Histamine, Immune Cells and Autoimmunity

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 709)

Abstract

Histamine is one of the most versatile biogenic amines with multiple roles during the immune response and in allergic disorders. With four distinct G protein-coupled receptors (H1R, H2R, H3R and H4R), intracellular histamine binding sites (most likely members of the cytochrome P450 family) as well as a membrane transporter (Organic Cation Transporter; OCT3) expressed in various immunocompetent cells, it can entertain a complex network of interactions. These signaling pathways are expressed differentially, depending on the stage of differentiation or activation of target cells, thus adding a further degree of complexity to the system. For this reason, published data are sometimes conflicting and varying according to the particular cell type or responses analyzed and the experimental approaches used. On the other hand, histamine is generated by several cells during the immune response, not only through release of intracellular stores in mast cells or basophils in response to IgE-dependent or -independent stimuli, but also through neosynthesis catalyzed by histidine decarboxylase (HDC) in a number of hematopoietic cells that secrete the amine immediately without prior storage. These features enable histamine to tune the fine balance between immunity and tolerance by affecting dendritic cells, immunoregulatory cells, T-cell polarization and cytokine production, making the way for new pharmacological strategies to control immune reactivity during immune disorders, such as autoimmunity.

Keywords

Arthritis Psoriasis Cardiol Peritonitis Monoamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barger G, Dale HM. The presence in ergot and physiological activity of B-iminazoylethylamine. J Physiol Paris 1910; 40:38–40.Google Scholar
  2. 2.
    Dy M, Schneider E. Histamine-cytokine connection in immunity and hematopoiesis. Cytokine and Growth Factor Rev 2004; 15:393–410.CrossRefGoogle Scholar
  3. 3.
    Huang JF, Thurmond RL. The new biology of histamine receptors. Current Allergy and Asthma Reports 2008; 8:21–27.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang M, Thurmond RL, Dunford PJ. The histamine H4 receptor: a novel modulator of inflammatory and immune disorders. Pharmacol Therapeut 2007; 113:594–606.CrossRefGoogle Scholar
  5. 5.
    Jutel M, Blaser K, Akdis CA. Histamine in allergic inflammation and immune modulation. Int Arch Allergy Immunol 2005; 137:82–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Schneider E, Rolli-Derkinderen M, Arock M et al. Trends in histamine research: new functions during immune responses and hematopoiesis. Trends Immunol 2002; 23:255–263.PubMedCrossRefGoogle Scholar
  7. 7.
    Jutel M, Blaser K, Akdis CA. The role of histamine in regulation of immune responses. In: Crameri R, ed. Molecular Aspects of Allergy and Asthma.: Allergy and asthma I modern society: A scientific approach. Chem Immunol Allergy. Basel: Karger, 2006:174–187.CrossRefGoogle Scholar
  8. 8.
    Tanaka S, Ichikawa A. Recent advances in molecular pharmacology of the histamine systems: immune regulatory roles of histamine produced by leukocytes. J Pharmacol Sci 2006; 101:19–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Amaral MM, Davio C, Ceballos A et al. Histamine improves antigen uptake and cross-presentation by dendritic cells. J Immunol 2007; 179:3425–3433.PubMedGoogle Scholar
  10. 10.
    Damaj BB, Becerra CB, Esber HJ et al. Functional expression of H4 histamine receptor in human natural killer cells, monocytes and dendritic cells. J Immunol 2007; 179:7907–7915.PubMedGoogle Scholar
  11. 11.
    Baumer W, Wendorff S, Gutzmer R et al. Histamine H4 receptors modulate dendritic cell migration through skin—immunomodulatory role of histamine. Allergy 2008: 63:1387–1394.PubMedCrossRefGoogle Scholar
  12. 12.
    Gutzmer R, Diestel C, Mommert S et al. Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocyte-derived dendritic cells. J Immunol 2005; 174:5224–5232.PubMedGoogle Scholar
  13. 13.
