Skip to main content

Photometric Precision and Accuracy

  • Chapter
  • First Online:

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 373))

Abstract

We describe and discuss developments of precision and accuracy in astronomical photometry from the photovisual and photographic eras to the present CCD age. Finally, we stipulate prescriptions for improved photometry in the optical region of the spectrum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The fact that we can see colors in the first-magnitude stars shows that photopic vision plays an appreciable part about 4 magnitudes above the visual threshold. Most “visual” measurements made with telescopes are probably photopic rather than scotopic – which is why the effective wavelength for the old visual magnitudes is closer to 550 nm than to 500 nm. This transition between photopic and scotopic vision is the reason why the Purkinje effect (see page 6) is significant in visual observations.

  2. 2.

    More importantly, the isophotal wavelength is about 545 nm for V.

  3. 3.

    The red tail of the Johnson V band is defined by the response of the photomultiplier and not by a filter cutoff.

  4. 4.

    The tendency for the human eye to detect blue objects more readily than red under low light conditions.

  5. 5.

    Failure to achieve the same exposure by varying exposure time or source brightness.

  6. 6.

    Of the Lorentz–Fitzgerald contraction.

  7. 7.

    Interstellar reddening-effects and spectral lines are also deviations from a black-body energy distribution.

  8. 8.

    The order of a photometric system is the dimension of the vector space of significant and non-redundant magnitude and color-index parameters. With n bands, one gets \(\frac{n(n-1)} {2}\) color indices.

  9. 9.

    The system was designed to study mainly unreddened main sequence stars, but has been applied inaptly to objects all over the Hertzsprung–Russell diagram.

  10. 10.

    SPACE, http://www.spaceobs.com/.

  11. 11.

    Not for stars with peculiar spectra, such as luminous blue variables (LBVs), as noted on page 5.

  12. 12.

    A copy of which operates at San Pedro Mártir Observatory, Mexico.

  13. 13.

    That obeys the standard reddening law.

  14. 14.

    Technique and Reduction of Measurements in a New (Stellar) Photometric System.

  15. 15.

    One must not forget that a PMT-based photometer is a 1-pixel imager: the Fabry lens concentrates all light in one spot of homogeneous light, whereas the CCD camera can be a multimillion pixel imager.

  16. 16.

    The symbols come from the first letter of the French words for ascending and descending: Montante, Descendante.

  17. 17.

    ESO-MIDAS User’s Guide Volume B, the “PEPSYS general photometry package”, http://www.eso.org/sci/data-processing/software/esomidas//doc/user/98NOV/volb/node248.html.

  18. 18.

    Note that here we represent airmass by X, although M has been used also elsewhere.

References

  • Baum, W. A. (1962). In W. A. Hiltner (ed.), Astronomical Techniques, in Stars and Stellar Systems series, Vol. II, (Chicago: University of Chicago Press), pp. 1–33

    Google Scholar 

  • Bemporad, A. (1904). Heidelberg Mitt. 4

    Google Scholar 

  • Bond, G. P. (1859). Astronomische Nachrichten, 49, 81

    Article  ADS  Google Scholar 

  • Burki, G., Rufener, F., Burnet, M., et al. (1995). Astronomy and Astrophysics, Supplements, 112, 383

    Google Scholar 

  • Butler, C. J., & Elliott, I. (1993). Stellar Photometry, (Cambridge: Cambridge University Press), p. 3

    Google Scholar 

  • Cameron, D. M. (1951). Astronomical Journal, 56, 92–96

    Article  ADS  Google Scholar 

  • Chalonge, D., & Divan, L. (1973). Astronomy and Astrophysics, 23, 69

    ADS  Google Scholar 

  • Cramer, N. (1984). Astronomy and Astrophysics, 141, 215

    ADS  Google Scholar 

  • Cramer, N. (1993). Astronomy and Astrophysics, 269, 457

    ADS  Google Scholar 

  • Cramer, N. (2005). Orion, 326, 8

    Google Scholar 

  • Cramer, N., & Maeder, A. (1979). Astronomy and Astrophysics, 78, 305

    ADS  Google Scholar 

  • Crawford, D. L. (1975). Publications of the Astronomical Society of the Pacific, 87, 481

    Article  ADS  Google Scholar 

  • Crawford, D. L. (1993a). In D. Kilkenny, E. Lastovica & J. W. Menzies (eds.), Precision Photometry, (Capetown: South African Astronomical Observatory), p. 18

    Google Scholar 

  • Crawford, D. L. (1993b). In C. J. Butler & I. Elliott (eds.), Stellar Photometry, (Cambridge: Cambridge University Press), p. 38

    Google Scholar 

  • Crawford, D. L., & Mandwewala, N. (1976). Publications of the Astronomical Society of the Pacific, 88, 917

    Article  ADS  Google Scholar 

  • Coblentz, W. W. (1912). Bulletin of the Bureau of Standards, 9, 15

    Google Scholar 

  • Davis, A., Barkume, K., Springob, C., et al. (2004). Journal of the American Association of Variable Star Observers, 32, 117

    ADS  Google Scholar 

  • Eichner, J., et al. (1947). Astronomical Journal, 53, 25

    Article  ADS  Google Scholar 

  • Florentin-Nielsen, R. (1993). In C. J. Butler & I. Elliott (eds.), Stellar Photometry – Current Techniques and Future Developments, (Cambridge: Cambridge University Press), p. 213

    Google Scholar 

  • Garrison, R. F. (1993). In C. J. Butler & I. Elliott (eds.), Stellar Photometry, (Cambridge: Cambridge University Press), p. 39

    Google Scholar 

  • Grønbech, B., Olsen, E. H., & Strömgren, B. (1976). Astronomy and Astrophysics, Supplement, 26, 155

    Google Scholar 

  • Gheury, M. E.-J. (1913). Ciel et Terre, 34, 351

    ADS  Google Scholar 

  • Gutierrez-Moreno, A., Cortes, G., & Moreno, H. (1982). Publications of the Astronomical Society of the Pacific, 94, 722

    Article  ADS  Google Scholar 

  • Guthnik, P., & Prager, R. (1914). Veröffentlichungen der königlichen Sternwarte Berlin–Babelsberg, 1, 1

    Google Scholar 

  • Hall, J. S. (1934). Astrophysical Journal, 79, 145

    Article  ADS  Google Scholar 

  • Hall, D. S., & Genet, R. M. (1982). Photoelectric Photometry of Variable Stars, (Fairborn, Ohio: Fairborn Press), p. 9–4

    Google Scholar 

  • Hearnshaw, J. B. (1996). The Measurement of Starlight: Two Centuries of Astronomical Photometry, (Cambridge: Cambridge University Press)

    Google Scholar 

  • Hearnshaw, J. B. (2000). “Nineteenth Century Visual Photometers and Their Achievements,” in C. Sterken & K. Staubermann (eds.), Karl Friedrich Zöllner and the Historical Dimension of Astronomical Photometry, (VUBPress), p. 19

    Google Scholar 

  • Howell, S. B. (2006). Handbook of CCD Astronomy (2nd ed.), (Cambridge: Cambridge University Press)

    Google Scholar 

  • Hu, J. Y., de Winter, D., Thé, P. S., & Perez, M. R. (1990). Astronomy and Astrophysics, 227, L17

    ADS  Google Scholar 

  • Johnson, H. L. (1952). Astrophysical Journal, 116, 272

    Article  ADS  Google Scholar 

  • Jordan, F. C. (1923). Astronomical Journal, 35, 44

    Article  ADS  Google Scholar 

  • Jordan, F. C. (1929). Publs., Allegheny Observatory, 7(2), 125–130

    Google Scholar 

  • Kibblewhite, E. J. (1971). In H. Seddon & M. J. Smyth (eds.), Automation in Optical Astrophysics. Proc. IAU Colloq. 11, Publications of the Royal Society of Edinburgh, 8, p. 122

    Google Scholar 

  • King, I. (1952). “Effective Extinction Values in Wide-Band Photometry,” Astronomical Journal, 57, 53

    Article  ADS  Google Scholar 

  • Kolmogorov, A. N., & Fomin, S. V. (1999). Elements of the Theory of Functions and Functional Analysis, (Mineola, NY: Dover Publications)

    Google Scholar 

  • Landolt, A. U. (2007). In C. Sterken (ed.), The Future of Photometric, Spectrophotometric and Polarimetric Standardization, ASP Conference Series, Vol. 364, p. 27

    Google Scholar 

  • Majewski, S. R. (1992). Astrophysical Journal, 78, 87

    Article  ADS  Google Scholar 

  • Melbourne, W. G. (1960). Astrophysical Journal, 132, 101

    Article  ADS  Google Scholar 

  • Meyermann, B., & Schwarzschild, K. (1905). Astronomische Nachrichten, 170, 277–282

    Article  ADS  Google Scholar 

  • Milone, E. F. & Pel, J. W. (2011). “The High Road to Astronomical Photometric Precision: Differential Photometry,” in E. F. Milone (ed.), Astronomical Photometry, (New York: Springer), p. 33

    Google Scholar 

  • Minchin, G. M. (1895). Proceedings of the Royal Society, 58, 142

    Article  Google Scholar 

  • Monck, W. H. S. (1892). Astronomy and Astrophysics, 11, 843

    Google Scholar 

  • Müller, G., & Kempf, P. (1899). Astronomische Nachrichten, 159, 203

    Google Scholar 

  • Moro, D., & Munari, U. (2000). Astronomy and Astrophysics, Supplement, 147, 361

    Google Scholar 

  • Oden, J. T. (1979). Applied Functional Analysis, (Englewood Cliffs, NJ: Prentice-Hall)

    Google Scholar 

  • Olsen, E. H. (1979). Astronomy and Astrophysics, Supplement, 37, 367

    Google Scholar 

  • Olsen, E. H. (1994). Astronomy and Astrophysics Supplement Series, 106, 257

    ADS  Google Scholar 

  • Parkhurst, & Jordan (1907). Astrophysical Journal, 26, 244

    Google Scholar 

  • Pel, J. W., & Lub, J. (2007). In C. Sterken (ed.), The Future of Photometric, Spectrophotometric and Polarimetric Standardization. ASP Conference Series, Vol. 364, p. 63

    Google Scholar 

  • Pickering, E. C. (1888). Memoirs of the American Academy of Sciences, 11, 179

    Article  Google Scholar 

  • Plaut, L. (1940). Bulletin of the Astronomical Institutes of the Netherlands, 9, 121

    ADS  Google Scholar 

  • Pogson, N. (1856). Monthly Notices of the Royal Astronomical Society, 17, 12

    ADS  Google Scholar 

  • Poretti, E., & Zerbi, F. (1993a). Astronomy and Astrophysics, 268, 369

    ADS  Google Scholar 

  • Poretti, E., & Zerbi, F. (1993b). “Instantaneous Determination of a Variable Extinction Coefficient,” in C. J. Butler & I. Elliott (eds.), Stellar Photometry (p. 221), (Cambridge: Cambridge University Press), p. 31

    Google Scholar 

  • Pritchard, C. (1885). Uranometria Nova Oxoniensis: Astronomical Observations made at the Oxford Observatory, No. II

    Google Scholar 

  • Putnam, C. R. (1967). Commutation Properties of Hilbert Space Operators, and Related Topics, (New York: Springer-Verlag)

    Google Scholar 

  • Rosenberg (1929). Handbuch der Astrophysik, 2, Part 1, 380

    Google Scholar 

  • Rufener, F. (1964). Technique et Réduction des Mesures dans un Nouveau Système de Photométrie Stellaire, Observatoire de Genève

    Google Scholar 

  • Rufener, F. (1980). Third Catalogue of Stars Measured in the Geneva Observatory Photometric System, (Genève: Observatoire de Genève)

    Google Scholar 

  • Rufener, F. (1985). In Calibration of Fundamental Stellar Quantities, (Dordrecht: D. Reidel Publishing Co.), pp. 253–268

    Google Scholar 

  • Rufener, F. (1986). Astronomy and Astrophysics, 165, 275

    ADS  Google Scholar 

  • Rufener, F. (1988). Catalogue of Stars Measured in the Geneva Observatory Photometric System, Observatoire de Genève (4th ed.)

