Crosstalk of the Wnt Signaling Pathway

  • Michael Thompson
  • Kari Nejak-Bowen
  • Satdarshan P. S. Monga
Chapter

Abstract

While it is very clear that activation of β-catenin through the canonical Wnt ­pathway plays a role in a multitude of human cancers, it has also been noted time and time again that activation of β-catenin is observed in tumors without any clear mutation in any of the major components of the pathway or any increase in Wnt signaling. This suggests that other factors maybe capable of inducing activation and downstream signaling via β-catenin. Indeed, multiple growth factor and developmental signaling pathways have been found to transactivate β-catenin. It is also reasonable to consider the converse: that the Wnt pathway is capable of transactivating other signaling pathways. In fact, multiple studies have outlined the capability of Wnt signaling to activate other pathways in various types of cancer. Such association has led to the initiative to develop approaches to therapy that are capable of targeting both the Wnt pathway and the pathways it crosstalks with simultaneously. The crosstalk that occurs between Wnt and other signaling pathways will be explored in this chapter with a primary focus on how these pathways interact in the development and progression of cancer.

Keywords

Crosstalk Cancer Signaling Wnt Notch Hedgehog Growth factor Receptor tyrosine kinase Ras PI3K mTOR Cox-2 Growth Metastasis Proliferation Development Suppression Transactivation 

References

  1. Abdel-Rahman WM, Kalinina J, Shoman S, Eissa S, Ollikainen M, Elomaa O, Eliseenkova AV et al (2008) Somatic FGF9 mutations in colorectal and endometrial carcinomas associated with membranous beta-catenin. Hum Mutat 29:390–397PubMedGoogle Scholar
  2. Akiyoshi T, Nakamura M, Koga K, Nakashima H, Yao T, Tsuneyoshi M, Tanaka M et al (2006) Gli1, downregulated in colorectal cancers, inhibits proliferation of colon cancer cells involving Wnt signalling activation. Gut 55:991–999PubMedGoogle Scholar
  3. Alves-Guerra MC, Ronchini C, Capobianco AJ (2007) Mastermind-like 1 Is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 67:8690–8698PubMedGoogle Scholar
  4. Aman A, Piotrowski T (2008) Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 15:749–761PubMedGoogle Scholar
  5. Amini Nik S, Ebrahim RP, Van Dam K, Cassiman JJ, Tejpar S (2007) TGF-beta modulates beta-catenin stability and signaling in mesenchymal proliferations. Exp Cell Res 313:2887–2895PubMedGoogle Scholar
  6. Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M, Miura K et al (2003) Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 63:728–734PubMedGoogle Scholar
  7. Arimura S, Matsunaga A, Kitamura T, Aoki K, Aoki M, Taketo MM (2009) Reduced level of smoothened suppresses intestinal tumorigenesis by down-regulation of Wnt signaling. Gastroenterology 137:629–638PubMedGoogle Scholar
  8. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776PubMedGoogle Scholar
  9. Axelrod JD, Matsuno K, Artavanis-Tsakonas S, Perrimon N (1996) Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 271:1826–1832PubMedGoogle Scholar
  10. Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K, Mandinova A et al (2006) Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci U S A 103:3799–3804PubMedGoogle Scholar
  11. Baker JC, Beddington RS, Harland RM (1999) Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev 13:3149–3159PubMedGoogle Scholar
  12. Baryawno N, Sveinbjornsson B, Eksborg S, Chen CS, Kogner P, Johnsen JI (2010) Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res 70:266–276PubMedGoogle Scholar
  13. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331PubMedGoogle Scholar
  14. Behari J, Zeng G, Otruba W, Thompson MD, Muller P, Micsenyi A, Sekhon SS et al (2007) R-Etodolac decreases beta-catenin levels along with survival and proliferation of hepatoma cells. J Hepatol 46:849–857PubMedGoogle Scholar
  15. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851PubMedGoogle Scholar
  16. Bommer GT, Feng Y, Iura A, Giordano TJ, Kuick R, Kadikoy H, Sikorski D et al (2010) IRS1 regulation by Wnt/beta-catenin signaling and varied contribution of IRS1 to the neoplastic phenotype. J Biol Chem 285:1928–1938PubMedGoogle Scholar
  17. Bonifas JM, Pennypacker S, Chuang PT, McMahon AP, Williams M, Rosenthal A, De Sauvage FJ et al (2001) Activation of expression of hedgehog target genes in basal cell carcinomas. J Invest Dermatol 116:739–742PubMedGoogle Scholar
  18. Bonvini P, An WG, Rosolen A, Nguyen P, Trepel J, Garcia de Herreros A, Dunach M et al (2001) Geldanamycin abrogates ErbB2 association with proteasome-resistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription. Cancer Res 61:1671–1677PubMedGoogle Scholar
  19. Boon EM, van der Neut R, van de Wetering M, Clevers H, Pals ST (2002) Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res 62:5126–5128PubMedGoogle Scholar
  20. Boon EM, Keller JJ, Wormhoudt TA, Giardiello FM, Offerhaus GJ, van der Neut R, Pals ST (2004) Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer 90:224–229PubMedGoogle Scholar
  21. Bourguignon LY, Peyrollier K, Gilad E, Brightman A (2007) Hyaluronan-CD44 interaction with neural Wiskott-Aldrich syndrome protein (N-WASP) promotes actin polymerization and ErbB2 activation leading to beta-catenin nuclear translocation, transcriptional up-regulation, and cell migration in ovarian tumor cells. J Biol Chem 282:1265–1280PubMedGoogle Scholar
  22. Boyer A, Paquet M, Lague MN, Hermo L, Boerboom D (2009) Dysregulation of WNT/CTNNB1 and PI3K/AKT signaling in testicular stromal cells causes granulosa cell tumor of the testis. Carcinogenesis 30:869–878PubMedGoogle Scholar
  23. Buchanan FG, DuBois RN (2006) Connecting COX-2 and Wnt in cancer. Cancer Cell 9:6–8PubMedGoogle Scholar
  24. Buchanan C, Stigliano I, Garay-Malpartida HM, Rodrigues Gomes L, Puricelli L, Sogayar MC, Bal de Kier Joffe E et al (2010) Glypican-3 reexpression regulates apoptosis in murine adenocarcinoma mammary cells modulating PI3K/Akt and p38MAPK signaling pathways. Breast Cancer Res Treat 119:559–574PubMedGoogle Scholar
  25. Calvisi DF, Factor VM, Loi R, Thorgeirsson SS (2001) Activation of beta-catenin during hepatocarcinogenesis in transgenic mouse models: relationship to phenotype and tumor grade. Cancer Res 61:2085–2091PubMedGoogle Scholar
  26. Carlson ML, Wilson ET, Prescott SM (2003) Regulation of COX-2 transcription in a colon cancer cell line by Pontin52/TIP49a. Mol Cancer 2:42PubMedGoogle Scholar
  27. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310:1504–1510PubMedGoogle Scholar
  28. Chakladar A, Dubeykovskiy A, Wojtukiewicz LJ, Pratap J, Lei S, Wang TC (2005) Synergistic activation of the murine gastrin promoter by oncogenic Ras and beta-catenin involves SMAD recruitment. Biochem Biophys Res Commun 336:190–196PubMedGoogle Scholar
  29. Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE (2005) FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. Embo J 24:73–84PubMedGoogle Scholar
  30. Civenni G, Holbro T, Hynes NE (2003) Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. EMBO Rep 4:166–171PubMedGoogle Scholar
  31. Clausse N, Baines D, Moore R, Brookes S, Dickson C, Peters G (1993) Activation of both Wnt-1 and Fgf-3 by insertion of mouse mammary tumor virus downstream in the reverse orientation: a reappraisal of the enhancer insertion model. Virology 194:157–165PubMedGoogle Scholar
  32. Collu GM, Brennan K (2007) Cooperation between Wnt and Notch signalling in human breast cancer. Breast Cancer Res 9:105PubMedGoogle Scholar
  33. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789PubMedGoogle Scholar
  34. Cullingworth J, Hooper ML, Harrison DJ, Mason JO, Sirard C, Patek CE, Clarke AR (2002) Carcinogen-induced pancreatic lesions in the mouse: effect of Smad4 and Apc genotypes. Oncogene 21:4696–4701PubMedGoogle Scholar
  35. D’Abaco GM, Whitehead RH, Burgess AW (1996) Synergy between Apc min and an activated ras mutation is sufficient to induce colon carcinomas. Mol Cell Biol 16:884–891PubMedGoogle Scholar
  36. D’Amico M, Hulit J, Amanatullah DF, Zafonte BT, Albanese C, Bouzahzah B, Fu M et al (2000) The integrin-linked kinase regulates the cyclin D1 gene through glycogen synthase kinase 3beta and cAMP-responsive element-binding protein-dependent pathways. J Biol Chem 275:32649–32657PubMedGoogle Scholar
  37. Dakubo GD, Mazerolle CJ, Wallace VA (2006) Expression of Notch and Wnt pathway components and activation of Notch signaling in medulloblastomas from heterozygous patched mice. J Neurooncol 79:221–227PubMedGoogle Scholar
  38. De Toni F, Racaud-Sultan C, Chicanne G, Mas VM, Cariven C, Mesange F, Salles JP et al (2006) A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene 25:3113–3122PubMedGoogle Scholar
  39. De Toni EN, Thieme SE, Herbst A, Behrens A, Stieber P, Jung A, Blum H et al (2008) OPG is regulated by beta-catenin and mediates resistance to TRAIL-induced apoptosis in colon ­cancer. Clin Cancer Res 14:4713–4718PubMedGoogle Scholar
  40. Dempke W, Rie C, Grothey A, Schmoll HJ (2001) Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol 127:411–417PubMedGoogle Scholar
  41. Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C, Capeau J (2001) Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 20:252–259PubMedGoogle Scholar
  42. Dihlmann S, Kloor M, Fallsehr C, von Knebel Doeberitz M (2005) Regulation of AKT1 expression by beta-catenin/Tcf/Lef signaling in colorectal cancer cells. Carcinogenesis 26:1503–1512PubMedGoogle Scholar
  43. Doubravska L, Simova S, Cermak L, Valenta T, Korinek V, Andera L (2008) Wnt-expressing rat embryonic fibroblasts suppress Apo2L/TRAIL-induced apoptosis of human leukemia cells. Apoptosis 13:573–587PubMedGoogle Scholar
  44. Du Q, Zhang X, Cardinal J, Cao Z, Guo Z, Shao L, Geller DA (2009) Wnt/beta-catenin signaling regulates cytokine-induced human inducible nitric oxide synthase expression by inhibiting nuclear factor-kappaB activation in cancer cells. Cancer Res 69:3764–3771PubMedGoogle Scholar
  45. Duan L, Yao J, Wu X, Fan M (2006) Growth suppression induced by Notch1 activation involves Wnt-beta-catenin down-regulation in human tongue carcinoma cells. Biol Cell 98:479–490PubMedGoogle Scholar
  46. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. Faseb J 12:1063–1073PubMedGoogle Scholar
  47. Dumont N, Arteaga CL (2003) Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3:531–536PubMedGoogle Scholar
  48. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, Yoon K et al (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6:314–322PubMedGoogle Scholar
  49. Edlund S, Lee SY, Grimsby S, Zhang S, Aspenstrom P, Heldin CH, Landstrom M (2005) Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis. Mol Cell Biol 25:1475–1488PubMedGoogle Scholar
  50. Eisinger AL, Prescott SM, Jones DA, Stafforini DM (2007) The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins Other Lipid Mediat 82:147–154PubMedGoogle Scholar
  51. El-Bahrawy M, El-Masry N, Alison M, Poulsom R, Fallowfield M (2003) Expression of beta-catenin in basal cell carcinoma. Br J Dermatol 148:964–970PubMedGoogle Scholar
  52. Estrach S, Ambler CA, Lo Celso C, Hozumi K, Watt FM (2006) Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 133:4427–4438PubMedGoogle Scholar
  53. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB et al (2007) Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282:11221–11229PubMedGoogle Scholar
  54. Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647PubMedGoogle Scholar
  55. Fre S, Pallavi SK, Huyghe M, Lae M, Janssen KP, Robine S, Artavanis-Tsakonas S et al (2009) Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A 106:6309–6314PubMedGoogle Scholar
  56. Fujishita T, Aoki K, Lane HA, Aoki M, Taketo MM (2008) Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. Proc Natl Acad Sci U S A 105:13544–13549PubMedGoogle Scholar
  57. Galceran J, Sustmann C, Hsu SC, Folberth S, Grosschedl R (2004) LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev 18:2718–2723PubMedGoogle Scholar
  58. Gazitt Y, Kolaparthi V, Moncada K, Thomas C, Freeman J (2009) Targeted therapy of human osteosarcoma with 17AAG or rapamycin: characterization of induced apoptosis and inhibition of mTOR and Akt/MAPK/Wnt pathways. Int J Oncol 34:551–561PubMedGoogle Scholar
  59. Goodsell DS (1999) The molecular perspective: the ras oncogene. Stem Cells 17:235–236PubMedGoogle Scholar
  60. Gordon WR, Arnett KL, Blacklow SC (2008) The molecular logic of Notch signaling – a ­structural and biochemical perspective. J Cell Sci 121:3109–3119PubMedGoogle Scholar
  61. Goss KH, Groden J (2000) Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol 18:1967–1979PubMedGoogle Scholar
  62. Guilmeau S, Flandez M, Mariadason JM, Augenlicht LH (2010) Heterogeneity of Jagged1 expression in human and mouse intestinal tumors: implications for targeting Notch signaling. Oncogene 29:992–1002PubMedGoogle Scholar
  63. Han G, Li AG, Liang YY, Owens P, He W, Lu S, Yoshimatsu Y et al (2006) Smad7-induced beta-catenin degradation alters epidermal appendage development. Dev Cell 11:301–312PubMedGoogle Scholar
  64. Hancock JF (2003) Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4:373–384PubMedGoogle Scholar
  65. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM (2004) Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res 64:48–54PubMedGoogle Scholar
  66. Hayward P, Brennan K, Sanders P, Balayo T, DasGupta R, Perrimon N, Martinez Arias A (2005) Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development 132:1819–1830PubMedGoogle Scholar
  67. He J, Sheng T, Stelter AA, Li C, Zhang X, Sinha M, Luxon BA et al (2006) Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J Biol Chem 281:35598–35602PubMedGoogle Scholar
  68. Hooper JE, Scott MP (2005) Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6:306–317PubMedGoogle Scholar
  69. Hoppler S, Moon RT (1998) BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech Dev 71:119–129PubMedGoogle Scholar
  70. Howe LR, Crawford HC, Subbaramaiah K, Hassell JA, Dannenberg AJ, Brown AM (2001) PEA3 is up-regulated in response to Wnt1 and activates the expression of cyclooxygenase-2. J Biol Chem 276:20108–20115PubMedGoogle Scholar
  71. Humar B, McNoe L, Dunbier A, Heathcott R, Braithwaite AW, Reeve AE (2008) Heterogeneous gene expression changes in colorectal cancer cells share the WNT pathway in response to growth suppression by APHS-mediated COX-2 inhibition. Biologics 2:329–337PubMedGoogle Scholar
  72. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087PubMedGoogle Scholar
  73. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968PubMedGoogle Scholar
  74. Itadani H, Oshima H, Oshima M, Kotani H (2009) Mouse gastric tumor models with prostaglandin E2 pathway activation show similar gene expression profiles to intestinal-type human gastric cancer. BMC Genomics 10:615PubMedGoogle Scholar
  75. Jang JW, Boxer RB, Chodosh LA (2006) Isoform-specific ras activation and oncogene dependence during MYC- and Wnt-induced mammary tumorigenesis. Mol Cell Biol 26:8109–8121PubMedGoogle Scholar
  76. Janssen KP, Alberici P, Fsihi H, Gaspar C, Breukel C, Franken P, Rosty C et al (2006) APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 131:1096–1109PubMedGoogle Scholar
  77. Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, Fang B et al (2009) EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-catenin from beta-catenin and transactivation of beta-catenin. Mol Cell 36:547–559PubMedGoogle Scholar
  78. Jozwiak J, Kotulska K, Grajkowska W, Jozwiak S, Zalewski W, Oldak M, Lojek M et al (2007) Upregulation of the WNT pathway in tuberous sclerosis-associated subependymal giant cell astrocytomas. Brain Dev 29:273–280PubMedGoogle Scholar
  79. Kaler P, Godasi BN, Augenlicht L, Klampfer L (2009) The NF-kappaB/AKT-dependent Induction of Wnt signaling in colon cancer cells by macrophages and IL-1beta. Cancer Microenviron 2:69–80Google Scholar
  80. Kanai Y, Ochiai A, Shibata T, Oyama T, Ushijima S, Akimoto S, Hirohashi S (1995) c-erbB-2 gene product directly associates with beta-catenin and plakoglobin. Biochem Biophys Res Commun 208:1067–1072PubMedGoogle Scholar
  81. Kastritis E, Murray S, Kyriakou F, Horti M, Tamvakis N, Kavantzas N, Patsouris ES et al (2009) Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin accumulation have prognostic significance in invasive urothelial carcinomas: evidence for Wnt pathway implication. Int J Cancer 124:103–108PubMedGoogle Scholar
  82. Katoh M, Katoh M (2006a) Cross-talk of WNT and FGF signaling pathways at GSK3beta to ­regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 5:1059–1064PubMedGoogle Scholar
  83. Katoh M, Katoh M (2006b) Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 17:681–685PubMedGoogle Scholar
  84. Katoh M, Katoh M (2009a) Transcriptional regulation of WNT2B based on the balance of Hedgehog, Notch, BMP and WNT signals. Int J Oncol 34:1411–1415PubMedGoogle Scholar
  85. Katoh M, Katoh M (2009b) Transcriptional mechanisms of WNT5A based on NF-kappaB, Hedgehog, TGFbeta, and Notch signaling cascades. Int J Mol Med 23:763–769PubMedGoogle Scholar
  86. Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, Dehari R, Meyerhardt JA et al (2007) Correlation of beta-catenin localization with cyclooxygenase-2 expression and CpG island methylator phenotype (CIMP) in colorectal cancer. Neoplasia 9:569–577PubMedGoogle Scholar
  87. Kenerson HL, Aicher LD, True LD, Yeung RS (2002) Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res 62:5645–5650PubMedGoogle Scholar
  88. Kiely B, O’Donovan RT, McKenna SL, O’Sullivan GC (2007) Beta-catenin transcriptional activity is inhibited downstream of nuclear localisation and is not influenced by IGF signalling in oesophageal cancer cells. Int J Cancer 121:1903–1909PubMedGoogle Scholar
  89. Kim BM, Choi MY (2009) New insights into the role of Hedgehog signaling in gastrointestinal development and cancer. Gastroenterology 137:422–424PubMedGoogle Scholar
  90. Kim JS, Crooks H, Dracheva T, Nishanian TG, Singh B, Jen J, Waldman T (2002) Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res 62:2744–2748PubMedGoogle Scholar
  91. Kim SE, Yoon JY, Jeong WJ, Jeon SH, Park Y, Yoon JB, Park YN et al (2009) H-Ras is degraded by Wnt/beta-catenin signaling via beta-TrCP-mediated polyubiquitylation. J Cell Sci 122:842–848PubMedGoogle Scholar
  92. Kim JH, Shin HS, Lee SH, Lee I, Lee YS, Park JC, Kim YJ et al (2010) Contrasting activity of Hedgehog and Wnt pathways according to gastric cancer cell differentiation: relevance of crosstalk mechanisms. Cancer Sci 101:328–335PubMedGoogle Scholar
  93. Kobune M, Chiba H, Kato J, Kato K, Nakamura K, Kawano Y, Takada K et al (2007) Wnt3/RhoA/ROCK signaling pathway is involved in adhesion-mediated drug resistance of multiple myeloma in an autocrine mechanism. Mol Cancer Ther 6:1774–1784PubMedGoogle Scholar
  94. Koh TJ, Bulitta CJ, Fleming JV, Dockray GJ, Varro A, Wang TC (2000) Gastrin is a target of the beta-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Invest 106:533–539PubMedGoogle Scholar
  95. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedGoogle Scholar
  96. Labbe E, Letamendia A, Attisano L (2000) Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth ­factor-beta and wnt pathways. Proc Natl Acad Sci U S A 97:8358–8363PubMedGoogle Scholar
  97. Labbe E, Lock L, Letamendia A, Gorska AE, Gryfe R, Gallinger S, Moses HL et al (2007) Transcriptional cooperation between the transforming growth factor-beta and Wnt pathways in mammary and intestinal tumorigenesis. Cancer Res 67:75–84PubMedGoogle Scholar
  98. Lague MN, Paquet M, Fan HY, Kaartinen MJ, Chu S, Jamin SP, Behringer RR et al (2008) Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis 29:2062–2072PubMedGoogle Scholar
  99. Lee FS, Lane TF, Kuo A, Shackleford GM, Leder P (1995) Insertional mutagenesis identifies a member of the Wnt gene family as a candidate oncogene in the mammary epithelium of int-2/Fgf-3 transgenic mice. Proc Natl Acad Sci U S A 92:2268–2272PubMedGoogle Scholar
  100. Leevers SJ, Vanhaesebroeck B, Waterfield MD (1999) Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 11:219–225PubMedGoogle Scholar
  101. Lei S, Dubeykovskiy A, Chakladar A, Wojtukiewicz L, Wang TC (2004) The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt ­signaling pathways. J Biol Chem 279:42492–42502PubMedGoogle Scholar
  102. Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W, Gallup M, Basbaum C (2006) Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS One 1:e93PubMedGoogle Scholar
  103. Li Y, Podsypanina K, Liu X, Crane A, Tan LK, Parsons R, Varmus HE (2001) Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice. BMC Mol Biol 2:2PubMedGoogle Scholar
  104. Li J, Mizukami Y, Zhang X, Jo WS, Chung DC (2005) Oncogenic K-ras stimulates Wnt signaling in colon cancer through inhibition of GSK-3beta. Gastroenterology 128:1907–1918PubMedGoogle Scholar
  105. Li X, Deng W, Lobo-Ruppert SM, Ruppert JM (2007) Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26:4489–4498PubMedGoogle Scholar
  106. Li Y, Zhang X, Polakiewicz RD, Yao TP, Comb MJ (2008a) HDAC6 is required for epidermal growth factor-induced beta-catenin nuclear localization. J Biol Chem 283:12686–12690PubMedGoogle Scholar
  107. Li X, Placencio V, Iturregui JM, Uwamariya C, Sharif-Afshar AR, Koyama T, Hayward SW et al (2008b) Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. Oncogene 27:7118–7130PubMedGoogle Scholar
  108. Liao X, Siu MK, Au CW, Chan QK, Chan HY, Wong ES, Ip PP et al (2009) Aberrant activation of hedgehog signaling pathway contributes to endometrial carcinogenesis through beta-catenin. Mod Pathol 22:839–847PubMedGoogle Scholar
  109. Lim K, Han C, Xu L, Isse K, Demetris AJ, Wu T (2008) Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. Cancer Res 68:553–560PubMedGoogle Scholar
  110. Lim K, Han C, Dai Y, Shen M, Wu T (2009) Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2. Mol Cancer Ther 8:3046–3055PubMedGoogle Scholar
  111. Liu Y, Borchert GL, Surazynski A, Phang JM (2008) Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene 27:6729–6737PubMedGoogle Scholar
  112. Liu J, Ahiekpor A, Li L, Li X, Arbuthnot P, Kew M, Feitelson MA (2009) Increased expression of ErbB-2 in liver is associated with hepatitis B x antigen and shorter survival in patients with liver cancer. Int J Cancer 125:1894–1901PubMedGoogle Scholar
  113. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390PubMedGoogle Scholar
  114. Longato L, de la Monte S, Kuzushita N, Horimoto M, Rogers AB, Slagle BL, Wands JR (2009) Overexpression of insulin receptor substrate-1 and hepatitis Bx genes causes premalignant alterations in the liver. Hepatology 49:1935–1943PubMedGoogle Scholar
  115. Lopez-Terrada D, Gunaratne PH, Adesina AM, Pulliam J, Hoang DM, Nguyen Y, Mistretta TA et al (2009) Histologic subtypes of hepatoblastoma are characterized by differential canonical Wnt and Notch pathway activation in DLK+ precursors. Hum Pathol 40:783–794PubMedGoogle Scholar
  116. Lu Z, Ghosh S, Wang Z, Hunter T (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4:499–515PubMedGoogle Scholar
  117. Lu W, Tinsley HN, Keeton A, Qu Z, Piazza GA, Li Y (2009) Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation. Eur J Pharmacol 602:8–14PubMedGoogle Scholar
  118. Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304:1755–1759PubMedGoogle Scholar
  119. Luo F, Brooks DG, Ye H, Hamoudi R, Poulogiannis G, Patek CE, Winton DJ et al (2009) Mutated K-ras(Asp12) promotes tumourigenesis in Apc(Min) mice more in the large than the small intestines, with synergistic effects between K-ras and Wnt pathways. Int J Exp Pathol 90:558–574PubMedGoogle Scholar
  120. MacArthur CA, Shankar DB, Shackleford GM (1995) Fgf-8, activated by proviral insertion, cooperates with the Wnt-1 transgene in murine mammary tumorigenesis. J Virol 69:2501–2507PubMedGoogle Scholar
  121. Maeda O, Kondo M, Fujita T, Usami N, Fukui T, Shimokata K, Ando T et al (2006) Enhancement of GLI1-transcriptional activity by beta-catenin in human cancer cells. Oncol Rep 16:91–96PubMedGoogle Scholar
  122. Mak BC, Takemaru K, Kenerson HL, Moon RT, Yeung RS (2003) The tuberin-hamartin complex negatively regulates beta-catenin signaling activity. J Biol Chem 278:5947–5951PubMedGoogle Scholar
  123. Mak BC, Kenerson HL, Aicher LD, Barnes EA, Yeung RS (2005) Aberrant beta-catenin signaling in tuberous sclerosis. Am J Pathol 167:107–116PubMedGoogle Scholar
  124. Marsh V, Winton DJ, Williams GT, Dubois N, Trumpp A, Sansom OJ, Clarke AR (2008) Epithelial Pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation. Nat Genet 40:1436–1444PubMedGoogle Scholar
  125. Maupas-Schwalm F, Robinet C, Auge N, Thiers JC, Garcia V, Cambus JP, Salvayre R et al (2005) Activation of the {beta}-catenin/T-cell-specific transcription factor/lymphoid enhancer ­factor-1 pathway by plasminogen activators in ECV304 carcinoma cells. Cancer Res 65:526–532PubMedGoogle Scholar
  126. McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114PubMedGoogle Scholar
  127. Miele L (2006) Notch signaling. Clin Cancer Res 12:1074–1079PubMedGoogle Scholar
  128. Monga SP, Mars WM, Pediaditakis P, Bell A, Mule K, Bowen WC, Wang X et al (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res 62:2064–2071PubMedGoogle Scholar
  129. Moreno CS (2010) The sex-determining region Y-Box 4 and homeobox C6 transcriptional networks in prostate cancer progression. Crosstalk with the Wnt, Notch, and PI3K pathways. Am J Pathol 176:518–527PubMedGoogle Scholar
  130. Mulholland DJ, Dedhar S, Wu H, Nelson CC (2006) PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene 25:329–337PubMedGoogle Scholar
  131. Munoz NM, Upton M, Rojas A, Washington MK, Lin L, Chytil A, Sozmen EG et al (2006) Transforming growth factor beta receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by Apc mutation. Cancer Res 66:9837–9844PubMedGoogle Scholar
  132. Naik S, Dothager RS, Marasa J, Lewis CL, Piwnica-Worms D (2009) Vascular endothelial growth factor receptor-1 is synthetic lethal to aberrant {beta}-catenin activation in colon cancer. Clin Cancer Res 15:7529–7537PubMedGoogle Scholar
  133. Nakamura T, Tsuchiya K, Watanabe M (2007) Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J Gastroenterol 42:705–710PubMedGoogle Scholar
  134. Nakopoulou L, Gakiopoulou H, Keramopoulos A, Giannopoulou I, Athanassiadou P, Mavrommatis J, Davaris PS (2000) c-met tyrosine kinase receptor expression is associated with abnormal beta-catenin expression and favourable prognostic factors in invasive breast carcinoma. Histopathology 36:313–325PubMedGoogle Scholar
  135. Ng SS, Mahmoudi T, Danenberg E, Bejaoui I, de Lau W, Korswagen HC, Schutte M et al (2009) Phosphatidylinositol 3-kinase signaling does not activate the wnt cascade. J Biol Chem 284:35308–35313PubMedGoogle Scholar
  136. Nicholes K, Guillet S, Tomlinson E, Hillan K, Wright B, Frantz GD, Pham TA et al (2002) A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol 160:2295–2307PubMedGoogle Scholar
  137. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC et al (2003) Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33:416–421PubMedGoogle Scholar
  138. Nishanian TG, Kim JS, Foxworth A, Waldman T (2004) Suppression of tumorigenesis and activation of Wnt signaling by bone morphogenetic protein 4 in human cancer cells. Cancer Biol Ther 3:667–675PubMedGoogle Scholar
  139. Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW (2000) Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’s organizer. Nature 403:781–785PubMedGoogle Scholar
  140. Noubissi FK, Goswami S, Sanek NA, Kawakami K, Minamoto T, Moser A, Grinblat Y et al (2009) Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Res 69:8572–8578PubMedGoogle Scholar
  141. Ochiai A, Akimoto S, Kanai Y, Shibata T, Oyama T, Hirohashi S (1994) c-erbB-2 gene product associates with catenins in human cancer cells. Biochem Biophys Res Commun 205:73–78PubMedGoogle Scholar
  142. Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S, Hirao A et al (2008) Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. Embo J 27:1671–1681PubMedGoogle Scholar
  143. Ohigashi T, Mizuno R, Nakashima J, Marumo K, Murai M (2005) Inhibition of Wnt signaling downregulates Akt activity and induces chemosensitivity in PTEN-mutated prostate cancer cells. Prostate 62:61–68PubMedGoogle Scholar
  144. Oloumi A, Syam S, Dedhar S (2006) Modulation of Wnt3a-mediated nuclear beta-catenin accumulation and activation by integrin-linked kinase in mammalian cells. Oncogene 25:7747–7757PubMedGoogle Scholar
  145. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2:Reviews3005Google Scholar
  146. Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM, Oshima M (2006) Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology 131:1086–1095PubMedGoogle Scholar
  147. Oshima H, Oguma K, Du YC, Oshima M (2009) Prostaglandin E2, Wnt, and BMP in gastric tumor mouse models. Cancer Sci 100:1779–1785PubMedGoogle Scholar
  148. Ougolkov A, Mai M, Takahashi Y, Omote K, Bilim V, Shimizu A, Minamoto T (2000) Altered expression of beta-catenin and c-erbB-2 in early gastric cancer. J Exp Clin Cancer Res 19:349–355PubMedGoogle Scholar
  149. Pai R, Dunlap D, Qing J, Mohtashemi I, Hotzel K, French DM (2008) Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling. Cancer Res 68:5086–5095PubMedGoogle Scholar
  150. Pannequin J, Bonnans C, Delaunay N, Ryan J, Bourgaux JF, Joubert D, Hollande F (2009) The wnt target jagged-1 mediates the activation of notch signaling by progastrin in human colorectal cancer cells. Cancer Res 69:6065–6073PubMedGoogle Scholar
  151. Pasca di Magliano M, Hebrok M (2003) Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3:903–911PubMedGoogle Scholar
  152. Pasca di Magliano M, Biankin AV, Heiser PW, Cano DA, Gutierrez PJ, Deramaudt T, Segara D et al (2007) Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS One 2:e1155PubMedGoogle Scholar
  153. Patel R, Ingle A, Maru GB (2008) Polymeric black tea polyphenols inhibit 1, 2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/beta-catenin pathway. Toxicol Appl Pharmacol 227:136–146PubMedGoogle Scholar
  154. Patil MA, Lee SA, Macias E, Lam ET, Xu C, Jones KD, Ho C et al (2009) Role of cyclin D1 as a mediator of c-Met- and beta-catenin-induced hepatocarcinogenesis. Cancer Res 69:253–261PubMedGoogle Scholar
  155. Pearson HB, Phesse TJ, Clarke AR (2009) K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res 69:94–101PubMedGoogle Scholar
  156. Persad S, Troussard AA, McPhee TR, Mulholland DJ, Dedhar S (2001) Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J Cell Biol 153:1161–1174PubMedGoogle Scholar
  157. Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J, Millar SE et al (2006) Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 66:7438–7444PubMedGoogle Scholar
  158. Ramocki NM, Wilkins HR, Magness ST, Simmons JG, Scull BP, Lee GH, McNaughton KK et al (2008) Insulin receptor substrate-1 deficiency promotes apoptosis in the putative intestinal crypt stem cell region, limits Apcmin/+ tumors, and regulates Sox9. Endocrinology 149:261–267PubMedGoogle Scholar
  159. Rasola A, Fassetta M, De Bacco F, D’Alessandro L, Gramaglia D, Di Renzo MF, Comoglio PM (2007) A positive feedback loop between hepatocyte growth factor receptor and beta-catenin sustains colorectal cancer cell invasive growth. Oncogene 26:1078–1087PubMedGoogle Scholar
  160. Revet I, Huizenga G, Koster J, Volckmann R, van Sluis P, Versteeg R, Geerts D (2010) MSX1 induces the Wnt pathway antagonist genes DKK1, DKK2, DKK3, and SFRP1 in neuroblastoma cells, but does not block Wnt3 and Wnt5A signalling to DVL3. Cancer Lett 289:195–207PubMedGoogle Scholar
  161. Roarty K, Baxley SE, Crowley MR, Frost AR, Serra R (2009) Loss of TGF-beta or Wnt5a results in an increase in Wnt/beta-catenin activity and redirects mammary tumour phenotype. Breast Cancer Res 11:R19PubMedGoogle Scholar
  162. Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernandez-Majada V, Grilli A, Lopez-Bigas N et al (2009) Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci U S A 106:6315–6320PubMedGoogle Scholar
  163. Rodriguez-Esteban C, Capdevila J, Kawakami Y, Izpisua Belmonte JC (2001) Wnt signaling and PKA control Nodal expression and left-right determination in the chick embryo. Development 128:3189–3195PubMedGoogle Scholar
  164. Romero D, Iglesias M, Vary CP, Quintanilla M (2008) Functional blockade of Smad4 leads to a decrease in beta-catenin levels and signaling activity in human pancreatic carcinoma cells. Carcinogenesis 29:1070–1076PubMedGoogle Scholar
  165. Rubin LL, de Sauvage FJ (2006) Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 5:1026–1033PubMedGoogle Scholar
  166. Sakoguchi-Okada N, Takahashi-Yanaga F, Fukada K, Shiraishi F, Taba Y, Miwa Y, Morimoto S et al (2007) Celecoxib inhibits the expression of survivin via the suppression of promoter activity in human colon cancer cells. Biochem Pharmacol 73:1318–1329PubMedGoogle Scholar
  167. Saldanha G, Ghura V, Potter L, Fletcher A (2004) Nuclear beta-catenin in basal cell carcinoma correlates with increased proliferation. Br J Dermatol 151:157–164PubMedGoogle Scholar
  168. Salto-Tellez M, Peh BK, Ito K, Tan SH, Chong PY, Han HC, Tada K et al (2006) RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene 25:7646–7649PubMedGoogle Scholar
  169. Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, Marsh V, Jamieson TJ et al (2006) Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci U S A 103:14122–14127PubMedGoogle Scholar
  170. Satyamoorthy K, Li G, Vaidya B, Patel D, Herlyn M (2001) Insulin-like growth factor-1 induces survival and growth of biologically early melanoma cells through both the mitogen-activated protein kinase and beta-catenin pathways. Cancer Res 61:7318–7324PubMedGoogle Scholar
  171. Sawyer EJ, Hanby AM, Poulsom R, Jeffery R, Gillett CE, Ellis IO, Ellis P et al (2003) Beta-catenin abnormalities and associated insulin-like growth factor overexpression are important in phyllodes tumours and fibroadenomas of the breast. J Pathol 200:627–632PubMedGoogle Scholar
  172. Schambony A, Kunz M, Gradl D (2004) Cross-regulation of Wnt signaling and cell adhesion. Differentiation 72:307–318PubMedGoogle Scholar
  173. Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE (2007) Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res 9:R63PubMedGoogle Scholar
  174. Sekiya T, Adachi S, Kohu K, Yamada T, Higuchi O, Furukawa Y, Nakamura Y et al (2004) Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. J Biol Chem 279:6840–6846PubMedGoogle Scholar
  175. Sengupta A, Banerjee D, Chandra S, Banerji SK, Ghosh R, Roy R, Banerjee S (2007) Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 21:949–955PubMedGoogle Scholar
  176. Senthivinayagam S, Mishra P, Paramasivam SK, Yallapragada S, Chatterjee M, Wong L, Rana A et al (2009) Caspase-mediated cleavage of beta-catenin precedes drug-induced apoptosis in resistant cancer cells. J Biol Chem 284:13577–13588PubMedGoogle Scholar
  177. Shackleford GM, MacArthur CA, Kwan HC, Varmus HE (1993) Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc Natl Acad Sci U S A 90:740–744PubMedGoogle Scholar
  178. Shao J, Jung C, Liu C, Sheng H (2005) Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J Biol Chem 280:26565–26572PubMedGoogle Scholar
  179. Sharma M, Chuang WW, Sun Z (2002) Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem 277:30935–30941PubMedGoogle Scholar
  180. Sharov AA, Mardaryev AN, Sharova TY, Grachtchouk M, Atoyan R, Byers HR, Seykora JT et al (2009) Bone morphogenetic protein antagonist noggin promotes skin tumorigenesis via stimulation of the Wnt and Shh signaling pathways. Am J Pathol 175:1303–1314PubMedGoogle Scholar
  181. Shibamoto S, Hayakawa M, Takeuchi K, Hori T, Oku N, Miyazawa K, Kitamura N et al (1994) Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes Commun 1:295–305PubMedGoogle Scholar
  182. Shimokawa T, Furukawa Y, Sakai M, Li M, Miwa N, Lin YM, Nakamura Y (2003) Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Res 63:6116–6120PubMedGoogle Scholar
  183. Shomori K, Ochiai A, Akimoto S, Ino Y, Shudo K, Ito H, Hirohashi S (2009) Tyrosine-phosphorylation of the 12th armadillo-repeat of beta-catenin is associated with cadherin dysfunction in human cancer. Int J Oncol 35:517–524PubMedGoogle Scholar
  184. Signoroni S, Frattini M, Negri T, Pastore E, Tamborini E, Casieri P, Orsenigo M et al (2007) Cyclooxygenase-2 and platelet-derived growth factor receptors as potential targets in treating aggressive fibromatosis. Clin Cancer Res 13:5034–5040PubMedGoogle Scholar
  185. Sodir NM, Chen X, Park R, Nickel AE, Conti PS, Moats R, Bading JR et al (2006) Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+ mice. Cancer Res 66:8430–8438PubMedGoogle Scholar
  186. Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K, Hung MC et al (2009) Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res 69:1343–1349PubMedGoogle Scholar
  187. Suh Y, Afaq F, Johnson JJ, Mukhtar H (2009) A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappaB-signaling pathways. Carcinogenesis 30:300–307PubMedGoogle Scholar
  188. Sun J, Jin T (2008) Both Wnt and mTOR signaling pathways are involved in insulin-stimulated proto-oncogene expression in intestinal cells. Cell Signal 20:219–229PubMedGoogle Scholar
  189. Svirshchevskaya EV, Mariotti J, Wright MH, Viskova NY, Telford W, Fowler DH, Varticovski L (2008) Rapamycin delays growth of Wnt-1 tumors in spite of suppression of host immunity. BMC Cancer 8:176PubMedGoogle Scholar
  190. Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354PubMedGoogle Scholar
  191. Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM (1998) Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92:645–656PubMedGoogle Scholar
  192. Takasu S, Tsukamoto T, Cao XY, Toyoda T, Hirata A, Ban H, Yamamoto M et al (2008) Roles of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression and beta-catenin activation in gastric carcinogenesis in N-methyl-N-nitrosourea-treated K19-C2mE transgenic mice. Cancer Sci 99:2356–2364PubMedGoogle Scholar
  193. Tan C, Costello P, Sanghera J, Dominguez D, Baulida J, de Herreros AG, Dedhar S (2001) Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/- human colon carcinoma cells. Oncogene 20:133–140PubMedGoogle Scholar
  194. Tan X, Apte U, Micsenyi A, Kotsagrelos E, Luo JH, Ranganathan S, Monga DK et al (2005) Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver. Gastroenterology 129:285–302PubMedGoogle Scholar
  195. Tang Y, Liu Z, Zhao L, Clemens TL, Cao X (2008) Smad7 stabilizes beta-catenin binding to E-cadherin complex and promotes cell-cell adhesion. J Biol Chem 283:23956–23963PubMedGoogle Scholar
  196. Taylor MD, Zhang X, Liu L, Hui CC, Mainprize TG, Scherer SW, Wainwright B et al (2004) Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene 23:4577–4583PubMedGoogle Scholar
  197. Teissedre B, Pinderhughes A, Incassati A, Hatsell SJ, Hiremath M, Cowin P (2009) MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors. PLoS One 4:e4537PubMedGoogle Scholar
  198. Tselepis C, Perry I, Dawson C, Hardy R, Darnton SJ, McConkey C, Stuart RC et al (2002) Tumour necrosis factor-alpha in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene 21:6071–6081PubMedGoogle Scholar
  199. Tuynman JB, Vermeulen L, Boon EM, Kemper K, Zwinderman AH, Peppelenbosch MP, Richel DJ (2008) Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res 68:1213–1220PubMedGoogle Scholar
  200. Tward AD, Jones KD, Yant S, Cheung ST, Fan ST, Chen X, Kay MA et al (2007) Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci U S A 104:14771–14776PubMedGoogle Scholar
  201. van den Brink GR, Hardwick JC (2006) Hedgehog Wnteraction in colorectal cancer. Gut 55:912–914PubMedGoogle Scholar
  202. van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, Nielsen C et al (2004) Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 36:277–282PubMedGoogle Scholar
  203. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:959–963PubMedGoogle Scholar
  204. Varnat F, Zacchetti G, Ruiz IAA (2010) Hedgehog pathway activity is required for the lethality and intestinal phenotypes of mice with hyperactive Wnt signaling. Mech Dev 127:73–81PubMedGoogle Scholar
  205. Verras M, Sun Z (2005) Beta-catenin is involved in insulin-like growth factor 1-mediated transactivation of the androgen receptor. Mol Endocrinol 19:391–398PubMedGoogle Scholar
  206. Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, Wu D et al (2006) Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res 66:11462–11470PubMedGoogle Scholar
  207. Wang K, Ma Q, Ren Y, He J, Zhang Y, Chen W (2007) Geldanamycin destabilizes HER2 tyrosine kinase and suppresses Wnt/beta-catenin signaling in HER2 overexpressing human breast cancer cells. Oncol Rep 17:89–96PubMedGoogle Scholar
  208. Wang Z, Li Y, Banerjee S, Sarkar FH (2008) Exploitation of the Notch signaling pathway as a novel target for cancer therapy. Anticancer Res 28:3621–3630PubMedGoogle Scholar
  209. Wang Z, Li Y, Banerjee S, Sarkar FH (2009) Emerging role of Notch in stem cells and cancer. Cancer Lett 279:8–12PubMedGoogle Scholar
  210. Weerkamp F, van Dongen JJ, Staal FJ (2006) Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 20:1197–1205PubMedGoogle Scholar
  211. Willert J, Epping M, Pollack JR, Brown PO, Nusse R (2002) A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2:8PubMedGoogle Scholar
  212. Yamazaki F, Aragane Y, Kawada A, Tezuka T (2001) Immunohistochemical detection for nuclear beta-catenin in sporadic basal cell carcinoma. Br J Dermatol 145:771–777PubMedGoogle Scholar
  213. Yanai K, Nakamura M, Akiyoshi T, Nagai S, Wada J, Koga K, Noshiro H et al (2008) Crosstalk of hedgehog and Wnt pathways in gastric cancer. Cancer Lett 263:145–156PubMedGoogle Scholar
  214. Yang F, Zeng Q, Yu G, Li S, Wang CY (2006) Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal 18:679–687PubMedGoogle Scholar
  215. Yang SH, Andl T, Grachtchouk V, Wang A, Liu J, Syu LJ, Ferris J et al (2008) Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/beta3-catenin signaling. Nat Genet 40:1130–1135PubMedGoogle Scholar
  216. Zardawi SJ, O’Toole SA, Sutherland RL, Musgrove EA (2009) Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol 24:385–398PubMedGoogle Scholar
  217. Zeng G, Apte U, Micsenyi A, Bell A, Monga SP (2006) Tyrosine residues 654 and 670 in beta-catenin are crucial in regulation of Met-beta-catenin interactions. Exp Cell Res 312:3620–3630PubMedGoogle Scholar
  218. Zhang X, Gaspard JP, Chung DC (2001) Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 61:6050–6054PubMedGoogle Scholar
  219. Zhao H, Cui Y, Dupont J, Sun H, Hennighausen L, Yakar S (2005) Overexpression of the tumor suppressor gene phosphatase and tensin homologue partially inhibits wnt-1-induced mammary tumorigenesis. Cancer Res 65:6864–6873PubMedGoogle Scholar
  220. Zhou BP, Hung MC (2005) Wnt, hedgehog and snail: sister pathways that control by GSK-3beta and beta-Trcp in the regulation of metastasis. Cell Cycle 4:772–776PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michael Thompson
  • Kari Nejak-Bowen
  • Satdarshan P. S. Monga
    • 1
  1. 1.Division of Experimental Pathology (EP)University of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations