A Deterministic, Mathematical Model for Hormonal Control of the Menstrual Cycle



This chapter discusses a system of non-linear delay differential equations used to model the bloodstream concentrations of six key reproductive hormones in women, including two forms of inhibin. Three component systems are individually introduced, then merged into a unified, autonomous model. Model predictions agree with published clinical data for young women with normal menstrual cycles. In contrast to results from an earlier model, a unique stable periodic solution exists for this parameter set. Qualitative effects of changing a single sensitive parameter are discussed, and applications to oral contraceptives are included, via simulations involving exogenous hormones. Such simulations may be helpful in developing improved oral contraceptive treatment protocols and in understanding the effects of environmental estrogens on the menstrual cycle.


Luteinizing Hormone Menstrual Cycle Follicular Phase Sensitivity Coefficient Ovarian Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. .
    D. T. Baird. The ovary. In C. R. Austin and R. V. Short, editors, Hormonal control of reproduction, pages 91–114, Cambridge University Press, Cambridge, 1984Google Scholar
  2. .
    R. J. Bogumil, M. Ferin, J. Rootenberg, L. Speroff, and R. L. Vande Wiele. Mathematical studies of the human menstrual cycle. I: Formulation of a mathematical model. Journal of Clinical Endocrinology and Metabolism, 35:126–143, 1972Google Scholar
  3. .
    L. H. Clark, P. M. Schlosser, and J. F. Selgrade. Multiple stable periodic solutions in a model for hormonal control of the menstrual cycle. Bulletin of Mathematical Biology, 65:157–173, 2003PubMedCrossRefGoogle Scholar
  4. .
    Y. D. Coble, P. O. Kohler, C. M. Cargille, and G. T. Ross. Production rates and metabolic clearance rates of human follicle-stimulating hormone in premenopausal and postmenopausal women. The Journal of Clinical Investigation, 48:359–363, 1969PubMedCrossRefGoogle Scholar
  5. .
    D. L. Davis, H. L. Bradlow, M. Wolff, T. Woodruff, D. G. Hoel, and H. Anton-Culver. Medical hypothesis: Xenoestrogens as preventable causes of breast cancer. Environmental Health Perspectives, 101:372–377, 1993PubMedCrossRefGoogle Scholar
  6. .
    N. P. Groome, P. J. Illingworth, M. O’Brien, R. Pai, F. E. Rodger, J. P. Mather, and A. S. McNeilly. Measurement of dimeric inhibin B throughout the human menstrual cycle. Journal of Clinical Endocrinology and Metabolism, 81:1401–1405, 1996PubMedCrossRefGoogle Scholar
  7. .
    M. E. Hadley. Endocrinology. Simon and Schuster Co., Englewood Cliffs, third edition, 1992Google Scholar
  8. .
    J. Keener and J. Sneyd. Mathematical physiology I: Cellular physiology. Springer, New York, second edition, 2009Google Scholar
  9. .
    P. O. Kohler, G. T. Ross, and W. D. Odell. Metabolic clearance and production rates of human luteinizing hormone in pre- and postmenopausal women. The Journal of Clinical Investigation, 47:38–47, 1968PubMedCrossRefGoogle Scholar
  10. .
    J. H. Liu and S. S. C. Yen. Induction of midcycle gonadotropin surge by ovarian steroids in women: A critical evaluation. Journal of Clinical Endocrinology and Metabolism, 57: 797–802, 1983PubMedCrossRefGoogle Scholar
  11. .
    R. I. McLachlan, N. L. Cohen, K. D. Dahl, W. J. Bremner, and M. R. Soules. Serum inhibin levels during the periovulatory interval in normal women: Relationships with sex steroid and gonadotropin levels. Clinical Endocrinology, 32:39–48, 1990PubMedCrossRefGoogle Scholar
  12. .
    S. Muttukrishna, T. Child, G. M. Lockwood, N. P. Groome, D. H. Barlow, and W. L. Ledger. Serum concentrations of dimeric inhibins, activin A, gonadotropins, and ovarian steroids during the menstrual cycle in older women. Human Reproduction, 15: 549–556, 2000PubMedCrossRefGoogle Scholar
  13. .
    K. Oktay, H. Newton, J. Mullan, and R. G. Gosden. Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Human Reproduction, 13:1133–1138, 1998PubMedCrossRefGoogle Scholar
  14. .
    T. D. Pache, J. W. Wladimiroff, F. H. de Jong, W. C. Hop, and B. C. J. M. Fauser. Growth patterns of nondominant ovarian follicles during the normal menstrual cycle. Fertility and Sterility, 54:638–642, 1990PubMedGoogle Scholar
  15. .
    R. D. Pasteur. A multiple-inhibin model of the human menstrual cycle. PhD thesis, North Carolina State University, 2008. URL
  16. .
    I. Reinecke and P. Deuflhard. A complex mathematical model of the human menstrual cycle. Journal of Theoretical Biology, 247:303–330, 2007PubMedCrossRefGoogle Scholar
  17. .
    R. A. Rudel, S. J. Melly, P. W. Geno, G. Sun, and J. G. Brody. Identification of alkylphenols and other estrogenic phenolic compounds in wastewater, septage, and groundwater on Cape Cod, Massachusetts. Environmental Science and Technology, 32: 861–869, 1998CrossRefGoogle Scholar
  18. .
    P. M. Schlosser and J. F. Selgrade. A model of gonadotropin regulation during the menstrual cycle in women: Qualitative features. Environmental Health Perspectives, 108:873–881, 2000PubMedGoogle Scholar
  19. .
    J. F. Selgrade and P. M. Schlosser. A model for the production of ovarian hormones during the menstrual cycle. Fields Institute Communications, 21:429–446, 1999Google Scholar
  20. .
    L. Speroff, R. H. Glass, and N. G. Kase. Clinical gynecologic endocrinology and infertility. Lippincott Williams and Wilkins, Philadelphia, sixth edition, 1999Google Scholar
  21. .
    A. E. Treloar, R. E. Boynton, G. B. Borghild, and B. W. Brown. Variation of the human menstrual cycle through reproductive life. International Journal of Fertility, 12: 77–126, 1967PubMedGoogle Scholar
  22. .
    R. F. Vollman. The menstrual cycle. In E. Friedman, editor, Major problems in obstetrics and gynecology, pages 1–193, 1977Google Scholar
  23. .
    C. K. Welt, K. A. Martin, A. E. Taylor, G. M. Lambert-Messerlian, W. F. Jr. Crowley, J. A. Smith, D. A. Schoenfield, and J. E. Hall. Frequency modulation of follicle-stimulating hormone (FSH) during the luteal-follicular transition: Evidence of FSH control of inhibin B in normal women. Journal of Clinical Endocrinology and Metabolism, 82:2645–2652, 1997Google Scholar
  24. .
    C. K. Welt, D. J. McNicholl, A. E. Taylor, and J. E. Hall. Female reproductive aging is marked by decreased secretion of dimeric inhibin. Journal of Clinical Endocrinology and Metabolism, 84:105–111, 1999PubMedCrossRefGoogle Scholar
  25. .
    S. S. C. Yen. The human menstrual cycle: Neuroendocrine regulation. In S. S. C. Yen, R. B. Jaffe, and R. L. Barbieri, editors, Reproductive endocrinology: Physiology, pathophysiology, and clinical management, pages 191–217, W. B. Saunders Co., Philadelphia, 1999Google Scholar
  26. .
    J. R. Young and R. B. Jaffe. Strength-duration characteristics of estrogen effects on gonadotropin response to gonadotropin-releasing hormone in women. Journal of Clinical Endocrinology and Metabolism, 42:432–442, 1976PubMedCrossRefGoogle Scholar
  27. .
    A. J. Zeleznik and C. R. Pohl. Control of follicular development, corpus luteum function, the maternal recognition of pregnancy, and the neuroendocrine regulation of the menstrual cycle in higher primates. In J. D. Neill, editor, Knobil and Neill’s physiology of reproduction. Elsevier, 2006Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceThe College of WoosterWoosterUSA

Personalised recommendations