Skip to main content

The Rise and Improvement of Infrared Photometry

  • Chapter
  • First Online:
Book cover Astronomical Photometry

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 373))

  • 1378 Accesses

Abstract

Broad-band ground-based infrared photometry has been carried on ever since Harold Johnson adopted wide-band filters that only loosely matched the Earth’s atmospheric windows. Here we describe the “evolution” of filters to produce improved precision, and suggest why it has taken so long to reach the high precision that this spectral region can provide. We further describe the design of new filters that achieve this result, and the trials that were undertaken to demonstrate their superiority. Finally, we discuss the price to be paid for the improved precision, in the form of lower throughput, and why it should be paid: to achieve not only higher precision (i.e., improved signal-to-noise ratio), but also lower extinction, and thus higher accuracy in extra-atmospheric magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ångström, K. (1893). Physical Review, 1, 365

    Google Scholar 

  • Argue, A. N. (1967). Monthly Notices of the Royal Astronomical Society, 135, 23

    ADS  Google Scholar 

  • Bahng, J. (1969). Monthly Notices of the Royal Astronomical Society, 143, 73

    ADS  Google Scholar 

  • Berk, A., Bernstein, L. S., & Robertson, D. C. (1989). MODTRAN: A Moderate Resolution Model for LOWTRAN 7 (GL-TR-890122), (Bedford, MA: Air Force Geophysics Laboratory)

    Google Scholar 

  • Bessell, M. S. (2009). Astronomy and Astrophysics, 500, 257

    Article  ADS  Google Scholar 

  • Bessell, M. S., & Brett, J. R. (1888). Publications of the Astronomical Society of the Pacific, 100, 1134

    Article  ADS  Google Scholar 

  • Borgman, J. (1960). Bulletin of the Astronomical Institutes of the Netherlands, 15, 255

    ADS  Google Scholar 

  • Bouguer, P. (1729). Essai d’Optique sur la Gradation de la Lumière. (Paris: Claude Jombert)

    Google Scholar 

  • Forbes, J. D. (1842). Philosophical Transactions of Royal Society of London, 132, 225

    Article  ADS  Google Scholar 

  • Glass, I. S. (1985). Irish Astronomical Journal, 17, 1

    ADS  Google Scholar 

  • Glass, I. S., & Carter, B. S. (1989). “Infrared Extinction at Sutherland,” in E. F. Milone (ed.), Infrared Extinction and Standardization, (Berlin: Springer-Verlag) Lecture Notes in Physics, Vol. 341, p. 37

    Google Scholar 

  • Hall, J. S. (1934). Astrophysical Journal, 79, 145

    Article  ADS  Google Scholar 

  • Herschel, W. (1800). Investigation of the power of the prismatic colours to heat and illuminate objects. Philosophical Transactions Royal Society of London, 132, 255

    Article  ADS  Google Scholar 

  • Huggins, W. (1869). Proceedings of the Royal Society of London, 17, 309

    Article  ADS  Google Scholar 

  • Johnson, H. L. (1964). Bol. Obs. Tonantzintla y Tacubaya, 3, 305

    ADS  Google Scholar 

  • Johnson, H. L. (1965a). Communications, Lunar and Planetary Laboratory, 3, 73

    Google Scholar 

  • Johnson, H. L. (1965b). Astrophysical Journal, 141, 923

    Article  ADS  Google Scholar 

  • Johnson, H. L. (1966). Annual Review of Astron and Astrophys, 4, 193

    Article  ADS  Google Scholar 

  • Johnson, H. L., & Morgan, W. W. (1953). Astrophysical Journal, 117, 313

    Article  ADS  Google Scholar 

  • Johnson, H. L., MacArthur, J. W., & Mitchell, R. I. (1968). Astrophysical Journal, 152, 465

    Article  ADS  Google Scholar 

  • King, I. (1952). Astronomical Journal, 57, 253

    Article  ADS  Google Scholar 

  • Koornneef, J. (1983a). Astronomy and Astrophysics, Supplement, 51, 489

    Google Scholar 

  • Koornneef, J. (1983b). Astronomy and Astrophysics, 128, 84

    ADS  Google Scholar 

  • Kron, G. E., & Smith, J. L. (1951). Astrophysical Journal, 113, 324

    Article  ADS  Google Scholar 

  • Kurucz, R. L. (1989). “Reducing Photometry by Computing Atmospheric Transmission”, in E. F. Milone (ed.), Infrared Extinction and Standardization, (Berlin: Springer-Verlag) Lecture Notes in Physics. Vol. 341, p. 55

