Skip to main content

Triaxial Strong Deformation and Wobbling Motion

  • Chapter
  • First Online:
Exotic Nuclear Excitations

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 242))

  • 622 Accesses

Abstract

In this chapter, we will consider the rotational motion in triaxial quadrupole deformed nuclei. The quest to establish stable triaxial shapes in nuclei is being pursued with keen interest during the last about half-a-century. In the initial phases for it, the structures of energy levels at relatively low angular momenta were considered. Generally, the deviations from axially symmetric shape are expected at high spins [1] since the rotational effects are strong for high-j orbitals. The loss of axial symmetry affects a number of observables. For a nucleus having a stable triaxial shape, different moments of inertia are associated with each of the principal axes and the rotational motion is possible about all the three axes. Therefore, the rotational spectra are expected to be richer for stable triaxial nuclei as compared to that for axially symmetric deformed nuclei. Experimentally, it is difficult to find a unique evidence for the stable triaxial shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bohr and B.R. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, New York, 1975).

    Google Scholar 

  2. I. Hamamoto, Nucl. Phys. A 520, 297c (1990).

    Google Scholar 

  3. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001).

    Google Scholar 

  4. G.B. Hagemann and I. Hamamoto, Nuclear Physics News, 13, 20 (2003)

    Google Scholar 

  5. G.B. Hagemann, Eur. Phys. J. A 20, 183 (2004).

    Google Scholar 

  6. G.B. Hagemann, Acta Phys. Pol. B 36, 1043 (2005).

    Google Scholar 

  7. I. Ragnarsson, Phys. Rev. Lett. 62, 2084 (1989).

    Google Scholar 

  8. S. Ã…berg, Nucl. Phys. A 520, 35c (1990).

    Google Scholar 

  9. R. Bengtsson, http://www.matfys.lth.se/~ragnar/TSD - defsyst.html.

    Google Scholar 

  10. T. Bengtsson, Nucl. Phys. A 496, 56 (1989).

    Google Scholar 

  11. T. Bengtsson, Nucl. Phys. A 512, 124 (1990).

    Google Scholar 

  12. R. Bengtsson et al., Nucl. Phys. A 569, 469 (1994).

    Google Scholar 

  13. P. Bringel et al., Phys. Rev. C 73, 054314 (2006).

    Google Scholar 

  14. I. Hamamoto et al., Acta Phys. Pol. B 32, 2545 (2001).

    Google Scholar 

  15. G. Schönwasser et al., Phys. Lett. B 552, 9 (2003).

    Google Scholar 

  16. H. Amro et al., Phys. Lett. B 553, 197 (2003).

    Google Scholar 

  17. R. Bengtsson and H. Ryde, Eur. Phys. J. A 22, 355 (2004).

    Google Scholar 

  18. Y.R. Shimizu and M. Matsuzaki, Nucl. Phys. A 588, 559 (1995).

    Google Scholar 

  19. I. Hamamoto, Phys. Rev. C 65, 044305 (2002).

    Google Scholar 

  20. D.R. Jensen et al., Nucl. Phys. A 703, 3 (2002).

    Google Scholar 

  21. I. Hamamoto and G.B. Hagemann, Phys. Rev. C 67, 014319 (2003).

    Google Scholar 

  22. M. Matsuzaki et al., Phys. Rev. C 69, 034325 (2004).

    Google Scholar 

  23. K. Tanabe and K. Sugawara – Tanabe, Phys. Rev. C 73, 034305 (2006).

    Google Scholar 

  24. P. Bringel et al., Eur. Phys. J. A 16, 155 (2003).

    Google Scholar 

  25. P. Bringel et al., Eur. Phys. J. A 24, 167 (2005).

    Google Scholar 

  26. W. Schmitz et al., Nucl. Phys. A 539, 112 (1992).

    Google Scholar 

  27. W. Schmitz et al., Phys. Lett. B 303, 230 (1993).

    Google Scholar 

  28. H. Schnack – Petersen et al., Nucl. Phys. A 594, 175 (1995).

    Google Scholar 

  29. J. Domscheit et al., Nucl. Phys. A 660, 381 (1999).

    Google Scholar 

  30. S.W. Odegård et al., Phys. Rev. Lett. 86, 5866 (2001).

    Google Scholar 

  31. S.W. Odegård et al., Nucl. Phys. A 682, 427c (2001).

    Google Scholar 

  32. G. Schönwasser et al., Eur. Phys. J. A 15, 435 (2002).

    Google Scholar 

  33. D.R. Jensen et al., Phys. Rev. Lett. 89, 142503 (2002).

    Google Scholar 

  34. G. Schönwasser et al., Eur. Phys. J. A 13, 291 (2002).

    Google Scholar 

  35. A. Görgen et al., Phys. Rev. C 69, 031301(R) (2004).

    Google Scholar 

  36. D.R. Jensen et al., Eur. Phys. J. A 19, 173 (2004).

    Google Scholar 

  37. G. Schönwasser et al., Nucl. Phys. A 735, 393 (2004).

    Google Scholar 

  38. C.X. Yang et al., Eur. Phys. J. A 1, 237 (1998).

    Google Scholar 

  39. G. Gürdal et al., J. Phys. G : Nucl. Part. Phys. 31, S 1873 (2005).

    Google Scholar 

  40. H. Amro et al., Phys. Rev. C 71, 011302 (2005).

    Google Scholar 

  41. G. Gürdal et al., Phys. Rev. C 77, 024314 (2008).

    Google Scholar 

  42. M. Metlay et al., Nucl. Instru. Meth, A 336, 162 (1993).

    Google Scholar 

  43. S. Törmänen et al., Phys. Lett. B 454, 8 (1999).

    Google Scholar 

  44. P. Bringel et al., Phys. Rev. C 75, 044306 (2007).

    Google Scholar 

  45. C. Teal et al., Phys. Rev. C 78, 017305 (2008).

    Google Scholar 

  46. N.S. Pattabiraman et al., Phys. Lett. B 647, 243 (2007).

    Google Scholar 

  47. X. Wang et al., Phys. Rev. C 75, 064315 (2007).

    Google Scholar 

  48. A. Aguilar et al., Phys. Rev. C 77, 021302 (R) (2008).

    Google Scholar 

  49. D.R. Jensen et al., Eur. Phys. J. A 8, 165 (2000).

    Google Scholar 

  50. H. Amro et al., Phys. Lett. B 506, 39 (2001).

    Google Scholar 

  51. R.B.Yadav et al., Phys. Rev. C 78, 044316 (2008).

    Google Scholar 

  52. A. Neusser et al., Eur. Phys. J. A 15, 439 (2002).

    Google Scholar 

  53. A. Neusser – Neffgen et al., Phys. Rev. C 73, 034309 (2006).

    Google Scholar 

  54. Y.C. Zhang et al., Phys. Rev. C 76, 064321 (2007).

    Google Scholar 

  55. D.J. Hartley et al., Phys. Lett. B 608, 31 (2005).

    Google Scholar 

  56. M.K. Djongolov et al., Phys. Lett. B 560, 24 (2003).

    Google Scholar 

  57. M.A. Riley et al., Phys. Scr. T 125, 123 (2006).

    Google Scholar 

  58. D.T. Scholes et al., Phys. Rev. C 70, 054314 (2004).

    Google Scholar 

  59. D.J. Hartley et al., Phys. Rev. C 72, 064325 (2005).

    Google Scholar 

  60. S.K. Tandel et al., Phys. Rev. C 77, 024313 (2008).

    Google Scholar 

  61. D.J. Hartley et al., Phys. Rev. C 80, 041304 (R) (2009).

    Google Scholar 

  62. M.A. Riley et al., Acta Phys. Pol. B 40, 513 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Pancholi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pancholi, S.C. (2011). Triaxial Strong Deformation and Wobbling Motion. In: Exotic Nuclear Excitations. Springer Tracts in Modern Physics, vol 242. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8038-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8038-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8037-3

  • Online ISBN: 978-1-4419-8038-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics