippinarum in Korea. Fish Shellfish Immunol 2004; 16:487–499.

    PubMed  CAS  Google Scholar 

  87. Gourdine JP, Smith-Ravin EJ. Analysis of a cDNA-derived sequence of a novel mannose-binding lectin, codakine, from the tropical clam Codakia orbicularis. Fish Shellfish Immunol 2007; 22:498–509.

    PubMed  CAS  Google Scholar 

  88. Fisher WS, DiNuzzo AR. Agglutination of bacteria and erythrocytes by serum from six species of marine molluscs. J Invertebr Pathol 1991; 57:380–394.

    PubMed  CAS  Google Scholar 

  89. Olafsen JA, Fletcher TC, Grant PT. Agglutinin activity in Pacific oyster (Crassostrea gigas) hemolymph following in vivo Vibrio anguillarum challenge. Dev Comp Immunol 1992; 16:123–138.

    PubMed  CAS  Google Scholar 

  90. Adhya M, Singha B, Chatterjee BP. Purification and characterization of an N-acetylglucosamine specific lectin from marine bivalve Macoma birmanica. Fish Shellfish Immunol 2009; 27:1–8.

    PubMed  CAS  Google Scholar 

  91. Roberts S, Gueguen Y, de Lorgeril J et al. Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure. Dev Comp Immunol 2008; 32:1099–1104.

    PubMed  CAS  Google Scholar 

  92. Hughes TK, Jr., Smith EM, Chin R et al. Interaction of immunoactive monokines (interleukin 1 and tumor necrosis factor) in the bivalve mollusc Mytilus edulis. Proc Natl Acad Sci USA 1990; 87:4426–4429.

    PubMed  CAS  Google Scholar 

  93. Ottaviani E, Malagoli D, Franchini A. Invertebrate humoral factors: cytokines as mediators of cell survival. Prog Mol Subcell Biol 2004; 34:1–25.

    PubMed  CAS  Google Scholar 

  94. Beschin A, Bilej M, Torreele E et al. On the existence of cytokines in invertebrates. Cell Mol Life Sci 2001; 58:801–814.

    PubMed  CAS  Google Scholar 

  95. Li L, Qiu L, Song L et al. First molluscan TNFR homologue in Zhikong scallop: molecular characterization and expression analysis. Fish Shellfish Immunol 2009; 27:625–632.

    PubMed  CAS  Google Scholar 

  96. Herpin CLA, Becker T, Rosa FM et al. Structural and functional evidences for atype 1 TGF-β sensu stricto receptor in the lophotrochozoan Crassostrea gigas suggest conserved molecular mechanisms controlling mesodermal patterning across bilateria. Mechanisms of Development 2005; 122:695–705.

    PubMed  CAS  Google Scholar 

  97. Smith LC, Clow LA, Terwilliger DP. The ancestral complement system in sea urchins. Immunol Rev 2001; 180:16–34.

    PubMed  CAS  Google Scholar 

  98. Aguirre JMM, Hewitt D, Hansberg W. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 2005; 13:111–118.

    PubMed  CAS  Google Scholar 

  99. Winston GW. Oxidants and antioxidants in aquatic animals. Comp Biochem Physiol C 1991; 100:173–176.

    PubMed  CAS  Google Scholar 

  100. Bao Y, Li L, Zhang G. The manganese superoxide dismutase gene in bay scallop Argopecten irradians: cloning, 3D modelling and mRNA expression. Fish Shellfish Immunol 2008; 25:425–432.

    PubMed  CAS  Google Scholar 

  101. Estrada N, de Jesus Romero M, Campa-Cordova A et al. Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:502–510.

    PubMed  Google Scholar 

  102. Xing J, Lin T, Zhan W. Variations of enzyme activities in the haemocytes of scallop Chlamys farreri after infection with the acute virus necrobiotic virus (AVNV). Fish Shellfish Immunol 2008; 25:847–852.

    PubMed  CAS  Google Scholar 

  103. Vlahogianni T, Dassenakis M, Scoullos MJ et al. Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Mar Pollut Bull 2007; 54:1361–1371.

    PubMed  CAS  Google Scholar 

  104. Monari M, Foschi J, Matozzo V et al. Investigation of EROD, CYP1A immunopositive proteins and SOD in haemocytes of Chamelea gallina and their role in response to B[a]P. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:382–392.

    PubMed  CAS  Google Scholar 

  105. Monari M, Matozzo V, Foschi J et al. Effects of high temperatures on functional responses of haemocytes in the clam Chamelea gallina. Fish Shellfish Immunol 2007; 22:98–114.

    PubMed  CAS  Google Scholar 

  106. Geret F, Manduzio H, Company R et al. Molecular cloning of superoxide dismutase (Cu/Zn-SOD) from aquatic molluscs. Mar Environ Res 2004; 58:619–623.

    PubMed  CAS  Google Scholar 

  107. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci 2004; 61:192–208.

    PubMed  CAS  Google Scholar 

  108. Fita I, Rossmann MG. The active center of catalase. J Mol Biol 1985; 185:21–37.

    PubMed  CAS  Google Scholar 

  109. Letendre J, Chouquet B, Manduzio H et al. Tidal height influences the levels of enzymatic antioxidant defences in Mytilus edulis. Mar Environ Res 2009; 67:69–74.

    PubMed  CAS  Google Scholar 

  110. Contardo-Jara V, Krueger A, Exner HJ et al. Biotransformation and antioxidant enzymes of Dreissena polymorpha for detection of site impact in watercourses of Berlin. J Environ Monit 2009; 11:1147–1156.

    PubMed  CAS  Google Scholar 

  111. Damiens G, His E, Gnassia-Barelli M et al. Evaluation of biomarkers in oyster larvae in natural and polluted conditions. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:121–128.

    PubMed  CAS  Google Scholar 

  112. Li C, Ni D, Song L et al. Molecular cloning and characterization of a catalase gene from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 2008; 24:26–34.

    PubMed  Google Scholar 

  113. Bigot A, Doyen P, Vasseur P et al. Metallothionein coding sequence identification and seasonal mRNA expression of detoxification genes in the bivalve Corbicula fluminea. Ecotoxicol Environ Saf 2009; 72:382–387.

    PubMed  CAS  Google Scholar 

  114. Box A, Sureda A, Deudero S. Antioxidant response of the bivalve Pinna nobilis colonised by invasive red macroalgae Lophocladia lallemandii. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:456–460.

    PubMed  Google Scholar 

  115. Soldatov AA, Gostiukhina OL, Golovina IV. [Antioxidant enzyme complex of tissues of the bivalve Mytilus galloprovincialis Lam. under normal and oxidative-stress conditions: a review]. Prikl Biokhim Mikrobiol 2007; 43:621–628.

    PubMed  CAS  Google Scholar 

  116. Hoarau P, Garello G, Gnassia-Barelli M et al. Purification and partial characterization of seven glutathione S-transferase isoforms from the clam Ruditapes decussatus. Eur J Biochem 2002; 269:4359–4366.

    PubMed  CAS  Google Scholar 

  117. Moreira SM, Guilhermino L. The use of Mytilus galloprovincialis acetylcholinesterase and glutathione S-transferases activities as biomarkers of environmental contamination along the northwest Portuguese coast. Environ Monit Assess 2005; 105:309–325.

    PubMed  CAS  Google Scholar 

  118. Le Pennec G, Le Pennec M. Induction of glutathione-S-transferases in primary cultured digestive gland acini from the mollusk bivalve Pecten maximus (L.): application of a new cellular model in biomonitoring studies. Aquat Toxicol 2003; 64:131–142.

    Google Scholar 

  119. Gao Q, Zhao J, Song L et al. Molecular cloning, characterization and expression of heat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradians. Fish Shellfish Immunol 2008; 24:379–385.

    PubMed  CAS  Google Scholar 

  120. Ivanina AV, Taylor C, Sokolova IM. Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin). Aquat Toxicol 2009; 91:245–254.

    PubMed  CAS  Google Scholar 

  121. Pantzartzi CN, Kourtidis A, Drosopoulou E et al. Isolation and characterization of two cytoplasmic hsp90s from Mytilus galloprovincialis (Mollusca: Bivalvia) that contain a complex promoter with a p53 binding site. Gene 2009; 431:47–54.

    PubMed  CAS  Google Scholar 

  122. Dabrio M, Rodriguez AR, Bordin G et al. Recent developments in quantification methods for metallothionein. J Inorg Biochem 2002; 88:123–134.

    PubMed  CAS  Google Scholar 

  123. Bourdineaud JP, Baudrimont M, Gonzalez P et al. Challenging the model for induction of metallothionein gene expression. Biochimie 2006; 88:1787–1792.

    PubMed  CAS  Google Scholar 

  124. Fasulo S, Mauceri A, Giannetto A et al. Expression of metallothionein mRNAs by in situ hybridization in the gills of Mytilus galloprovincialis, from natural polluted environments. Aquat Toxicol 2008; 88:62–68.

    PubMed  CAS  Google Scholar 

  125. Wang L, Song L, Ni D et al. Alteration of metallothionein mRNA in bay scallop Argopecten irradians under cadmium exposure and bacteria challenge. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:50–57.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsheng Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Song, L., Wang, L., Qiu, L., Zhang, H. (2010). Bivalve Immunity. In: Söderhäll, K. (eds) Invertebrate Immunity. Advances in Experimental Medicine and Biology, vol 708. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8059-5_3

Download citation

Publish with us

Policies and ethics