    Dijkstra D, Stark H, Chazot PL et al. Human inflammatory dendritic epidermal cells express a functional histamine 4 receptor. J Invest Dermatol 2008; 128:1696–1703.PubMedCrossRefGoogle Scholar
  14. 14.
    Caron G, Delneste Y, Roelandts E et al. Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J Immunol 2001; 167:3682–3686.PubMedGoogle Scholar
  15. 15.
    Caron G, Delneste Y, Roelandts E et al. Histamine induces CD86 expression and chemokine production by human immature dendritic cells. J Immunol 2001; 166:6000–6006.PubMedGoogle Scholar
  16. 16.
    Mazzoni A, Young HA, Spitzer JH et al. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T-cell polarization. J Clin Invest 2001; 108:1865–1873.PubMedGoogle Scholar
  17. 17.
    Ozna N, Elliott K, Khan MM. Regulation of interleukin-10 secretion by histamine in TH2 cells and splenocytes. Int Immunopharmacol 2001; 1:85–96.CrossRefGoogle Scholar
  18. 18.
    McIlroy A, Caron G, Blanchard S et al. Histamine and prostaglandin E2 up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-γ-induced CXCL10 production by immature human dendritic cells. Immunology 2006; 117:507–516.PubMedCrossRefGoogle Scholar
  19. 19.
    Mazzoni A, Leifer CA, Mullen GED et al. Cutting edge: histamine inhibits IFN-α release from plasmacytoid dendritic cells. J Immunol 2003; 170:2269–2273.PubMedGoogle Scholar
  20. 20.
    Ohtani T, Aiba S, Mizuashi M et al. H1 and H2 histamine receptors are absent on Langerhans cells and present on dermal dendritic cells. J Invest Dermatol 2003; 121:1073–1079.PubMedCrossRefGoogle Scholar
  21. 21.
    Szeberenyi JB, Pallinger E, Zsinko M et al. Inhibition of endogenously synthesized histamine disturbs in vitro human dendritic cell differentiation. Immunol Lett 2001; 76:175–182.PubMedCrossRefGoogle Scholar
  22. 22.
    Dunford PJ, O’Donnell N, Riley JP et al. The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T-cells. J Immunol 2006; 176:7062–7070.PubMedGoogle Scholar
  23. 23.
    Jelinek I, Laszlo V, Buzas E et al. Increased antigen presentation and Th 1 polarization in genetically histamine-free mice. Int Immunol 2006; 19:51–58.PubMedCrossRefGoogle Scholar
  24. 24.
    Koarai A, Ichinose M, Ishigaki-Suzuki S et al. Disruption of l-histidine decarboxylase reduces airway eosinophilia but not hyperresponsiveness. Am J Respir Crit Care Med 2003; 167:758–763.PubMedCrossRefGoogle Scholar
  25. 25.
    Kozma GT, Losonczy G, Keszei M et al. Histamine deficiency in gene-targeted mice strongly reduces antigen-induced airway hyper-responsiveness, eosinophilia and allergen-specific IgE. Int Immunol 2003; 15:963–973.PubMedCrossRefGoogle Scholar
  26. 26.
    Couillin I, Maillet I, Vargaftig BB et al. Arthropod-derived histamine-binding protein prevents murine allergic asthma. J Immunol 2004; 173:3281–3286.PubMedGoogle Scholar
  27. 27.
    Jutel M, Watanabe T, Klunker S et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001; 413:420–424.PubMedCrossRefGoogle Scholar
  28. 28.
    Akdis CA, Simons FER. Histamine receptors are hot in immunopharmacology. Eur J Pharmacol 2006; 533:69–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Nakae S, Suto H, Berry GJ et al. Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 2007; 109:3640–3648.PubMedCrossRefGoogle Scholar
  30. 30.
    Gantner F, Sakai K, Tusche MW et al. Histamine H4 and H2 receptors control histamine—induced interleukin-16 release from human CD8+ T-cells. J Pharmacol Exp Ther 2002; 303:300–307.PubMedCrossRefGoogle Scholar
  31. 31.
    Sonobe Y, Nakane H, Watanabe T et al. Regulation of Con A-dependent cytokine production from CD4+ and CD8+ T-lymphocytes by autosecretion of histamine. Inflamm Res 2004; 53:87–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Kubo Y, Nakano K. Regulation of histamine synthesis in mouse CD4+ and CD8+ T-lymphocytes. Inflamm Res 1999; 48:149–153.PubMedCrossRefGoogle Scholar
  33. 33.
    Radvany Z, Darvas Z, Kerekes K et al. H1 histamine receptor antagonist inhibits constitutive growth of Jurkat T-cells and antigen-specific proliferation of ovalbumin-specific murine T-cells. Semin Cancer Biol 2000; 10:41–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Dy M, Lebel B, Kamoun P et al. Histamine production during the anti-allograft response. Demonstration of a new lymphokine enhancing histamine synthesis. J Exp Med 1981; 153:293–309.PubMedCrossRefGoogle Scholar
  35. 35.
    Schneider E, Lemoine F, Breton-Gorius J et al. IL-3-induced coexpression of IL-4, IL-6 and histidine decarboxylase mRNA in basophilic myelocytes enriched in sorted-Rh-bright bone marrow cells. Exp Haematol 1999; 27: 1010–1018.CrossRefGoogle Scholar
  36. 36.
    Jacobs ER, Zeldin DC. The lung HEEs (and EETs) up. Am J Physiol Circ Physiol 2001; 280: H1–H10.Google Scholar
  37. 37.
    Schneider E, Ploemacher RE, Nabarra B et al. Mast cells and their committed precursors are not required for IL-3-induced histamine synthesis in murine bone marrow: characteristics of histamine-producing cells. Blood 1993; 81:1161–1169.PubMedGoogle Scholar
  38. 38.
    Dy M, Schneider E, Gastinel LN et al. Histamine-producing cell-stimulating activity. A biological activity shared by interleukin 3 and granulocyte-macrophage colony stimulating factor. Eur J Immunol 1987; 17:1243–1248.PubMedCrossRefGoogle Scholar
  39. 39.
    Dy M, Lebel B. Skin allografts generate an enhanced production of histamine and HCSF by spleen cells in response to T-cell mitogens. J Immunol 1983; 130:2343–2347.PubMedGoogle Scholar
  40. 40.
    Kunzmann S, Mantel PY, Wohlfahrt JG et al. Histamine enhances TGF-β1-mediated suppression of Th2 responses. FASEB J 2003; 17:1089–1095.PubMedCrossRefGoogle Scholar
  41. 41.
    Morgan RK, McAllister B, Cross L et al. Histamine 4 receptor activation induces recruitment of FoxP3+ T-cells and inhibits allergic asthma in a murine model. J Immunol 2007; 178:8081–8089.PubMedGoogle Scholar
  42. 42.
    Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Ann Rev Immunol 2005; 23:877–900.CrossRefGoogle Scholar
  43. 43.
    Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Ann Rev Immunol 2007; 25:297–336.CrossRefGoogle Scholar
  44. 44.
    Michel M-L, Leite-de-Moraes MC. Other sources of IL-17: iNKT cells. In: Quesniaux V, Ryffel B, Pavona F, eds. TH17 Cells: Role in inflammation and autoimmune disease. Series Progress in Inflammation Research. Basel: Birkhauser Publishing, 2009:39–48.CrossRefGoogle Scholar
  45. 45.
    Leite de Moraes MC, Diem S, Michel ML et al. Histamine receptor H4 activation positively regulates in vivo IL-4 and IFN-γ production by invariant natural killer T-cells. J Immunol Cutting Edge 2009; 182:1233–1236.Google Scholar
  46. 46.
    Marone G, Granata F, Spadaro G et al. The histamine-cytokine network in allergic inflammation. J Allergy Clin Immunol 2003; 112:S83–S88.PubMedCrossRefGoogle Scholar
  47. 47.
    Banu Y, Watanabe T. Augmentation of antigen receptor-mediated responses by histamine H1 receptor signaling. J Exp Med 1999; 189:673–682.PubMedCrossRefGoogle Scholar
  48. 48.
    Elenkov IJ, Webster E, Papanicolaou DA et al. Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J Immunol 1998; 161:2586–2593.PubMedGoogle Scholar
  49. 49.
    Tineke CTM, Van Der Pouw K, Snijders A et al. Histamine inhibits the production of interleukin-12 through interaction with H2 receptors. J Clin Invest 1998; 102:1866–1873.CrossRefGoogle Scholar
  50. 50.
    Rocklin RE, Blidy A, Kamal M. Physicochemical characterization of human histamine induced suppressor factor. Cell Immunol 1983; 76:243–252.PubMedCrossRefGoogle Scholar
  51. 51.
    Vannier E, Miller LC, Dinarello CA. Histamine suppresses gene expression and synthesis of tumor necrosis factor alpha via histamine H2 receptors. J Exp Med 1991; 174:281–284.PubMedCrossRefGoogle Scholar
  52. 52.
    Wang KY, Arima N, Higuchi S et al. Switch of histamine receptor expression from H2 to H1 during differentiation of monocytes into macrophages. FEBS Letters 2000; 473:345–348.PubMedCrossRefGoogle Scholar
  53. 53.
    Triggiani M, Petraroli A, Loffredo S et al. Differentiation of monocytes into macrophages induces the upregulation of histamine H1 receptor. J Allergy Clin Immunol 2007; 119:472–481.PubMedCrossRefGoogle Scholar
  54. 54.
    Kimura S, Wang KY, Tanimoto A et al. Acute inflammatory reactions caused by histamine via monocytes/macrophages chronically participate in the initiation and progression of atherosclerosis. Pathol Int 2004; 54:465–474.PubMedCrossRefGoogle Scholar
  55. 55.
    Sasaguri Y, Tanimoto A. Role of macrophage-derived histamine in atherosclerosis—chronic participation in the inflammatory response. J Atherosclerosis Thrombosis 2004; 11:122–130.CrossRefGoogle Scholar
  56. 56.
    Dijkstra D, Leurs R, Chazot P et al. Histamine downregulates monocyte CCL2 production through the histamine H4 receptor. J Allergy Clin Immunol 2007; 179:300–307.CrossRefGoogle Scholar
  57. 57.
    Takahashi HK, Morichika T, Iwagaki H et al. Histamine downregulates CD14 expression via H2 receptors on human monocytes. Clin Immunol 2003; 108:274–281.PubMedCrossRefGoogle Scholar
  58. 58.
    Katoh N, Soga F, Nara T et al. Histamine induces the generation of monocyte-derived dendritic cells that express CD14 but not CD 1α. J Invest Dermatol 2005; 125:753–760.PubMedCrossRefGoogle Scholar
  59. 59.
    Itoh H, Takahashi HK, Iwagaki H et al. Effect of histamine on intercellular adhesion molecule-1 expression and production of interferon-gamma and interleukin-12 in mixed lymphocyte reaction stimulated with interleukin-18. Transplantation 2002; 74:864–870.PubMedCrossRefGoogle Scholar
  60. 60.
    Soga F, Katoh N, Kishimoto S. Histamine prevents apoptosis in human monocytes. Clin Exp Allergy 2007; 37:323–330.PubMedCrossRefGoogle Scholar
  61. 61.
    Laszlo V, Rothe G, Hegyesi H et al. Increased histidine decarboxylase expression during in vitro monocyte maturation; a possible role of endogenously synthesized histamine in monocyte/macrophage differentiation. Inflamm Res 2001; 50:428–434.PubMedCrossRefGoogle Scholar
  62. 62.
    Tanaka S, Deai K, Inagaki M et al. Uptake of histamine by mouse peritoneal macrophages and a macrophage cell line, RAW264.7. Am J Physiol Cell Physiol 2003; 285:C592–C598.PubMedGoogle Scholar
  63. 63.
    Buhring HJ, Simmons PJ, Pudney M et al. The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood 1999; 94:2343–2356.PubMedGoogle Scholar
  64. 64.
    I L, Li Y, Reddel S et al. Identification of basophilic cells that express mast cell granule proteases in the peripheral blood of asthma, allergy and drug-reactive patients. J Immunol 1998; 161: 2439–2445.Google Scholar
  65. 65.
    Mitre E, Taylor RT, Kubofcik J et al. Parasite antigen-driven basophils are a major source of IL-4 in human filarial infections. J Immunol 2004; 172:2439–2445.PubMedGoogle Scholar
  66. 66.
    Kawakami T, Galli SJ. Regulation of mast cell and basophil function and survival by IgE. Nat Rev 2002; 2:773–786.CrossRefGoogle Scholar
  67. 67.
    Hofstra CL, Desai PJ, Thurmond RL et al. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther 2003; 305: 1212–1221.PubMedCrossRefGoogle Scholar
  68. 68.
    Lim HD, Van Rijn RM, Ling P et al. Evaluation of histamine H1-, H2-and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther 2005; 314:1310–1321.PubMedCrossRefGoogle Scholar
  69. 69.
    Godot V, Arock M, Garcia G et al. H4 histamine receptor mediates optimal migration of mast cell precursors to CXCL12. J Allergy Clin Immunol 2007; 120:827–834.PubMedCrossRefGoogle Scholar
  70. 70.
    Schneider E, Machavoine F, Pleau JM et al. Organic Cation Transporter 3 modulates murine basophil functions by controlling intracellular histamine levels. J Exp Med 2005; 202:387–393.PubMedCrossRefGoogle Scholar
  71. 71.
    Brandes LJ, Queen GM, Labella FS. Potent interaction of histamine and polyamines at microsomal cytochrome P450, nuclei and chromatin from rat hepatocytes. J Cell Biochem 1998; 69:233–243.PubMedCrossRefGoogle Scholar
  72. 72.
    Labella FS, Brandes LJ. Interaction of histamine and other bioamines with cytochromes P450: implications for cell growth modulation and chemopotentiation by drugs. Semin Cancer Biol 2000; 10:47–53.PubMedCrossRefGoogle Scholar
  73. 73.
    Buckland KF, Williams TJ, Conroy DM. Histamine induces cytoskeletal changes in human eosinophils via the H4 receptor. Br J Pharmacol 2003; 140:1117–1127.PubMedCrossRefGoogle Scholar
  74. 74.
    O’Reilly M, Alpert R, Jenkinson S et al. Identification of a histamine H4 receptor on human eosinophils-role in eosinophil chemotaxis. J Recept Signal Transduct Res 2002; 22:431–448.PubMedCrossRefGoogle Scholar
  75. 75.
    Ling P, Ngo K, Nguyen S et al. Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. Br J Pharmacol 2004; 142:161–171.PubMedCrossRefGoogle Scholar
  76. 76.
    Nakayama T, Kato Y, Hieshima K et al. Liver-expressed chemokine/CC chemokine ligand 16 attracts eosinophils by interacting with histamine H4 receptor. J Immunol 2004; 173:2078–2083.PubMedGoogle Scholar
  77. 77.
    Hasala H, Janka-Junttila M, Moilanen E et al. Levocetirizine and cytokine production and apoptosis of human eosinophils. Allergy Asthma Proc 2007; 28:582–591.PubMedCrossRefGoogle Scholar
  78. 78.
    Hasala H, Giembycz MA, Janka-Junttila M et al. Histamine reverses IL-5 afforded human eosinophil survival by inducing apoptosis: pharmacological evidence for a novel mechanism of action of histamine. Pulm Pharmacol Ther 2008; 21:222–233.PubMedCrossRefGoogle Scholar
  79. 79.
    Sugata Y, Okano M, Fujiwara T et al. Histamine H4 receptor agonists have more activities than H4 agonism in antigen-specific human T-cell responses. Immunology 2007; 121:266–275.PubMedCrossRefGoogle Scholar
  80. 80.
    Takeshita K, Bacon KB, Gantner F. Critical role of l-selectin and histamine H4 receptor in Zymosan-induced neutrophil recruitment from the bone marrow: comparison with carrageenan. J Pharmacol Exp Therapeutics 2004; 310:272–280.CrossRefGoogle Scholar
  81. 81.
    Varga C, Horvarth K, Berko A et al. Inhibitory effects of histamine H4 receptor antagonists on experimental colitis in the rat. Eur J Pharmacol 2005; 522:30–138.Google Scholar
  82. 82.
    Tanaka S, Deai K, Konomi A et al. Expression of l-histidine decarboxylase in granules of elicited mouse polymorphonuclear leukocytes. Eur J Immunol 2004; 34: 1472–1482.PubMedCrossRefGoogle Scholar
  83. 83.
    Xu X, Zhang D, Zhang D et al. Neutrophil histamine contributes to inflammation in mycoplasma pneumonia. J Exp Med 2006; 203:2907–2917.PubMedCrossRefGoogle Scholar
  84. 84.
    Tuomisto L, Kilpelainen H, Riekkinen P. Histamine and histamine-N-methyltransferase in the CSF of patients with multiple sclerosis. Agents Actions 1983; 13:255–257.PubMedCrossRefGoogle Scholar
  85. 85.
    Petersen IJ, Hansen U, Kristensen JK et al. Studies on mast cells and histamine release in psoriasis: the effect of ranitidine. Acta Derm Venereol 1998; 78:190–193.PubMedCrossRefGoogle Scholar
  86. 86.
    Winterkamp S, Weidenhiller M, Otte P et al. Urinary excretion of N-methylhistamine as a marker of disease activity in inflammatory bowel disease. Am J Gastroenterol 2002; 97:3071–3077.PubMedCrossRefGoogle Scholar
  87. 87.
    Raithel M, Matek M, Baenkler HW et al. Mucosal histamine content and histamine secretion in Crohn’s disease, ulcerative colitis and allergic enteropathy. Int Arch Allergy Immunol 1995; 108:127–133.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang M, Venable JD, Thurmond RL. The histamine H4 receptor in autoimmune disease. Expert Opin Investig Grugs 2006; 15:1443–1452.CrossRefGoogle Scholar
  89. 89.
    Ibrahim MZM, Reder AT, Lawand R et al. The mast cells of the multiple sclerosis brain. J Neuroimmunol 1996; 70:131–138.PubMedCrossRefGoogle Scholar
  90. 90.
    Toms R, Weiner HL, Johnson D. Identification of IgE-positive cells and mast cells in frozen sections of multiple sclerosis brains. J Neuroimmunol 1990; 30:169–177.PubMedCrossRefGoogle Scholar
  91. 91.
    Zappulla JP, Arock M, Mars LT et al. Mast cells: new targets for multiple sclerosis therapy? J Neuroimmunol 2002; 131:5–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Kruger PG, Bo L, Myhr KM et al. Mast cells and multiple sclerosis: a light and electron microscopic study of mast cells in multiple sclerosis emphasizing staining procedures. Acta Neurol Scand 1990; 81:31–36.PubMedCrossRefGoogle Scholar
  93. 93.
    Godfrey HP, Ilardi C, Engber W et al. Quantitation of human synovial mast cells in rheumatoid arthritis and other rheumatic diseases. Arthritis Rheum 1984; 27:852–856.PubMedCrossRefGoogle Scholar
  94. 94.
    Gotis-Graham I, Smith MD, Parker A et al. Synovial mast cell responses during clinical improvement in early rheumatoid arthritis. Ann Rheum Dis 1998; 57:664–671.PubMedCrossRefGoogle Scholar
  95. 95.
    Tetlow LC, Woolley DE. Distribution, activation and tryptase/chymase phenotype of mast cells in the rheumatoid lesion. Ann Rheum Dis 1995; 54:549–555.PubMedCrossRefGoogle Scholar
  96. 96.
    Skopouli FN, Li L, Boumba D. Association of mast cells with fibrosis and fatty infiltration in the minor salivary glands of patient with Sjogren’s syndrome. Clin Exp Rheumatol 1998; 16:63–65.PubMedGoogle Scholar
  97. 97.
    Sokol CL, Barton GM, Farr AG et al. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 2008; 9:310–318.PubMedCrossRefGoogle Scholar
  98. 98.
    Pedotti R, DeVoss JJ, Youssef S et al. Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination. Proc Natl Acad Sci USA 2003; 100:1867–1872.PubMedCrossRefGoogle Scholar
  99. 99.
    Ferber IA, Brocke S, Taylor-Edwards C et al. Mice with a disrupted IF-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 1996; 156:5–7.PubMedGoogle Scholar
  100. 100.
    Willenborg DO, Fordham S, Bernard CC et al. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligo-dendrocyte glycoprotein-induced autooimmune encephalomyelitis. J Immunol 1996; 157:3223–3227.PubMedGoogle Scholar
  101. 101.
    Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421:744–748.PubMedCrossRefGoogle Scholar
  102. 102.
    Teuscher C, Subramanian M, Noubade R et al. Central histamine H3 receptor signaling negatively regulates susceptibility to autoimmune inflammatory disease of the CNS. Proc Natl Acad Sci USA 2007; 104:10146–10151.PubMedCrossRefGoogle Scholar
  103. 103.
    Ma RZ, Gao J, Meeker ND et al. Identification of Bphs, an autoimmune disease locus, as histamine receptor H1. Science 2002; 297:620–623.PubMedCrossRefGoogle Scholar
  104. 104.
    Emerson MR, Orentas DM, Lynch SG et al. Activation of histamine H2 receptors ameliorates experimental allergic encephalomyelitis. Neuroreport 2002; 13:1407–1410.PubMedCrossRefGoogle Scholar
  105. 105.
    Musio S, Gallo B, Scabeni S et al. A key regulatory role for histamine in experimental autoimmune encephalomyelitis: disease exacerbation in histidine decarboxylase-deficient mice. J Immunol 2006; 176:17–26.PubMedGoogle Scholar
  106. 106.
    Beghadadi W, Porcherie A, Schneider BS et al. Histamine H3 receptor-mediated signalling protects mice from cerebral malaria. Plos One 2009; 4:e6004.CrossRefGoogle Scholar
  107. 107.
    Noubade R, Milligan G, Zachary JF et al. Histamine receptor H1 is required for TCR-mediated p38 MAPK activation and optimal IFN-gamma production in mice. J Clin Invest 2007; 117:3507–3518.PubMedCrossRefGoogle Scholar
  108. 108.
    Noubade R, Saligrama N, Spach K et al. Autoimmune disease-associated histamine receptor H1 alleles exhibit differential protein trafficking and cell surface expression. J Immunol 2008; 180:7471–7479.PubMedGoogle Scholar
  109. 109.
    Brodell LA, Beck LA, Saini SS. Pathophysiology of chronic urticaria. Ann Allergy Asthma Immunol 2008; 100:291–298.PubMedCrossRefGoogle Scholar
  110. 110.
    De Swerdt A, Van Den Keybus C, Kasran A et al. Detection of basophil-activating IgG autoantibodies in chronic idiopathic urticaria by induction of CD63. J Allergy Clin Immunol 2005; 116:662–667.PubMedCrossRefGoogle Scholar
  111. 111.
    Asero R, Riboldi P, Tedeschi A et al. Chronic urticaria: a disease at a crossroad between autoimmunity and coagulation. Autoimmunity Rev 2007; 7:71–76.CrossRefGoogle Scholar
  112. 112.
    O’Donnell BF, Francis DM, Swana GT et al. Thyroid autoimmunity in chronic urticaria. Clin Lab Invest 2005; 153:331–335.Google Scholar
  113. 113.
    Chen WC, Chiang BL, Liu HE et al. Defective functions of circulating CD4+CD25+ and CD4+CD25—T-cells in patients with chronic ordinary urticaria. J Dermatol Sci 2008; 51:121–130.PubMedCrossRefGoogle Scholar
  114. 114.
    Sun RS, Chen XH, Liu RQ et al. Autoantibodies to the high-affinity IgE receptor in patients and asthma. Asian Pac J Allergy Immunol 2008; 26:19–22.PubMedGoogle Scholar
  115. 115.
    Maslinska D, Gujski M, Laure-Kamionowska M et al. Subcellular localization of histamine in articular cartilage chondrocytes of rheumatoid arthritis patients. Inflamm. Res 2004; 53S:S35–S36.CrossRefGoogle Scholar
  116. 116.
    Buckley MG, Walters C, Wong WM et al. Mast cell activation in arthritis: detection of alpha-and beta-tryptase, histamine and eosinophil cationic protein in synovial fluid. Clin Sci (London) 1997; 93:363–370.Google Scholar
  117. 117.
    Malone DG, Irani AM, Schwartz LB et al. Mast cell numbers and histamine levels in synovial fluids from patients with diverse arthritides. Arthritis Rheum 1986; 29:956–963.PubMedCrossRefGoogle Scholar
  118. 118.
    Woolley DE. The mast cell in inflammatory arthritis. N Engl J Med 2003; 348:1709–1711.PubMedCrossRefGoogle Scholar
  119. 119.
    Tetlow LC, Woolley DE. Histamine stimulates the proliferation of human articular chondrocytes in vitro and is expressed by chondrocytes in osteoarthritic cartilage. Ann Rheum Dis 2003; 62:991–994.PubMedCrossRefGoogle Scholar
  120. 120.
    Tetlow LC, Woolley DE. Histamine, histamine receptors (H1 and H2) and histidine decarboxylase expression by chondrocytes of osteoarthritic cartilage: an immunohistochemical study. Rheumatol Int 2005; 26:173–178.PubMedCrossRefGoogle Scholar
  121. 121.
    Frewin DB, Cleland LG, Jonsson JR et al. Histamine levels in human synovial fluid. J Rheumatol 1986; 13:13–14.PubMedGoogle Scholar
  122. 122.
    Gujski M, Wojtecka-Lukasik E, Gajewski M et al. Is lymphocyte histamine involved in the pathogenesis of rheumatoid arthritis? Inflamm Res 2000; 49:S25–S26.PubMedCrossRefGoogle Scholar
  123. 123.
    Ohki E, Suzuki M, Aoe T et al. Expression of histamine H4 receptor in synovial cells from rhumatoid arthritic patients. Biol Pharm Bull 2007; 30:2217–2220.PubMedCrossRefGoogle Scholar
  124. 124.
    Adlesic M, Verdrengh M, Bokarewa M et al. Histamine in rheumatoid arthritis. Scand J Immunol 2007; 65:530–537.PubMedCrossRefGoogle Scholar
  125. 125.
    Goren N, Leiros PC, Sterin-Borda L et al. Effect of histamine in autoimmune myocarditis mice. Int J Immunopharmacol 1994; 16:737–745.PubMedCrossRefGoogle Scholar
  126. 126.
    Goren N, Sterin-Borda L, Leiros PC et al. Increases in cyclic AMP levels couple to H1 receptors in atria from autoimmune myocarditis mice. Cell Signal 1995; 7:759–764.PubMedCrossRefGoogle Scholar
  127. 127.
    Goren N, Sterin-Borda L, Bartrons R et al. Detection of mRNA encoding H(1) receptor and INOS by RT-PCR in autoimmune myocarditis with special reference to changes in heart contractility. Int J Cardiol 2000; 76:165–172.PubMedCrossRefGoogle Scholar
  128. 128.
    Higuchi H, Hara M, Yamamoto K et al. Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation 2008; 118:363–372.PubMedCrossRefGoogle Scholar
  129. 129.
    Meiler F, Zumhehr J, Klunler S et al. In vivo swich to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med 2008; 205:2887–2898.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Elke Schneider
  • Maria Leite-de-Moraes
  • Michel Dy
    • 1
  1. 1.Faculté de Médecine CNRS UMR8147 Hôpital NeckerUniversité Paris DescartesParisFrance

Personalised recommendations