    Google Scholar 

  • Kurucz, R. L. (1993). In E. F. Milone (ed.), Light Curve Modeling of Eclipsing Binary Stars, (New York: Springer-Verlag), p. 93

    Google Scholar 

  • Langley, S. P. (1889). Memoirs of National Academy Science, 4, Part 2

    Google Scholar 

  • Manduca, A., & Bell, R. A. (1979). Publications of the Astronomical Society of the Pacific, 91, 848

    Article  ADS  Google Scholar 

  • Milone, E. F. (1989a). “Problems of Infrared Extinction and Standardization — An Introduction,” in E. F. Milone (ed.), Infrared Extinction and Standardization, (Berlin: Springer-Verlag) Lecture Notes in Physics, Vol. 341, p. 1

    Google Scholar 

  • Milone, E. F. (ed.), (1989b). Infrared Extinction Standardization, (Berlin: Springer-Verlag) Lecture Notes in Physics, Vol. 341, p. 1

    Google Scholar 

  • Milone, E. F., & Young, A. T. (2005). Publications of the Astronomical Society of the Pacific, 117, 485

    Article  ADS  Google Scholar 

  • Milone, E. F., & Young, A. T. (2007). In C. Sterken (ed.), The Future of Photometric, Spectrophotometric, and Polarimetric Standardization, (ASP Conf. Series) Vol. 364, p. 387

    Google Scholar 

  • Milone, E. F., & Young, A. T. (2008). Journal of the American Association Variable Star Observers, 36(1), 110

    Google Scholar 

  • Moro, D., & Munari, U. (2000). Astronomy and Astrophysics, Supplement, 147, 361

    Google Scholar 

  • Nichols, E. F. (1901). Astrophysical Journal, 13, 101

    Article  ADS  Google Scholar 

  • Pickering, E. C. (1882). Astronomische Nachrichten, 102, 193

    Article  ADS  Google Scholar 

  • Pouillet, C.-S. (1838). Comptes Rendus de l’Acad. des Sciences, 7, 24

    Google Scholar 

  • Rieke, G. H. (2009). Experimental Astronomy, 25, 125

    Article  ADS  Google Scholar 

  • Stebbins, J., & Whitford, A. E. (1943). Astrophysical Journal, 98, 20

    Article  ADS  Google Scholar 

  • Tifft, W. G. (1961). Astronomical Journal, 66, 390

    Article  ADS  Google Scholar 

  • Weaver, H. F. (1952). Astrophysical Journal, 116, 612

    Article  ADS  Google Scholar 

  • Wing, R. F. (1967). “Infrared Scanner Measurements of the Colors and Molecular Band Strengths of Late-Type Stars,” in M. Hack (ed.), Proceedings of the Colloquium, on Late-Type Stars, (Trieste: Osservatorio Astronomico), p. 231

    Google Scholar 

  • Young, A. T. (1989). “Extinction and Transformation,” in E. F. Milone (ed.), Infrared Extinction and Standardization, (Berlin: Springer-Verlag) Lecture Notes in Physics, Vol. 341, p. 6

    Google Scholar 

  • Young, A. T., Milone, E. F., & Stagg, C. R. (1994). Astronomy and Astrophysics, Supplement, 105, 259

    Google Scholar 

Download references

Acknowledgements

The support of the Physics & Astronomy Department of the University of Calgary has been critical to the success of the IRWG experiments and results. It is a pleasure to thank undergraduate astrophysics majors in the senior astrophysics laboratory course that EFM taught for more than a decade, especially the summer assistants who were recruited from that course, among whom were: Kyle Degenhardt, Kerry Dubray, Danielle Fraser, Christopher Ostrowski, Jon Ramsey, Russell Shanahan, Caleb Sundstrom, and Christopher Winder, for conscientious assistance with observations and data reduction. Dr. Philip Langill, then Resident Astronomer at the RAO, and Dr. Alfredo Louro also assisted with data acquisition. Over the past decade, Michael Williams improved telescope software and helped train observers. RAO technician, Frederick Babott maintained all the RAO instrument systems, including the infrared, since their inception; most recently, that work was taken over by James Pike. Much of the work described here was supported by grants to EFM from the Natural Sciences and Engineering Research Council and the National Research Council of Canada, which, as always, are gratefully acknowledged. This paper is No. 78 in the Publications of the RAO reprint series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Milone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Milone, E.F., Young, A.T. (2011). The Rise and Improvement of Infrared Photometry. In: Milone, E., Sterken, C. (eds) Astronomical Photometry. Astrophysics and Space Science Library, vol 373. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8050-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8050-2_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8049-6

  • Online ISBN: 978-1-4419-8050-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics