Skip to main content

Magnetic Rotation

  • Chapter
  • First Online:
Exotic Nuclear Excitations

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 242))

  • 637 Accesses

Abstract

Sequences of rotational-like bands with strong M1 transitions (∆I = 1 bands) were observed in nearly spherical nuclei in the neutron-deficient Pb isotopes in the early 1990s [1–7]. These sequences were later interpreted [8] as occurring due to a new nuclear excitation mode—Magnetic Rotation. A ∆I = 1 rotational band was already reported in the literature in the year 1986 in 83Kr [9] which was later found to possess all the experimental features to qualify as a magnetic rotational band [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Hübel, Wetherill Symp. (Philadelphia, PA, 1991)

    Google Scholar 

  2. H. Hübel et al., Proc. International School on Nuclear Physics, Erice (1991), Prog. Part. Nucl. Phys. 28, 427 (1992)

    Google Scholar 

  3. G. Baldsiefen et al., Phys. Lett. B 275, 252 (1992)

    Google Scholar 

  4. B. Fant et al., J. Phys. G 17, 319 (1991)

    Google Scholar 

  5. R. M. Clark et al., Daresbury Rept. 1991/1992

    Google Scholar 

  6. R. M. Clark et al., Phys. Lett. B 275, 247 (1992)

    Google Scholar 

  7. A. Kuhnert et al., Phys. Rev. C 46, 133 (1992)

    Google Scholar 

  8. S. Frauendorf, Nucl. Phys. A 557, 259c (1993)

    Google Scholar 

  9. P. Kemnitz et al., Nucl. Phys. A 456, 89 (1986)

    Google Scholar 

  10. Sham S., Malik et al., Nucl. Phys. A 732, 13 (2004)

    Google Scholar 

  11. H. Hübel, Prog. Part. Nucl. Phys. 54, 1 (2005) and references therein

    Google Scholar 

  12. J. Duprat et al., Z. Phys. A 347, 289 (1994)

    Google Scholar 

  13. W. Pohler et al., Eur. Phys. J. A 5, 257 (1999)

    Google Scholar 

  14. Amita, Ashok Kumar Jain and Balraj Singh, At. Data Nucl. Data Tables, 74, 283 (2000), updated version is available online at http://www.ideallibrary.com

    Google Scholar 

  15. R. M. Clark and A. O. Macchiavelli, Ann. Rev. Nucl. Part. Sci. 50, 1 (2000)

    Google Scholar 

  16. P. Van Druppen et al., Phys. Rev. Lett. 52, 1974 (1984)

    Google Scholar 

  17. P. Van Druppen et al., Phys. Lett. B 154, 354 (1985)

    Google Scholar 

  18. J. Penninga et al., Nucl. Phys. A 471, 535 (1987)

    Google Scholar 

  19. G. D. Dracoulis et al., Phys. Rev. C 63, 061302(R) (2001)

    Google Scholar 

  20. G. D. Dracoulis et al., Phys. Rev. C 72, 064319 (2005)

    Google Scholar 

  21. M. Ionescu – Bujor et al., Phys. Lett. B 650, 141 (2007)

    Google Scholar 

  22. K. Vyvey et al., Phys. Rev. Lett. 88, 102502 (2002)

    Google Scholar 

  23. L. Ducroux et al., Z. Phys. A 356, 241 (1996)

    Google Scholar 

  24. G. Baldsiefen et al., Phys. Rev. C 54, 1106 (1996)

    Google Scholar 

  25. K. Vyvey et al., Phys. Rev. C 69, 064318 (2004)

    Google Scholar 

  26. A. Görgen et al., Nucl. Phys. A 683, 108 (2001)

    Google Scholar 

  27. M. Kaci et al., Nucl. Phys. A 697, 3 (2002)

    Google Scholar 

  28. A. K. Singh et al., Nucl. Phys. A 707, 3 (2002)

    Google Scholar 

  29. M. Kaci et al., Z. Phys. A 354, 267 (1996)

    Google Scholar 

  30. G. Baldsiefen et al., Nucl. Phys. A 574, 521 (1994)

    Google Scholar 

  31. G. Duchene et al., Nucl. Instrum. Methods. Phys. Res. A 432, 90 (1999)

    Google Scholar 

  32. O. Klein, Y. Nishina, Z. Phys. 52, 853 (1929)

    Google Scholar 

  33. D. Rossbach et al., Phys. Lett. B 513, 9 (2001)

    Google Scholar 

  34. Hager-Seltzer Internal Conversion Coefficients, http://www.nndc.bnl.gov

  35. S. Chmel et al., Phys. Rev. Lett. 79, 2002 (1997)

    Google Scholar 

  36. H. Hübel, Fortschr. Phys. 25, 327 (1977)

    Google Scholar 

  37. D. L. Balabanski et al., Eur. Phys. J. A 20, 191 (2004)

    Google Scholar 

  38. M. Ionescu – Bujor et al., Phys. Rev. C 70, 034305 (2004)

    Google Scholar 

  39. S. Zywietz et al., Hyperfine Intr. 9, 109 (1981)

    Google Scholar 

  40. H. Ejiri and M. J. A. de Voigt, Gamma Ray and Electron Spectroscopy in Nuclear Physics (Oxford Univ. Press, Oxford 1987) p.504

    Google Scholar 

  41. G. B. Hagemann et al., Nucl. Phys. A 424, 365 (1984)

    Google Scholar 

  42. R. M. Clark et al., Phys. Rev. Lett. 78, 1868 (1997)

    Google Scholar 

  43. R. M. Clark et al., Phys. Lett. B 440, 251 (1998)

    Google Scholar 

  44. R. Krücken et al., Phys. Rev. C 58, R 1876 (1998)

    Google Scholar 

  45. G. Kemper et al., Eur. Phys. J. A 11, 121 (2001)

    Google Scholar 

  46. J. R. Cooper et al., Phys. Rev. Lett. 87, 132503 (2001)

    Google Scholar 

  47. A. K. Singh et al., Phys. Rev. C 66, 064314 (2002)

    Google Scholar 

  48. S. Chmel et al., Phys. Rev. C 75, 044309 (2007)

    Google Scholar 

  49. D. A. Torres et al., Phys. Rev. C 78, 054318 (2008)

    Google Scholar 

  50. S. Frauendorf et al., Nucl. Phys. A 601, 41 (1996)

    Google Scholar 

  51. A. O. Macchiavelli et al., Phys. Rev. C 57, R1073 (1998)

    Google Scholar 

  52. A. O. Macchiavelli et al., Phys. Rev. C 58, R621 (1998)

    Google Scholar 

  53. A. O. Macchiavelli et al., Phys. Rev. C 58, 3746 (1998)

    Google Scholar 

  54. A. O. Macchiavelli et al., Phys. Lett. B 450, 1 (1999)

    Google Scholar 

  55. Amita et al., PRAMANA, 53, 463 (1999)

    Google Scholar 

  56. B. G. Carlsson and I. Ragnarsson, Phys. Rev. C 74, 044310 (2006)

    Google Scholar 

  57. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001)

    Google Scholar 

  58. S. Frauendorf, Nucl. Phys. A 677, 115 (2000)

    Google Scholar 

  59. S. Frauendorf in Proceedings of the Workshop on Gammasphere Physics, Berkeley (World Scientific, Singapore 1995) p. 272

    Google Scholar 

  60. S. Zhu et al., Phys. Rev. C 64, 041302 (R)(2001)

    Google Scholar 

  61. A. J. Simons et al., Phys. Rev. Lett. 91, 162501 (2003)

    Google Scholar 

  62. A. J. Simons et al., Phys. Rev. C 72, 024318 (2005)

    Google Scholar 

  63. P. Datta et al., Phys. Rev. C 71, 041305 (R) (2005)

    Google Scholar 

  64. C. J. Chiara et al., Phys. Rev. C 61, 034318 (2000)

    Google Scholar 

  65. R. Wadsworth and R. M. Clark, priv comm. (1998)

    Google Scholar 

  66. P. H. Regan et al., Nucl. Phys. A 586, 351 (1995)

    Google Scholar 

  67. R. Wadsworth in Nuclear Structure 06, ORNL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Pancholi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pancholi, S.C. (2011). Magnetic Rotation. In: Exotic Nuclear Excitations. Springer Tracts in Modern Physics, vol 242. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8038-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8038-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8037-3

  • Online ISBN: 978-1-4419-8038-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics