Skip to main content

Mixtures of Environmental Pollutants: Effects on Microorganisms and Their Activities in Soils

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 211))

Abstract

The presence of unwanted substances in the environment becomes “pollution” when damage or deleterious effects caused by those substances are detected. Pollution is essentially a process by which a natural or a man-made resource becomes unfit for beneficial use (Enger and Smith 2006). Many man-made substances, in addition to certain naturally occurring organic and inorganic compounds, different forms of energy (e.g., heat, light and noise), and other things, add to the diversity of pollutants. Pollutants, which can occur at the local or the global level, render varying influences on soil and water that depend on the nature and spreading rate of the pollutants themselves, and produce short- or long-term effects on elements of an ecosystem. Undesirable changes in air, water, and soil may induce diverse responses from living organisms that are similar to those induced by the presence of pollutants. The effects on organisms caused by pollutants may range from innocuous to toxic. Toxicity, which has been defined as an inherent property of a substance to cause an adverse biological effect, is the result of a chemical disturbance that affects complex and interrelated systems involving cells, tissues, organs, or metabolic processes (ECETOC 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metal. Springer, New York, NY, p 867

    Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego, CA, p 453

    Google Scholar 

  • Almas AR, Bakken LR, Mulder J (2004) Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biol Biochem 36:805–813

    Article  CAS  Google Scholar 

  • Atlas RM (1984) Diversity of microbial communities. Adv Microb Ecol 7:1–47

    Google Scholar 

  • Atlas RM, Horowitz A, Krichevsky M, Bej AK (1991) Response of microbial populations to environmental disturbance. Microb Ecol 22:249–256

    Article  Google Scholar 

  • Atlas RM, Schofield EA, Morelli FA, Cameron RE (1976) Effects of petroleum pollutants on arctic microbial populations. Environ Pollut 10:35–43

    Article  Google Scholar 

  • ATSDR (2008) Agency for toxic substance and disease registry (http://www.atsdr.cdc.gov), Priority list of hazardous substances, Atlanta, GA

  • Avidano L, Gamalero E, Cossa GP, Carraro E (2005) Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl Soil Ecol 30:21–33

    Article  Google Scholar 

  • Baath E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47:335–379

    Article  CAS  Google Scholar 

  • Babich H, Bewly RJE, Stotzky G (1983) Application of “ecological dose” concept to the impact of heavy metals in some microbe-mediated ecological processes in soil. Arch Environ Contam Toxicol 12:421–426

    CAS  Google Scholar 

  • Bailar JC, Bailer AJ (1999) Risk-assessment – the mother of all uncertainties: disciplinary perspectives on uncertainty in risk assessment. Ann NY Acad Sci 895:273–285

    Article  CAS  Google Scholar 

  • Balderston WL, Sherr B, Payne WJ (1976) Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl Environ Microbiol 31:504–508

    CAS  Google Scholar 

  • Bardgett RD, Speir TW, Ross DJ, Yeates GW, Kettles HA (1994) Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biol Fertil Soils 18:71–79

    Article  CAS  Google Scholar 

  • Begley TP, Walts AE, Walsh CT (1986) Bacterial organo-mercurial lyase: overproduction, isolation, and characterization. Biochemistry 25:7186–7192

    Article  CAS  Google Scholar 

  • Bending GD, Putland C, Rayns F (2000) Changes in microbial community metabolism and labile organic matter fractions as early indicators of the impact of management on soil biological quality. Biol Fertil Soils 31:78–84

    Article  CAS  Google Scholar 

  • Berenbaum MC (1985) The expected effect of a combination of agents: the general solution. J Theor Biol 114:413–431

    Article  CAS  Google Scholar 

  • Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379:109–120

    Article  CAS  Google Scholar 

  • Birch L, Brandl H (1996) A rapid method for the determination of metal toxicity to the biodegradation of water insoluble polymers. Fresen J Anal Chem 354:760–762

    CAS  Google Scholar 

  • Blakely JK, Neher DA, Spongberg AL (2002) Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Appl Soil Ecol 21:71–88

    Article  Google Scholar 

  • Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615

    Article  CAS  Google Scholar 

  • Blumer M (1961) Benzopyrenes in soils. Science 134:474–475

    Article  CAS  Google Scholar 

  • Borde X, Guieysse B, Delgado O, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2003) Synergistic relationships in algal–bacterial microcosms for the treatment of aromatic pollutants. Bioresource Technol 86:293–300

    Article  Google Scholar 

  • Breure AM (2005) Ecological soil monitoring and quality assessment. In: Doelman P, Eijsackers HJP (eds) Vital soil: function, value and properties. Elsevier, Amsterdam, pp 281–305

    Google Scholar 

  • Brock TD (1987) The study of microorganisms in situ: progress and problems. Symp Soc Gen Microbiol 41:1–17

    Google Scholar 

  • Brohon B, Delolme C, Gourdon R (2001) Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil Biol Biochem 33:883–891

    Article  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Brookes PC, McGrath SP (1984) Effects of metal toxicity on the size of the soil microbial biomass. Eur J Soil Sci 35:341–346

    Article  CAS  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

  • Brown A, Snape JR, Harwood CR, Head IM (2008) Whole genome microarray analysis of the expression profile of Escherichia coli in response to exposure to para-nitrophenol. Adv Exp Biol 2:221–248

    Article  CAS  Google Scholar 

  • Bubbico R, Mazzarotta B (2008) Accidental release of toxic chemicals: influence of the main input parameters on consequence calculation. J Hazard Mater 151:394–406

    Article  CAS  Google Scholar 

  • Bundy JG, Campbell CD, Paton GI (2001) Comparison of response of six different luminescent bacterial bioassays to bioremediation of five contrasting soils. J Environ Monit 3:404–410

    Article  CAS  Google Scholar 

  • Bundy JG, Paton GI, Campbell CD (2004) Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil. Soil Biol Biochem 36:1149–1159

    Article  CAS  Google Scholar 

  • Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 59:1025–1029

    CAS  Google Scholar 

  • Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol Biochem 33:1777–1789

    Article  CAS  Google Scholar 

  • Cai J, DuBow MS (1997) Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). Biodegradation 8:105–111

    Article  CAS  Google Scholar 

  • CAS RegistrySM (Chemical Abstracts Service Registry) Chemical Abstract Service, (http://www.cas.org/expertise/cascontent/registry/index.html), American Chemical Society, Ohio, Columbus, 2008

  • Casella S, Payne WJ (1996) Potential of denitrifiers for soil environment protection. FEMS Microbiol Lett 140:1–8

    Article  CAS  Google Scholar 

  • Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E (2005) A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters. J Chromatgra A 1092:206–215

    Article  CAS  Google Scholar 

  • Chander K, Brookes PC (1991) Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam UK soil. Soil Biol Biochem 23:927–932

    Article  Google Scholar 

  • Chander K, Brookes PC (1993) Residual effects of zinc, copper and nickel in sewage sludge on microbial biomass in a sandy loam. Soil Biol Biochem 25:1231–1239

    Article  CAS  Google Scholar 

  • Chander K, Brookes PC, Harding SA (1995) Microbial biomass dynamics following addition of metal-enriched sewage sludges to a sandy loam. Soil Biol Biochem 27:1409–1421

    Article  CAS  Google Scholar 

  • Chang AC, Page AL, Hae-nam, H (1997) Cadmium uptake for Swiss chard grown on composted sewage sludge-treated field plots: plateau or time bomb? J Environ Qual 26:11–19

    Article  CAS  Google Scholar 

  • Chaperon S, Sauve S (2007) Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol Biochem 39:2329–2338

    Article  CAS  Google Scholar 

  • Chapman SJ (1987) Microbial biomass sulphur in some Scottish soils. Soil Biol Biochem 19:301–305

    Article  CAS  Google Scholar 

  • Chaudri AM, McGrath SP, Knight BP, Johnson DL, Jones KC (1996) Toxicity of organic compounds to the indigenous population of Rhizobium leguminosarum biovar trifolii in soil. Soil Biol Biochem 28:1483–1487

    Article  CAS  Google Scholar 

  • Chen SK, Edwards CA, Subler S (2001) Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol Biochem 33:1971–1980

    Article  CAS  Google Scholar 

  • Chen ZL, Megharaj M, Naidu R (2007a) Removal of interferences in the speciation of chromium using an octopole reaction system in ion chromatography with inductively coupled plasma mass spectrometry. Talanta 73:948–952

    Article  CAS  Google Scholar 

  • Chen ZL, Megharaj M, Naidu R (2007b). Determination of bromate and bromide in seawater by ion chromatography with an ammonium salt solution as mobile phase, and inductively coupled plasma mass spectrometry. Chromatographia 65:115–118

    Article  CAS  Google Scholar 

  • Chen ZL, Owen G, Megharaj M, Naidu R (2009) Speciation of Zn – aminopolycarboxylic complexes by electrospray ionization mass spectrometry and ion chromatography with inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectro 23:419–424

    Article  CAS  Google Scholar 

  • Chen ZL, Wang WH, Megharaj M, Naidu R (2008) Comparison of no gas and He/H2 cell modes used for reduction of isobaric interferences in selenium speciation by ion chromatography with inductively coupled plasma mass spectrometry. Spectrochim Acta B 63:69–75

    Article  CAS  Google Scholar 

  • Conrad ME, Templeton AS, Daley PF, Alvarez-Cohen L (1999) Seasonally-induced fluctuations in microbial production and consumption of methane during bioremediation of aged subsurface refinery contamination. Environ Sci Technol 33:4061–4068

    Article  CAS  Google Scholar 

  • Cooksey DA (1993) Copper uptake and resistance in bacteria. Mol Microbiol 7:1–5

    Article  CAS  Google Scholar 

  • Dalzell DJB, Alte S, Aspichueta E, de la Sota A, Etxebarria J, Gutierrez M, Hoffmann CC, Sales D, Obst U, Christofi N (2002) A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere 47:535–545

    Article  CAS  Google Scholar 

  • Dean BJ (1978) Genetic toxicology of benzene, toluene, xylenes and phenols. Mutat Res 47:75–97

    CAS  Google Scholar 

  • De-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  Google Scholar 

  • DeGraffenreid N, Shreve GS (1998) The effect of cadmium on the kinetics of trichloroethylene biodegradation by Pseudomonas (Burkholderia) pickettii PK01 under denitrifying conditions. Water Res 32:3398–3402

    Article  CAS  Google Scholar 

  • De Haan FAM, Visser-Reyneveld MI (2004) Soil pollution and soil protection. Vedams eBooks, Lucknow, p 306

    Google Scholar 

  • Demanou J, Sharma S, Dorfler U, Schroll R, Pritsch K, Njine T, Bausenwein U, Monkiedje A, Munch JC, Schloter M (2006) Structural and functional diversity of soil microbial communities as a result of combined applications of copper and mefenoxam. Soil Biol Biochem 38:2381–2389

    Article  CAS  Google Scholar 

  • Deng SP, Tabatabai MA (1995) Cellulase activity of soils: effect of trace elements. Soil Biol Biochem 27:977–979

    Article  CAS  Google Scholar 

  • Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977

    CAS  Google Scholar 

  • Dilly O (2005) Microbial energetics in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 123–138

    Chapter  Google Scholar 

  • Dilly O, Munch JC (1998) Ratios between estimates of microbial biomass content and microbial activity in soils. Biol Fertil Soils 27:374–379

    Article  CAS  Google Scholar 

  • Dinglasan MJ, Ye Y, Edwards EA, Mabury SA (2004) Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ Sci Technol 38:2857–2864

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L (1979) Effects of lead on the soil bacterial microflora. Soil Biol Biochem 11:487–491

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L (1986) Short- and long-term effects of heavy metals on urease activity in soils. Biol Fertil Soils 2:213–218

    Article  Google Scholar 

  • Doherty FG (2001) A review of the Microtox® toxicity test system for assessing the toxicity of sediments and soils. Water Qual Res J Can 36:475–518

    CAS  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Article  Google Scholar 

  • ECETOC (European Chemical Industry Ecology and Toxicology Centre) (1985) Acute toxicity tests, LD50 (LC50) determinations and alternatives. Monograph No. 6. ECETOC, Brussels, Belgium, pp 1–38

    Google Scholar 

  • Edvantoro BB, Naidu R, Megharaj M, Merrington G, Singleton I (2004). Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25:207–217

    Article  Google Scholar 

  • Edvantoro BB, Naidu R, Megharaj M, Singleton I (2003) Changes in microbial properties associated with long – term arsenic and DDT contaminated soils at disused cattle dip sites. Ecotoxicol Environ Saf 55:344–351

    Article  CAS  Google Scholar 

  • Egli T (1995) The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv Microb Ecol 14:305–386

    CAS  Google Scholar 

  • Egli T, Bosshard C, Hamer G (1986) Simultaneous utilization of methanol – glucose mixtures by Hansenula polymorpha in chemostat: influence of dilution rate and mixture composition on utilization pattern. Biotechnol Bioeng 28:1735–1741

    Article  CAS  Google Scholar 

  • Ellis RJ, Neish B, Trett MW, Best JG, Weightman AJ, Morgan P, Fry JC (2001) Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination. J Microbiol Methods 45:171–185

    Article  CAS  Google Scholar 

  • Enger DE, Smith BF (2006) Environmental science. A study of interrelationship, 11th edn. McGraw-Hill Higher Education, New York, NY, p 512

    Google Scholar 

  • Faber MD (1979) Microbial degradation of recalcitrant compounds and synthetic aromatic polymers. Enzym Microb Tech 1:226–232

    Article  CAS  Google Scholar 

  • Felsot AS (1989) Enhanced biodegradation of insecticides in soil: implications for agroecosystems. Annu Rev Entomol 34:453–476

    Article  CAS  Google Scholar 

  • Finney DJ (1942) The analysis of toxicity tests on mixtures of poisons. Ann Appl Biol 29:82–94

    Article  CAS  Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233

    Article  CAS  Google Scholar 

  • Ford TE, Mitchell R (1992) Microbial transport of toxic metals. In: Mitchell R (ed) Environmental microbiology. Wiley, New York, NY, pp 83–101

    Google Scholar 

  • Frankenberger Jr WT, Tabatabai MA (1991a) Factors affecting L-asparaginase activity in soils. Biol Fertil Soils 11:1–5

    Article  CAS  Google Scholar 

  • Frankenberger Jr WT, Tabatabai MA (1991b) Factors affecting L-glutaminase activity in soils. Soil Biol Biochem 23:875–879

    Article  CAS  Google Scholar 

  • Frey B, Stemmer M, Widmer F, Luster J, Sperisen C (2006) Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biol Biochem 38:1745–1756

    Article  CAS  Google Scholar 

  • Frischer ME, Danforth JM, Foy TF, Juraske R (2005) Bioluminescent bacteria as indicators of chemical contamination of coastal waters. J Environ Q 34:1328–1336

    Article  CAS  Google Scholar 

  • Furukawa K, Matsumura F (1976) Microbial metabolism of polychlorinated biphenyls. Studies on the relative degradability of polychlorinated biphenyl components by Alcaligenes sp. J Agric Food Chem 24:251–256

    Article  CAS  Google Scholar 

  • Gadd GM (1992) Microbial control of heavy metal pollution. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik IA (eds) Microbial control of pollution. Cambridge University Press, New York, NY, pp 59–88

    Google Scholar 

  • Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317

    Article  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  Google Scholar 

  • Gennings C, Carter WH Jr, Carchman RA, Teuschler LK, Simmons JE, Carney EW (2005) A unifying concept for assessing toxicological interactions: changes in slope. Toxicol Sci 88:287–297

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Girotti S, Ferri EN, Fumo MG, Maiolini E (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608:2–29

    Article  CAS  Google Scholar 

  • Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313

    Article  CAS  Google Scholar 

  • Gold LS (2010) The carcinogenic potency database. http://potency.berkeley.edu. Accessed 6 Feb 2010

  • Goodroad LL, Caldwell AC (1979) Effects of phosphorus fertilizer and lime on the As, Cr, Pb, and V content of soils and plants. J Environ Q 8:493–496

    Article  CAS  Google Scholar 

  • Gough MA, Rowland SJ (1990) Characterisation of unresolved complex mixtures of hydrocarbons in petroleum. Nature 344:648–650

    Article  CAS  Google Scholar 

  • Griffiths BS, Diaz-Ravina M, Ritz K, McNicol JW, Ebblewhite N, Baath E (1997) Community DNA hybridization and %G + C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiol Ecol 24:103–112

    Article  CAS  Google Scholar 

  • Gudia M, Inglese M, Meric S (2008) A multi-battery toxicity investigation on fungicides. Desalination 226:262–270

    Article  CAS  Google Scholar 

  • Gumaelius L, Smith EH, Dalhammar G (1996) Potential biomarker for denitrification of wastewaters: effects of process variables and cadmium toxicity. Water Res 30:3025–3031

    Article  CAS  Google Scholar 

  • Haanstra L, Doelman P, Oude Voshaar JH (1985) The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84:293–297

    Article  CAS  Google Scholar 

  • Hafez EE, Elbestawy E (2009) Molecular characterization of soil microorganisms: effect of industrial pollution on distribution and biodiversity. World J Microbiol Biotechnol 25:215–224

    Article  CAS  Google Scholar 

  • Hamady M, Walker J, Harris KJ, Gold NJ, Knight R (2008) Error-correcting barcode primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    Article  CAS  Google Scholar 

  • Harder W, Dijkhuizen L (1982) Strategies of mixed substrate utilization in microorganisms. Philos Trans R Soc Lond B 297:459–480

    Article  CAS  Google Scholar 

  • Harding LW Jr (1976) Polychlorinated biphenyl inhibition of marine phytoplankton photosynthesis in the Northern Adriatic Sea. Bull Environ Contam Toxicol 16:559–566

    Article  CAS  Google Scholar 

  • Harding LW Jr, Phillips JH Jr (1978) Polychlorinated biphenyls (PCB) effects on marine phytoplankton photosynthesis and cell division. Mar Biol 49:93–101

    Article  CAS  Google Scholar 

  • Harner T, Wideman JL, Jantunen LMM, Bidleman TF, Parkhurst WJ (1999) Residues of organochlorine pesticides in Alabama soils. Environ Pollut 106:323–332

    Article  CAS  Google Scholar 

  • Harris MA, Ragusa S (2000) Bacterial mitigation of pollutants in acid drainage using decomposable plant material and sludge. Environ Geol 40:195–215

    Article  CAS  Google Scholar 

  • Harrison EZ, Oakes SR, Hysell M, Hay A (2006) Organic chemicals in sewage sludges. Sci Total Environ 367:481–497

    Article  CAS  Google Scholar 

  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  Google Scholar 

  • Heal OW, MacLean Jr SF (1975) Comparative productivity in ecosystems – secondary productivity. In: van Dobben WH, Lowe-McConnell RH (eds) Unifying concepts in ecology. W. Junk B. V., The Hague, Holland, pp 89–108

    Google Scholar 

  • Henry S, Baudoin E, Lo´pez-Gutie´rrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59:327–335

    Article  CAS  Google Scholar 

  • Hesterberg D (1998) Biogeochemical cycles and processes leading to changes in mobility of chemicals in soils. Agric Ecosyst Environ 67:121–133

    Article  CAS  Google Scholar 

  • Higgins CP, Field JA, Criddle CS, Luthy RG (2005) Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Technol 39:3946–3950

    Article  CAS  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1986) Cadmium-binding proteins in Pseudomonas putida: pseudothioneins. Environ Health Perspect 65:5–11

    Article  CAS  Google Scholar 

  • Hinojosa MB, Carreira JA, Garcia-Ruiz R, Dick RP (2004) Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biol Biochem 36:1559–1568

    Article  CAS  Google Scholar 

  • Hoch M (2001) Organotin compounds in the environment – an overview. Appl Geochem 16:719–743

    Article  CAS  Google Scholar 

  • Hofman J, Dusek L, Klanova J, Bezchlebova J, Holoubek I (2004) Monitoring microbial biomass and respiration in different soils from the Czech Republic – a summary of results. Environ Int 30:19–30

    Article  Google Scholar 

  • Hollender J, Althoff K, Mundt M, Dott W (2003) Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test. Chemosphere 53:269–275

    Article  CAS  Google Scholar 

  • Holmgren E, Carlsso H, Goede P, Crescenzi C (2005) Determination and characterization of organic explosives using porous graphitic carbon and liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 1099:127–135

    Article  CAS  Google Scholar 

  • Holtan-Hartwig L, Bechmann M, Hoyas TR, Linjordet R, Bakken LR (2002) Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol Biochem 34:1181–1190

    Article  CAS  Google Scholar 

  • Hong Y, Gu J-D (2009) Bacterial anaerobic respiration and electron transfer relevant to the biotransformation of pollutants. Inter Biodeterio Biodegra 63:973–980

    Article  CAS  Google Scholar 

  • Huang B, Kuo S, Bembenek R (2005) Availability to lettuce of arsenic and lead from trace element fertilizers in soil. Water Air Soil Pollut 164:223–239

    Article  CAS  Google Scholar 

  • Hylander LD, Goodsite ME (2006) Environmental costs of mercury pollution. Sci Total Environ 368:352–370

    Article  CAS  Google Scholar 

  • Ibarrolaza A, Coppotelli BM, Panno Del MT, Donati ER, Morelli IS (2009) Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms. Biodegradation 20:95–107

    Article  CAS  Google Scholar 

  • Insam H (1990) Are soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol Biochem 22:525–532

    Article  Google Scholar 

  • Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15:177–188

    Article  Google Scholar 

  • Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178

    Article  Google Scholar 

  • Jonsson CM, Aoyama H (2007) In vitro effect of agriculture pollutants and their joint action on Pseudokirchneriella subcapitata acid phosphatase. Chemosphere 69:849–855

    Article  CAS  Google Scholar 

  • Joshi T, Iyengar L, Singh K, Garg S (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Bioresource Technol 99:7115–7121

    Article  CAS  Google Scholar 

  • Jouany JM (1998) Environment and human health. Ecotoxicol Environ Saf 40:2–3

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Adriano DC (1995) Trace metals. In: Rechcigl JE (ed) Soil amendments and environmental quality. Lewis, New York, NY, pp 139–168

    Google Scholar 

  • Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42:1–13

    Article  CAS  Google Scholar 

  • Kaufmann K, Chapman SJ, Campbell CD, Harms H, Hohener P (2006) Miniaturized test system for soil respiration induced by volatile pollutants. Environ Pollut 140:269–278

    Article  CAS  Google Scholar 

  • Kawanabe H (1996) Importance of community relationships in biodiversity. In: Colwell RR, Simidu U, Ohwada K (eds) Microbial diversity in time and space. Plenum, New York, NY, pp 13–18

    Chapter  Google Scholar 

  • Keefer RF, Singh RN, Horvath DJ (1986) Chemical composition of vegetables grown on an agricultural soil amended with sewage sludges. J Environ Q 15:146–152

    Article  CAS  Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food web-specific biomagnification of persistent organic pollutants. Science 317:236–239

    Article  CAS  Google Scholar 

  • Khalil MA, Abdel-Lateif HM, Bayoumi BM, Van Straalen NM (1996) Analysis of separate and combined effects of heavy metals on the growth or Aporrectodea caliginosa (Oligochaeta; Annelida), using the toxic unit approach. Appl Soil Ecol 4:213–219

    Article  Google Scholar 

  • Khan KS, Chander K, Hartmann G, Lamersdorf N, Joergensen RG (2007) Sources of heavy metals and their long-term effects on microbial C, N and P relationships in soil. Water Air Soil Pollut 181:225–234

    Article  CAS  Google Scholar 

  • Khan M, Scullion J (1999) Microbial activity in grassland soil amended with sewage sludge containing varying rates and combinations of Cu, Ni and Zn. Biol Fertil Soils 30:202–209

    Article  CAS  Google Scholar 

  • Kidambi SP, Sundin GW, Palmer DA, Chakrabarty AM, Bender CL (1995) Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 61:2172–2179

    CAS  Google Scholar 

  • Kizilkaya R, Askin T, Bayrakli B, Saglam M (2004) Microbiological characteristics of soils contaminated with heavy metals. Eur J Soil Biol 40:95–102

    Article  CAS  Google Scholar 

  • Klecka GM, Maier WJ (1988) Kinetics of microbial growth on mixtures of pentachlorophenol and chlorinated aromatic compounds. Biotechnol Bioeng 31:328–335

    Article  CAS  Google Scholar 

  • Konemann WH, Pieters MN (1996) Confusion of concepts in mixture toxicology. Food Chem Toxicol 34:1025–1031

    Article  CAS  Google Scholar 

  • Kools SAE, van Roovert M, van Gestel CAM, van Straalen NM (2005) Glyphosate degradation as a soil health indicator for heavy metal polluted soils. Soil Biol Biochem 37:1303–1307

    Article  CAS  Google Scholar 

  • Kotrikla A, Gatidou G, Lekkas TD (1999) Toxic effects of atrazine, deethyl-atrazine, deisopropyl-atrazine and metolachlor on Chlorella fusca var fusca. Global NEST Int J 1:39–45

    Google Scholar 

  • Kozdroj J, van Elsas JD (2001) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods 43:197–212

    Article  CAS  Google Scholar 

  • Kuenen GJ, Robertson LA (1994) Combined nitrification – denitrification processes. FEMS Microbiol Rev 15:109–117

    Article  CAS  Google Scholar 

  • Kunito T, Saeki K, Goto S, Hayashi H, Oyaizu H, Matsumoto S (2001) Copper and zinc affecting microorganisms in long-term sludge-amended soils. Bioresource Technol 79:135–146

    Article  CAS  Google Scholar 

  • Kuo CW, Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62:2317–2323

    CAS  Google Scholar 

  • Kuperman RG, Carreiro MM (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29:179–190

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Q 31:109–120

    Article  CAS  Google Scholar 

  • Lega R, Ladwig G, Meresz O, Clement RE, Crawford G, Salemi R, Jones Y (1997) Quantitative determination of organic priority pollutants in sewage sludge by GC/MS. Chemosphere 34:1705–1712

    Article  CAS  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  Google Scholar 

  • Leitgib L, Kalman J, Gruiz K (2007) Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere 66:428–434

    Article  CAS  Google Scholar 

  • Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H (2006) Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere 62:1374–1380

    Article  CAS  Google Scholar 

  • Liao M, Xie XM (2007) Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicol Environ Saf 66:217–223

    Article  CAS  Google Scholar 

  • Lin C-W, Chen S-Y, Cheng Y-W (2006) Effect of metals on biodegradation kinetics for methyl tert-butyl ether. Biochem Eng J 32:25–32

    Article  CAS  Google Scholar 

  • Litz N (1992) Organische Verbindungen. In: Blume HP (ed) Handbuch des Bodenschutzes. Bodenokologie und-belastung. Vorbeugende und abwehrende Schutzmassnahmen, Ecomed, Landsberg, pp 353–399

    Google Scholar 

  • Liu JL, Xie J, Chu Y, Sun C, Chen C, Wang Q (2008) Combined effect of cypermethrin and copper on catalase activity in soil. J Soils Sediments 8:327–332

    Article  CAS  Google Scholar 

  • Loewe S, Muischnek H (1926) Effect of combinations: mathematical basis of problem. Arch Exp Pathol Pharmakol 114:313–326

    Article  CAS  Google Scholar 

  • Long ER, Macdonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19:81–97

    Article  Google Scholar 

  • Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem 38:1430–1437

    Article  CAS  Google Scholar 

  • Lovley DR (2000) Environmental microbe–metal interactions. ASM Press, Herndon, VA, p 395

    Google Scholar 

  • Lyman WJ, Reehl WF, Rosenblatt DH (1990) Handbook of chemical property estimation methods. American Chemical Society, Washington, DC, p 960

    Google Scholar 

  • Maila MP, Randima P, Dronen K, Cloete TE (2006) Soil microbial communities: influence of geographic location and hydrocarbon pollutants. Soil Biol Biochem 38:303–310

    CAS  Google Scholar 

  • Malakul P, Srinivasan KR, Wang HY (1998) Metal toxicity reduction in naphthalene biodegradation by use of metal-chelating adsorbents. Appl Environ Microbiol 64:4610–4613

    CAS  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B (2003) Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ Int 28:719–728

    Article  CAS  Google Scholar 

  • Manz M, Wenzel KD, Dietze U, Schuurmann G (2001) Persistent organic pollutants in agricultural soils of central Germany. Sci Total Environ 277:187–198

    Article  CAS  Google Scholar 

  • Martley E, Gulson B, Louie H, Wu M, Di P (2004) Metal partitioning in soil profiles in the vicinity of an industrial complex, New South Wales, Australia. Geochem-Explor Env A4:171–179

    Article  Google Scholar 

  • Massoud MS, Al-Abdali F, Al-Ghadban AN, Al-Sarawi M (1996) Bottom sediments of the Arabian Gulf-II. TPH and TOC contents as indicators of oil pollution and implications for the effect and fate of the Kuwait oil slick. Environ Pollut 93:271–284

    Article  CAS  Google Scholar 

  • Matsumura F (1987) Comparative metabolism of mixtures of chemicals by animals, plants, and microorganisms and their significance in alteration of pollutants in the environment. In: Vouk VB, Butler GC, Upton AC, Parke DV, Asher SC (eds) Methods for assessing the effects of mixtures of chemicals. Wiley, New York, NY, pp 509–522

    Google Scholar 

  • McBride MB (1995) Toxic metal accumulation from agricultural use of sludge: are US EPA regulations protective? J Environ Q 24:5–18

    Article  CAS  Google Scholar 

  • McBride M, Kung KH (1989) Complexation of glyphosate and related ligands with iron (III). Soil Sci Soc Am J 53:1668–1673

    Article  CAS  Google Scholar 

  • McCarty PL, Rittman BE, Bouwer EJ (1984) Microbial processes affecting chemical transformations in groundwater. In: Bitton G, Gerba CP (eds) Groundwater pollution microbiology. Wiley, New York, NY, pp 89–115

    Google Scholar 

  • McFall E, Newman EB (1996) Amino acids as carbon sources. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 358–379

    Google Scholar 

  • McGrath KC, Thomas-Hall SR, Cheng CT, Leo L, Alexa A, Schmidt S, Schenk PM (2008) Isolation and analysis of mRNA from environmental microbial communities. J Microbiol Methods 75:172–176

    Article  CAS  Google Scholar 

  • McGrath SP, Cegarra J (1992) Chemical extractability of heavy metals during and after long–term applications of sewage sludge to soil. J Soil Sci 43:313–321

    Article  CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  • Megharaj M, Boul LH, Thiele JH (1999) Persistence and toxicity of DDT and its metabolites toward native algal populations and enzymatic activities in soil. Biol Fertil Soils 29:130–134

    Article  CAS  Google Scholar 

  • Megharaj M, Kantachote D, Singleton I, Naidu R (2000b). Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal metabolism of DDT. Environ Pollut 109:35–42

    Article  CAS  Google Scholar 

  • Megharaj M, Singleton I, McClure NC, Naidu R (2000a) Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long term contaminated soil. Arch Environ Contam Toxicol 38:439–445

    Article  CAS  Google Scholar 

  • Meharg AA (1994a) Inputs of pollutants into the environment from large-scale plastics fires. Toxicol Ecotoxicol News 1:117–122

    CAS  Google Scholar 

  • Meharg AA (1994b) Assessing the environmental distribution of pollutants released from chemical accidents. Environ Rev 2:121–132

    Google Scholar 

  • Merry RH, Tiller KG, Alston AM (1986) The effects of soil contamination with copper, lead and arsenic on the growth and composition of plants. II. Effects of source of contamination, varying soil pH, and prior waterlogging. Plant Soil 95:255–269

    Article  CAS  Google Scholar 

  • Mertens J, Ruyters S, Springael D, Smolders E (2007) Resistance and resilience of zinc tolerant nitrifying communities is unaffected in long-term zinc contaminated soils. Soil Biol Biochem 39:1828–1831

    Article  CAS  Google Scholar 

  • Miller MS (2007) Cleaving C–Hg bonds: two thiolates are better than one. Nat Chem Biol 3:537–538

    Article  CAS  Google Scholar 

  • Mills AL, Wassel RA (1980) Aspects of diversity measurement of microbial communities. Appl Environ Microbiol 40:578–586

    CAS  Google Scholar 

  • Misra TK (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27:4–16

    Article  CAS  Google Scholar 

  • Mitchell MJ, Hartenstein R, Swift BL, Neuhauser EF, Abrams BI, Mulligan RM, Brown BA, Craig D, Kaplan D (1978) Effects of different sewage sludge on some chemical and biological characteristics of soil. J Environ Q 7:551–559

    Article  CAS  Google Scholar 

  • Monosson E (2005) Chemical mixtures: considering the evolution of toxicology and chemical assessment. Environ Health Perspect 113:383–390

    Article  CAS  Google Scholar 

  • Montserrat G, Marti E, Sierra J, Garau MA, Cruanas R (2006) Discriminating inhibitory from enhancing effects in respirometry assays from metal polluted-sewage sludge amended soils. Appl Soil Ecol 34:52–61

    Article  Google Scholar 

  • Moriwaki H, Takata Y, Arakawa R (2003) Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in vacuum cleaner dust collected in Japanese homes. J Environ Monit 5:753–757

    Article  CAS  Google Scholar 

  • Mortland MM, Halloran LJ (1976) Polymerization of aromatic molecules on smectite. Soil Sci Am J 40:367–370

    Article  CAS  Google Scholar 

  • Motelay-Massei A, Ollivon D, Garban B, Teil MJ, Blanchard M, Chevreuil M (2004) Distribution and spatial trends of PAHs and PCBs in soils in the Seine River Basin, France. Chemosphere 55:555–565

    Article  CAS  Google Scholar 

  • Mumtaz MM (1995) Risk assessment of chemical mixtures from a public health perspective. Toxicol Lett 82–83:527–532

    Article  Google Scholar 

  • Muniz P, Danulat E, Yannicelli B, Garci-Alonso J, Medina G, Bicego MC (2004) Assessment of contamination by heavy metals and petroleum hydrocarbons in sediments of Montevideo Harbour (Uruguay). Environ Int 29:1019–1028

    Article  CAS  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Murray P, Ge Y, Hendershot WH (2000) Evaluating three trace metal contaminated sites: a field and laboratory investigation. Environ Pollut 107:127–135

    Article  CAS  Google Scholar 

  • Nannipieri P, Greco S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Stotzky G, Bollag JM (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, NY, pp 233–355

    Google Scholar 

  • Nasser A, Sposito G, Cheney MA (2000) Mechanochemical degradation of 2,4-D adsorbed on synthetic birnessite. Colloid Surf 163:117–123

    Article  CAS  Google Scholar 

  • Newman DK, Ahmann D, Morel FMM (1998) A brief review of microbial arsenate respiration. Geomicrobiol J 15:255–268

    Article  CAS  Google Scholar 

  • Nielsen NM, Winding A, Binnerup S, Hansen BM, Kroer N (2002) Microorganisms as indicators of soil health. National Environmental Research Institute (NERI), Technical Report No. 388, p 82

    Google Scholar 

  • Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  CAS  Google Scholar 

  • Nishigima FN, Weber RR, Bı´cego MC (2001) Aliphatic and aromatic hydrocarbons in sediments of Santos and Canane´ia, SP, Brazil. Mar Pollut Bull 42:1064–1072

    Article  CAS  Google Scholar 

  • Norwood WP, Borgmann U, Dixon DG, Wallace A (2003) Effects of metal mixtures on aquatic biota: a review of observations and methods. Hum Ecol Risk Assess 9:795–811

    Article  CAS  Google Scholar 

  • O’Connors HB, Wurster CF, Powers CD, Biggs DC, Rowland RG (1978) Polychlorinated biphenyls may alter marine trophic pathways by reducing phytoplankton size and production. Science 201:737–739

    Article  Google Scholar 

  • Oleszczuk P, Baran S, Baranowska E (2007) Influence of long-term soils flooding by distilled and post-sewage water on polycyclic aromatic hydrocarbons (PAHs) changes. Water Air Soil Pollut 180:237–248

    Article  CAS  Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161

    Article  CAS  Google Scholar 

  • Olmstead AW, LeBlanc GA (2005) Assessing toxicity of environmentally-relevant pollutant mixtures using a heuristic model. Integr Environ Assess Manage 1:114–122

    Article  CAS  Google Scholar 

  • Olowolafe EA (2008) Effects of using municipal waste as fertilizer on soil properties in Jos area, Nigeria. Resour Conserv Recy 52:1266–1270

    Article  Google Scholar 

  • Ortiz O, Alcaniz JM (1994) Respiration potential of microbial biomass in a calcareous soil treated with sewage sludge. Geomicrobiol J 11:333–340

    Article  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro–algal biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Pankhurst CE, Hawke BG, McDonald HJ, Kirkby CA, Buckerfield JC, Michelsen P, O’Brien KA, Gupta VVSR, Doube BM (1995) Evaluation of soil biological properties as potential indicators of soil health. Aust J Exp Agric 35:1015–1028

    Article  Google Scholar 

  • Pardue JH, Kongara S, Jones WJ (1996) Effect of cadmium on reductive dechlorination of trichloroaniline. Environ Toxicol Chem 7:1083–1088

    Article  Google Scholar 

  • Park JH, Mamun MIR, Choi JH, El-Arv AMA, MAssayed ME, Choi WJ, KYoon KS, Han SS, Kim HK, Park BJ, Kim KS, Kim SD, Choi HG, Shim JH (2010) Development of a multiresidue method for the determination of multiclass pesticides in soil using GC. Biomed Chromatogr 24:893–901

    CAS  Google Scholar 

  • Paterson, AM, Betts-Piper AA, Smol JP, Zeeb BA (2003) Diatom and chrysophyte algal response to long-term PCB contamination from a point-source in Northern Labrador, Canada. Water Air Soil Pollut 145:377–393

    Article  CAS  Google Scholar 

  • Paton GI, Rattray EAS, Campbell CD, Cresser MS, Glover LA, Meussen JCL, Killham K (1997) Use of genetically modified microbial biosensors for soil ecotoxicity testing. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, CT, pp 397–418

    Google Scholar 

  • Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458

    CAS  Google Scholar 

  • Perkiomaki J, Tom-Petersen A, Nybroe O, Fritze H (2003) Boreal forest microbial community after long-term field exposure to acid and metal pollution and its potential remediation by using wood ash. Soil Biol Biochem 35:1517–1526

    Article  CAS  Google Scholar 

  • Petersen AT, Leser TD, Marsh TL, Nybroe O (2003) Effects of copper amendment on the bacterial community in agricultural soils analyzed by the T-RFLP technique. FEMS Microb Ecol 46:53–62

    Article  CAS  Google Scholar 

  • Pizzigallo MDR, Ruggiero P, Crecchio C, Mininni R (1995) Manganese and iron oxides as reactants for oxidation of chlorophenols. Soil Sci Soc Am J 59:444–452

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Martinez RE, Golubev SV, Kompantseva EI, Shirokova LS (2008) Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: a surface speciation approach. Appl Geochem 23:2574–2588

    Article  CAS  Google Scholar 

  • Powlson DS, Brookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164

    Article  CAS  Google Scholar 

  • Prasad BR, Basavaiah S, Subba Rao A, Subba Rao IV (1984) Forms of copper in soils of grape orchards. J Ind Soc Soil Sci 32:318–322

    CAS  Google Scholar 

  • Ramaiah N, Chandramohan D (1993) Ecological and laboratory studies on the role of luminous bacteria and their luminescence in coastal pollution surveillance. Mar Pollut Bull 26:190–201

    Article  CAS  Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R, Sethunathan N (2010) The impacts of environmental pollutants on microalgae and cyanobacteria. Crit Rev Environ Sci Tech 40:699–821

    Article  CAS  Google Scholar 

  • Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69:3380–3384

    Article  CAS  Google Scholar 

  • Raynal M, Pruden A (2008) Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi–batch conditions. Biodegradation 19:269–282

    Article  CAS  Google Scholar 

  • Reardon KF, Mosteller DC, Rogers JB, DuTeau NM, Kim K-H (2002) Biodegradation kinetics of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environ Health Perspect 110(Suppl 6):1005–1011

    CAS  Google Scholar 

  • Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Mench M, Nannipieri P (2008) Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environ Pollut 152:702–712

    Article  CAS  Google Scholar 

  • Renella G, Mench M, Gelsomino A, Landi L, Nannipieri P (2005) Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol Biochem 37:1498–1506

    Article  CAS  Google Scholar 

  • Riis V, Babel W, Pucci OH (2002) Influence of heavy metals on the microbial degradation of diesel fuel. Chemosphere 49:559–568

    Article  CAS  Google Scholar 

  • Rissato SR, Galhiane MS, Apon BM, Arruda MSP (2005) Multiresidue analysis of pesticides in soil by supercritical fluid extraction/gas chromatography with electron-capture detection and confirmation by gas chromatography–mass spectrometry. J Agric Food Chem 53:62–69

    Article  CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215

    Article  CAS  Google Scholar 

  • Ronnpagel K, Janβen E, Ahlf W (1998) Asking for the indicator function of bioassays evaluating soil contamination: are the bioassay results reasonable surrogates of effects on soil microflora? Chemosphere 36:1291–1304

    Article  CAS  Google Scholar 

  • Ros M, Goberna M, Pascual JA, Klammer S, Insam H (2008) 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Methods 72:221–226

    Article  CAS  Google Scholar 

  • Rosen BP, Bhattacharjee H, Shi W (1995) Mechanisms of metalloregulation of an anion-translocating ATPase. J Bioenerg Biomembr 27:85–91

    Article  CAS  Google Scholar 

  • Rusk JA, Hamon RE, Stevens DP, McLaughlin MJ (2004) Adaptation of soil biological nitrification to heavy metals. Environ Sci Technol 38:3092–3097

    Article  CAS  Google Scholar 

  • Russell PE (1995) Fungicide resistance: occurrence and management. J Agric Sci 124:317–323

    Article  CAS  Google Scholar 

  • Said WA, Lewis DL (1991) Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl Environ Microbiol 57:1498–1503

    CAS  Google Scholar 

  • Sakadevan K, Zheng H, Bavor HJ (1999) Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater. Water Sci Technol 40:349–355

    Article  CAS  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspec 111:1093–1101

    Article  CAS  Google Scholar 

  • Scheunert I, Attar A, Zelles L (1995) Ecotoxicological effects of soil-bound pentachlorophenol residues on the microflora of soils. Chemosphere 30:1995–2009

    Article  CAS  Google Scholar 

  • Schmidt SK, Alexander M (1985) Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations. Appl Environ Microbiol 49:822–827

    CAS  Google Scholar 

  • Schwarzenbach RP, Gschwnd PM, Imbden DM (1993) Environmental organic chemistry. Wiley, New York, NY, p 681

    Google Scholar 

  • Sethunathan N, Pathak MD (1972) Increased biological hydrolysis of diazinon after repeated application in rice paddies. J Agric Food Chem 20:586–589

    Article  CAS  Google Scholar 

  • Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental component of soil quality. Soil Sci 164:224–234

    Article  CAS  Google Scholar 

  • Sharma SS, Schat H, Vooijs R, Van Heerwaarden LM (1999) Combination toxicology of copper, zinc, and cadmium in binary mixtures: concentration-dependent, antagonistic, nonadditive, and synergistic effects on root growth in Silene vulgaris. Environ Toxicol Chem 18:348–355

    CAS  Google Scholar 

  • Shiaris MP, Jambard-Sweet D (1986) Polycyclic aromatic hydrocarbons in surficial sediments of Boston Harbour, Massachusetts, USA. Mar Pollut Bull 17:469–472

    Article  CAS  Google Scholar 

  • Shimp RJ, Pfaender FK (1985) Influence of easily degradable naturally occurring carbon substrates on biodegradation of monosubstituted phenols by aquatic bacteria. Appl Environ Microbiol 49:394–401

    CAS  Google Scholar 

  • Shuman LM (1999) Organic waste amendments effect on zinc fractions of two soils. J Environ Qual 28:1442–1447

    Article  CAS  Google Scholar 

  • Siciliano SD, Lean DRS (2002) Methyltransferase: an enzyme assay for microbial methylmercury formation in acidic soils and sediments. Environ Toxicol Chem 21:1184–1190

    Article  CAS  Google Scholar 

  • Sigler WV, Turco RF (2002) The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl Soil Ecol 21:107–118

    Article  Google Scholar 

  • Singh BK, Nazaries L, Munro S, Anderson IC, Campbell CD (2006) Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Appl Environ Microbiol 72:7278–7285

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Wright DJ (2002) Degradation of chlorpyrifos, fenamiphos and chlorothalonil alone and in combination and their effects on soil microbial activity. Environ Toxicol Chem 21:2600–2605

    Article  CAS  Google Scholar 

  • Sliver S, Ji G (1994) Newer systems for bacterial resistances to toxic heavy metals. Environ Health Perspect 102(Suppl. 3):107–113

    Article  Google Scholar 

  • Smith JL, Paul EA (1990) Significance of soil microbial biomass estimation. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, NY, pp 357–396

    Google Scholar 

  • Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC (1995) A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr (VI) toxicity to soil biological properties. Soil Biol Biochem 27:801–810

    Article  CAS  Google Scholar 

  • Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC (1999) Simple kinetic approach to determine the toxicity of As (V) to soil biological properties. Soil Biol Biochem 31:705–713

    Article  CAS  Google Scholar 

  • Speir TW, Ross DJ (2002) Hydrolytic enzyme activities to assess soil degradation and recovery. In: Burns RG, Dick RP (eds) Enzymes in the environment, activity, ecology and applications. Marcel Dekker, New York, NY, pp 407–431

    Google Scholar 

  • Stone AT (1991) Oxidation and hydrolysis of ionizable organic pollutants at hydrous metal oxide surfaces. In: Sparks DL, Suarez DL (eds) Rates of soil chemical processes. Soil Sci Soc Am, Madison, WI, pp 231–254

    Google Scholar 

  • Stratton GW (1984) Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms. Arch Environ Contam Toxicol 13:35–42

    Article  CAS  Google Scholar 

  • Stratton GW, Stewart KE (1992) Glyphosate effects on microbial biomass in a coniferous forest soil. Environ Toxicol Water Qual 7:223–236

    Article  CAS  Google Scholar 

  • Summers AO, Silver S (1978) Microbial transformations of metals. Ann Rev Microbiol 32:637–672

    Article  CAS  Google Scholar 

  • Swindell AL, Reid BJ (2006) Influence of diesel concentration on the fate of phenanthrene in soil. Environ Pollut 140:79–86

    Article  CAS  Google Scholar 

  • Tabatabai MA (1977) Effects of trace elements on urease activity in soils. Soil Biol Biochem 9:9–13

    Article  CAS  Google Scholar 

  • Teuschler L, Klaunig J, Carney E, Chambers J, Conolly R, Gennings C, Giesy J, Hertzberg R, Klaassen C, Kodell R, Paustenbach D, Yang R (2002) Support of science-based decisions concerning the evaluation of the toxicology of mixtures: a new beginning. Regul Toxicol Pharmacol 36:34–39

    Article  Google Scholar 

  • Thompson IP, Bailey MJ, Boyd EM, Maguire N, Meharg AA, Ellis RJ (1999) Concentration effects of 1,2-dichlorobenzene on soil microbiology. Environ Toxicol Chem 18:1891–1898

    Article  CAS  Google Scholar 

  • Tobor-Kaplon MA, Bloem J, Romkens PFAM, de Ruiter PC (2005) Functional stability of microbial communities in contaminated soils. Oikos 111:119–129

    Article  CAS  Google Scholar 

  • Tobor-Kaplon MA, Bloem J, Romkens PFAM, de Ruiter PC (2006) Functional stability of microbial communities in contaminated soils near a zinc smelter (Budel, the Netherlands). Ecotoxicol 15:187–197

    Article  Google Scholar 

  • Toft G, Hagmar L, Giwercman A, Bonde JP (2004) Epidemiological evidence on reproductive effects of persistent organochlorines in humans. Reprod Toxicol 19:5–26

    Article  CAS  Google Scholar 

  • Tonner-Navarro LE, Phelps JL, Roberts SM, Teaf CM (1998) Current risk assessment approaches to address petroleum hydrocarbon mixtures in soils. Hum Ecol Risk Assess 4:721–736

    Article  CAS  Google Scholar 

  • Toumi A, Nejmeddine A, El Hamouri B (2000) Heavy metal removal in waste stabilization ponds and high rate ponds. Water Sci Technol 42:17–21

    CAS  Google Scholar 

  • Tyler G (1981) Heavy metals in soil biology and biochemistry. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, NY, pp 371–413

    Google Scholar 

  • Tyler G, Pahlsson A-MB, Bengtsson G, Baath E, Tranvik L (1989) Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water Air Soil Poll 47:189–215

    Article  CAS  Google Scholar 

  • US EPA (2000) Supplementary guidance for conducting health risk assessment of chemical mixtures, Risk assessment forum, EPA/630/R–00/002

    Google Scholar 

  • US EPA (2006) Methyl tertiary butyl ether (MTBE). From http://www.epa.gov/mtbe/. Retrieved 26 June 2006

  • US EPA (2010) What is the TSCA chemical substance inventory? From http://www.epa.gov/oppt/newchems/pubs/invntory.htm. Retrieved 10 Jan 2010

  • van Beelen P, Doelman P (1997) Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere 34:455–499

    Article  Google Scholar 

  • van de Leemkule MA, van Hesteren S, Pruiksma MA (1998) Minimum soil quality: a usage oriented approach from ecological perspective. Part 2: immobile Organic Micro-pollutants. Report TCB R09, Technical Soil Protection Committee, The Hague, The Netherlands, p 107

    Google Scholar 

  • van der Voet E, van Egmond L, Kleijn R, Huppes G (1994) Cadmium in the European community: a policy-oriented analysis. Waste Manage Res 12:507–526

    CAS  Google Scholar 

  • Van Gestel CAM, Hensbergen PJ (1997) Interaction of Cd and Zn toxicity for Folsomia candida willem (Collembola: Isotomidae) in relation to bioavailability in soil. Environ Toxicol Chem 16:1177–1186

    Google Scholar 

  • van Hesteren S, van de Leemkule MA, Pruiksma MA (1998) Minimum soil quality: a user-based approach from ecological perspective. Part 1: metals. Report TCB R08. Technical Soil Protection Committee, The Netherlands, p 80

    Google Scholar 

  • Vasquez-Murrieta MS, Migueles-Garduno I, Franco-Hernandez O, Govaerts B, Dendooven L (2006) C and N mineralization and microbial biomass in heavy-metal contaminated soil. Eur J Soil Biol 42:89–98

    Article  CAS  Google Scholar 

  • Vazquez S, Nogales B, Ruberto L, Hernandez E, Christie-Oleza J, Lo Balbo A, Bosch R, Lalucat J, Mac Cormack W (2009) Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microb Ecol 57:598–610

    Article  CAS  Google Scholar 

  • Venkateswarlu K (1993) Pesticide interactions with cyanobacteria in soil and culture. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 8. Marcel Dekker, New York, NY, pp 137–179

    Google Scholar 

  • Verrhiest GJ, Clement B, Volat B, Montuelle B, Perrodin Y (2002) Interactions between a polycyclic aromatic hydrocarbon mixture and the microbial communities in a natural freshwater sediment. Chemosphere 46:187–196

    Article  CAS  Google Scholar 

  • Verstraete W, Mertens B (2004) The key role of soil microbes. Dev Soil Sci 29:127–157

    Article  Google Scholar 

  • Vig K, Megharaj M, Sethunathan N, Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res 8:121–135

    Article  CAS  Google Scholar 

  • Vogt NB, Brakstad F, Thrane K, Nordenson S, Krane J, Aamot E, Kolset K, Esbensen K, Steinnes E (1987) Polycyclic aromatic hydrocarbons in soil and air: statistical analysis and classification by the SIMCA method. Environ Sci Technol 21:35–44

    Article  CAS  Google Scholar 

  • Walraven N, Laane RWPM (2009) Assessing the discharge of pharmaceuticals along the Dutch coast of the North Sea. Rev Environ Contam Toxicol 199:1–18

    Article  CAS  Google Scholar 

  • Walter H, Consolaro F, Gramatica P, Scholze M, Altenburger R (2002) Mixture toxicity of priority pollutants at no observed effect concentrations (NOECs). Ecotoxicol 11:299–310

    Article  CAS  Google Scholar 

  • Wang N, Szostek B, Folsom PW, Sulecki IM, Capka, V, Buck RC, Bert WR, Gannon JT (2005) Aerobic transformation of C-14-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant. Environ Sci Technol 39:531–538

    Article  CAS  Google Scholar 

  • Wang W, Lampi MA, Huang X-D, Gerhardt K, Dixon DG, Greenberg B (2009) Assessment of mixture toxicity of copper, cadmium, and phenanthrenequinone to the marine bacterium Vibrio fischeri. Environ Toxicol 24:166–177

    Article  CAS  Google Scholar 

  • Wang XP, Xu BQ, Kang SC, Cong ZY, Yao TD (2008) The historical residue trends of DDT, hexachlorocyclohexanes and polycyclic aromatic hydrocarbons in an ice core from Mt. Everest, central Himalayas, China. Atmos Environ 42:6699–6709

    Article  CAS  Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610

    Article  CAS  Google Scholar 

  • Welp SR, Brummer GW (1992) Toxicity of organic pollutants to soil microorganisms. In: Hall JE, Sauerbeck DR, L’Hermite P (eds) Effects of organic contaminants in sewage sludge on soil. Fertility, plants and animals. Office of the Official Publications of European Communities. CEC publication EUR 14236 EN, Luxemburg, pp 161–168

    Google Scholar 

  • Wenderoth DF, Reber HH (1999) Correlation between structural diversity and catabolic versatility of metal-affected prototrophic bacteria in soil. Soil Biol Biochem 31:345–352

    Article  CAS  Google Scholar 

  • Wenzel KD, Manz M, Hubert A, Schuurmann G (2002) Fate of POPs (DDX, HCHs, PCBs) in upper soil layers of pine forests. Sci Total Environ 286:143–154

    Article  CAS  Google Scholar 

  • Widenfalk A, Bertilsson S, Sundh I, Goedkoop W (2008) Effects of pesticides on community composition and activity of sediment microbes-responses at various levels of microbial community organization. Environ Pollut 152:576–584

    Article  CAS  Google Scholar 

  • Wightwick AM, Mollah MR, Partington DL, Allinson G (2008) Copper fungicide residues in Australian vineyard soils. J Agric Food Chem 56:2457–2464

    Article  CAS  Google Scholar 

  • Wunsche L, Bruggemann L, Babel W (1995) Determination of substrate utilization patterns of soil microbial communities: an approach to assess population changes after hydrocarbon pollution. FEMS Microbiol Ecol 17:295–306

    Google Scholar 

  • Xia X, Bollinger J, Ogram A (1995) Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Mol Ecol 4:17–28

    Article  CAS  Google Scholar 

  • Yang R (1994) Introduction to the toxicology of chemical mixtures. In: Yang R (ed) Toxicology of chemical mixtures. Academic, London, pp 1–10

    Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108

    Article  Google Scholar 

  • Zhang C, Wu L, Luo Y, Zhang H, Christie P (2008b) Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: role of pollutant migration and soil physicochemical properties. Environ Pollut 151:470–476

    Article  CAS  Google Scholar 

  • Zhang YL, Dai JL, Wang RQ, Zhang J (2008a) Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong, China. Eur J Soil Biol 44:84–91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadiyala Venkateswarlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Sethunathan, N., Naidu, R. (2011). Mixtures of Environmental Pollutants: Effects on Microorganisms and Their Activities in Soils. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 211. Reviews of Environmental Contamination and Toxicology, vol 211. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8011-3_3

Download citation

Publish with us

Policies and ethics