Spatial Analysis of Ecological Data

  • Daniel Borcard
  • François Gillet
  • Pierre Legendre
Part of the Use R book series (USE R)


Spatial analysis of ecological data is a huge field that could fill several books by itself. To learn about general approaches in spatial analysis with R, readers may consult the recent book by Bivand et al. (2008). The present chapter has a more restricted scope. After a short general introduction, it deals with several methods that were specifically developed for the analysis of scale-dependent structures of ecological data; these methods can, of course, be applied to other domains. These methods are based on sets of variables describing spatial structures in various ways, derived from the coordinates of the sites or from the neighbourhood relationships among sites.


Spatial Correlation Spatial Autocorrelation Distance Class Connectivity Matrix Connectivity Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bivand, R. S., Pebesma, E. J. and Gomez-Rubio, V.: Applied spatial data analysis with R. Use R Series, Springer, New York (2008)Google Scholar
  2. Blanchet, F. G., Legendre, P. and Borcard, D.: Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008a)CrossRefGoogle Scholar
  3. Blanchet, F. G., Legendre, P. and Borcard, D.: Modelling directional spatial processes in ecological data. Ecological Modelling 215, 325–336 (2008b)CrossRefGoogle Scholar
  4. Borcard, D. and Legendre, P.: Environmental control and spatial structure in ecological communities: an example using Oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics 1, 37–61 (1994)CrossRefGoogle Scholar
  5. Borcard, D. and Legendre, P.: All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153, 51–68 (2002)CrossRefGoogle Scholar
  6. Borcard D., Legendre, P. and Drapeau, P.: Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992)CrossRefGoogle Scholar
  7. Borcard, D., Legendre, P., Avois-Jacquet, C. and Tuomisto, H.: Dissecting the spatial structure of ecological data at multiple scales. Ecology 85, 1826–1832 (2004)CrossRefGoogle Scholar
  8. Declerck, S. A. J., Coronel, J. S., Legendre, P. and Brendonck, L.: Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. Ecography (in press)Google Scholar
  9. Dray, S., Legendre, P. and Peres-Neto, P. R.: Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196, 483–493 (2006)CrossRefGoogle Scholar
  10. Dungan, J. L., Perry, J. N., Dale, M. R. T., Legendre, P., Citron-Pousty S., Fortin, M.-J., Jakomulska, A., Miriti, M. and Rosenberg, M. S.: A balanced view of scaling in spatial statistical analysis. Ecography 25, 626–640 (2002)CrossRefGoogle Scholar
  11. Geary, R. C.: The contiguity ratio and statistical mapping. The Incorporated Statistician 5, 115–145 (1954)CrossRefGoogle Scholar
  12. Guénard, G., Legendre, P., Boisclair, D. and Bilodeau, M.: Assessment of scale-dependent correlations between variables. Ecology 91, 2952–2964 (2010)CrossRefGoogle Scholar
  13. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70 (1979)MATHMathSciNetGoogle Scholar
  14. Isaaks, E. H. and Srivastava, R. M.: An introduction to applied geostatistics. Oxford University Press, New York (1989)Google Scholar
  15. Legendre, P.: Quantitative methods and biogeographic analysis. In Garbary, D. J., South, R. R. (eds) Evolutionary biology of the marine algae of the North Atlantic. NATO ASI Series, vol G22, pp. 9–34. Springer, Berlin (1990)Google Scholar
  16. Legendre, P.: Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673 (1993)CrossRefGoogle Scholar
  17. Legendre, P. and Legendre, L.: Numerical ecology. 2nd English edition. Elsevier, Amsterdam (1998)Google Scholar
  18. Legendre, P., Dale, M. R. T., Fortin, M.-J., Gurevitch, J., Hohn M. and Myers, D.: The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25, 601–615 (2002)CrossRefGoogle Scholar
  19. Legendre, P., De Caceres, M. and Borcard, D.: Community surveys through space and time: testing the space-time interaction in the absence of replication. Ecology 91, 262–272 (2010)CrossRefGoogle Scholar
  20. Méot, A., Legendre, P. and Borcard, D.: Partialling out the spatial component of ecological variation: questions and propositions in the linear modelling framework. Environmental and Ecological Statistics 5, 1–27 (1998)CrossRefGoogle Scholar
  21. Moran, P. A. P.: Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950)MATHMathSciNetGoogle Scholar
  22. Oden, N. L. and Sokal, R. R.: Directional autocorrelation: an extension of spatial correlograms to two dimensions. Systematic Zoology 35, 608–617 (1986)CrossRefGoogle Scholar
  23. Peres-Neto, P. R. and Legendre, P.: Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography 19, 174–184 (2010)CrossRefGoogle Scholar
  24. Sidak, Z.: Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association 62, 626–633 (1967)MATHCrossRefMathSciNetGoogle Scholar
  25. Sokal, R. R.: Spatial data analysis and historical processes. In Diday E., et al. (eds) Data analysis and informatics IV, pp. 29–43. North-Holland, Amsterdam (1986)Google Scholar
  26. ter Braak, C. J. F.: The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69, 69–77 (1987)CrossRefGoogle Scholar
  27. Wackernagel, H.: Multivariate geostatistics. 3rd edition, Springer, Berlin (2003)MATHGoogle Scholar
  28. Wagner, H. H.: Spatial covariance in plant communities: integrating ordination, variogram modeling, and variance testing. Ecology 84, 1045–1057 (2003)CrossRefGoogle Scholar
  29. Wagner, H. H.: Direct multi-scale ordination with canonical correspondence analysis. Ecology 85, 342–351 (2004)CrossRefGoogle Scholar
  30. Wiens, J. A.: Spatial scaling in ecology. Functional Ecology 3, 385–397 (1989)CrossRefGoogle Scholar
  31. Wright, S. P.: Adjusted P-values for simultaneous inference. Biometrics 48, 1005–1013 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Daniel Borcard
    • 1
  • François Gillet
    • 2
  • Pierre Legendre
    • 1
  1. 1.Département de sciences biologiquesUniversité de MontréalMontréalCanada
  2. 2.UMR 6249 Chrono-environnement UFR Sciences et TechniquesUniversité de Franche-Comté - CNRSBesançon cedexFrance

Personalised recommendations