    Google Scholar 

  • Schaefer, B. (2010). Astrophysical Journal, Supplement, 187, 275–373

    Google Scholar 

  • Schilt, J. (1922). Bulletin of the Astronomical Institutes of the Netherlands, 1, 51

    ADS  Google Scholar 

  • Schuster, W. J., Parrao, L. & Guichard, J. (2002). The Journal of Astronomical Data, 8, 2

    ADS  Google Scholar 

  • Schwarzenberg-Czerny, A. (1991). Astronomy and Astrophysics, 252, 425

    ADS  Google Scholar 

  • Siedentopf, H. F. (1935), Astronomische Nachrichten, 254, 33–39

    Article  ADS  Google Scholar 

  • Seares, F. H., & Joyner, M. C. (1943). Astrophysical Journal, 98, 261

    Article  ADS  Google Scholar 

  • Seares, F. H., & Joyner, M. C. (1945). Astrophysical Journal, 101, 15

    Article  ADS  Google Scholar 

  • Seares, F. H., Ross, F. E. & Joyner, M. C. (1941). Magnitudes and Colors of Stars North of  + 80deg, (Washington, D.C.: Carnegie Institution Publication), No. 532

    Google Scholar 

  • Stebbins, J. (1910). Astrophysical Journal, 32, 185

    Article  ADS  Google Scholar 

  • Stebbins, J., & Whitford, A. J. (1945). Astrophysical Journal, 102, 318

    Article  ADS  Google Scholar 

  • Sterken, C. (1992a). “On the Future of Existing Photometric Systems,” Vistas in Astronomy, 35, 139

    Article  ADS  Google Scholar 

  • Sterken, C. (1992b). “On the Impact of an Ultimate Metrological Reform in Astronomical Photometry,” Vistas in Astronomy, 35, 263

    Article  ADS  Google Scholar 

  • Sterken, C. (1993a). “Irreducible Elements of Quality in High-Precision Photometry,” in C. J. Butler & I. Elliott (eds.), Stellar Photometry, (Cambridge: Cambridge University Press), p. 92

    Google Scholar 

  • Sterken, C. (1993b). “On Photometric Precision, Error and Uncertainty on Time Scales of Decades,” in D. Kilkenny, E. Lastovica & J. W. Menzies (eds.), Precision Photometry, (Capetown: South African Astronomical Observatory), p. 57

    Google Scholar 

  • Sterken et al. (1999). Astronomy and Astrophysics, 346, L33

    Google Scholar 

  • Sterken, C. (2010). “Writing a Scientific Paper II. Communication by Graphics,” in C. Sterken (ed.), Scientific Writing for Young Astronomers EDP Sciences, p. 222

    Google Scholar 

  • Sterken, C., & Manfroid, J. (1992a). Astronomy and Astrophysics, 266, 619

    ADS  Google Scholar 

  • Sterken, C., & Manfroid, J. (1992b). Astronomical Photometry, A Guide, (Dordrecht: Kluwer), p. 175

    Google Scholar 

  • Sterken, C., & Staubermann, K. (2000). “Visual Magnitudes based on Zoellner’s Catalogue,” in C. Sterken & K. Staubermann (eds.), Karl Friedrich Zollner and the Historical Dimension of Astronomical Photometry, (Brussels: VUBPress), p. 95

    Google Scholar 

  • Sterken, C., Snowden, M., Africano, J. et al. (1986). Astronomy and Astrophysics Supplement Series, 66, 11

    ADS  Google Scholar 

  • Sterken, C., et al. (2008). Astronomy and Astrophysics, 484, 463

    Article  ADS  Google Scholar 

  • Stetson, H. T. (1916). Astrophysical Journal, 43, 253–285

    Article  ADS  Google Scholar 

  • Stetson, H. T. (1916). Astrophysical Journal, 43, 325–340

    Article  ADS  Google Scholar 

  • Stetson, H. T., & Carpenter, E. F. (1923). Astrophysical Journal, 58, 36–45

    Article  ADS  Google Scholar 

  • Stoy, R. H. (1970). “ The Initial Performance of the Galaxy Machine,” in W. J. Luyten (ed.), Proper Motions., Proc., IAU Colloq. 7, (Minneapolis: University of Minnesota), p. 48

    Google Scholar 

  • Strömgren, B. (1937). In B. Strömgren (ed.), Handbuch der Experimentalphysik, Band 26, Astrophysik, (Leipzig: Akademische Verlagsgesellschaft), p. 321

    Google Scholar 

  • Strömgren, B. (1966). “Spectral Classification Through Photoelectric Narrow-Band Photometry,” Annual Review of Astronomy and Astrophysics, 4, 433

    Article  ADS  Google Scholar 

  • Toomer, G. J. (1984). Ptolemy’s Almagest, (New York: Springer)

    MATH  Google Scholar 

  • Tulenius, A. (1740). Dissertatio astronomica de constellatione Arietis, (Stockholm: Homiae)

    Google Scholar 

  • Walker, A. R. (1993). “Photometry with CCDs,” in C. J. Butler & I. Elliott (eds.), Stellar Photometry. (Cambridge: Cambridge University Press), p. 278

    Google Scholar 

  • Weaver, H. F. (1946). Popular Astronomy, 54, 211, et seq

    Google Scholar 

  • Wesselink, A. J. (1941). Leiden Annalen, 17(3)

    Google Scholar 

  • Whitford, A. E. (1932). Astrophysical Journal, 76, 213

    Article  ADS  Google Scholar 

  • Whitford, A. E. (1962). Handbuch der Physik, 54, 240

    ADS  Google Scholar 

  • Whitford, A. E., & Kron, G. E. (1937). The Review of Scientific Instruments, 8, 78

    Article  ADS  Google Scholar 

  • Wisniewski, W. Z. (1993). Comment in C. J. Butler & I. Elliott (eds.), Stellar Photometry, (Cambridge: Cambridge University Press), p. 38

    Google Scholar 

  • Young, A. T. (1967). Monthly Notices of the Royal Astronomical Society, 135, 175

    ADS  Google Scholar 

  • Young, A. T. (1974). “Observational Technique and Data Reduction,” in N. Carleton (ed.), Methods of Experimental Physics Vol. 12, Astrophysics, Part A: Optical and Infrared, Chap. 3, (New York: Academic), p. 105

    Google Scholar 

  • Young, A. T. (1984). In W. J. Borucki & A. T. Young (eds.), Proceedings, Workshop on Improvements to Photometry. NASA Conf. Publ. 2350, 8

    Google Scholar 

  • Young, A. T. (1992). “Improvements to Photometry V. High-order Moments in Transformation Theory,” Astronomy and Astrophysics, 257, 366–388

    ADS  Google Scholar 

  • Young, A. T. (1993). “High-Precision Photometry,” in C. J. Butler and I. Elliott (eds.), Stellar Photometry – Current Techniques and Future Developments, (Cambridge: University Press), p. 80

    Google Scholar 

  • Young, A. T. (1994). In C. Sterken & M. de Groot (eds.), The Impact of Long-term Monitoring on Variable Star Research: Astrophysics, Instrumentation, Data Handling, Archiving. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, (Dordrecht: Kluwer)

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Dr. N. Cramer for providing useful information that allowed us to construct the timeline given in Fig. 14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiaan Sterken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sterken, C., Milone, E.F., Young, A.T. (2011). Photometric Precision and Accuracy. In: Milone, E., Sterken, C. (eds) Astronomical Photometry. Astrophysics and Space Science Library, vol 373. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8050-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8050-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8049-6

  • Online ISBN: 978-1-4419-8050-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics