Skip to main content

Redundancy

  • Chapter
  • First Online:

Part of the book series: Integrated Circuits and Systems ((ICIR))

For designing redundancy circuit, the estimation of the advantages and disadvantages is indispensable. The introduction of redundancy in a memory chip results in yield improvement and fabrication-cost reduction. However, it also causes the following penalties. First, spare memory cells to replace faulty cells, programmable devices to memorize faulty addresses, and control circuitry to increase chip size. Second, the time required for the judgment whether the input address is faulty or not is added to the access time. Third, special process steps to fabricate the programmable devices and test time to store faulty addresses into the devices are required. Therefore, the design of redundancy circuit requires a trade-off between yield improvement and these penalties. The estimation of yield improvement requires a fault-distribution model. There are two representative models, Poisson distribution model and negative-binomial model, which are often used for the yield analysis of memory LSIs. The “replacement” of normal memory elements by spare elements requires checking whether the accessed address includes faulty elements, and if yes, inhibiting the faulty element from being activated and activating a spare element instead. These procedures should be realized with as small penalty as possible. One of the major issues for the replacement is memory-array division. Memory arrays are often divided into subarrays for the sake of access-time reduction, power reduction, and signal/noise ratio enhancement. There are two choices for memories with array division: (1) a faulty element in a subarray is replaced only by a spare element in the same subarray (intrasubarray replacement) and (2) a faulty element in a subarray may be replaced by a spare element in another subarray (intersubarray replacement). The former has smaller access penalty, while the latter realizes higher replacement efficiency. It is also possible that a subarray is replaced by a spare subarray. The devices for memorizing faulty addresses and test for finding out an effective replacement are also important issues for redundancy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Γ(α) is gamma function defined as \( \Gamma (\alpha ) = \int_0^\infty {{t^{\alpha - 1}}\,{ \exp }( - t){\hbox{d}}t} \). Γ(α) = (α − 1)! for integer α.

References

  1. S. E. Schuster, “Multiple word/bit line redundancy for semiconductor memories,” IEEE J. Solid-State Circuits, vol. SC-13, pp. 698–703, Oct. 1978.

    Article  Google Scholar 

  2. T. Mano, M. Wada, N. Ieda and M. Tanimoto, “A redundancy circuit for a fault-tolerant 256K MOS RAM,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 726–731, Aug. 1982.

    Article  Google Scholar 

  3. S. Fujii, K. Natori, T. Furuyama, S. Saito, H. Toda, T. Tanaka and O. Ozawa, “A low-power sub 100 ns 256K bit dynamic RAM,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 441–446, Oct. 1983.

    Article  Google Scholar 

  4. Y. Nishimura, M. Hamada, H. Hidaka, H. Ozaki and K. Fujishima, “A redundancy test-time reduction technique in 1-Mbit DRAM with a multibit test mode,” IEEE J. Solid-State Circuits, vol. 24, pp. 43–49, Feb. 1989.

    Article  Google Scholar 

  5. M. Horiguchi, J. Etoh, M. Aoki, K. Itoh and T. Matsumoto, “A flexible redundancy technique for high-density DRAMs,” IEEE J. Solid-State Circuits, vol. 26, pp. 12–17, Jan. 1991.

    Article  Google Scholar 

  6. C. H. Stapper, Jr., “On a composite model to the IC yield problem,” IEEE J. Solid-State Circuits, vol. SC-10, pp. 537–539, Dec. 1975.

    Article  Google Scholar 

  7. C. H. Stapper, A. N. McLaren and M. Dreckmann, “Yield model for productivity optimization of VLSI memory chips with redundancy and partially good product,” IBM J. Res. Dev., vol. 24, pp. 398–409, May 1980.

    Article  Google Scholar 

  8. T. Okabe, M. Nagata and S. Shimada, “Analysis on yield of integrated circuits and a new representation for the yield,” Trans. IEE J., vol, 92-C, pp. 399–406, Dec. 1972 (in Japanese).

    Google Scholar 

  9. C. H. Stapper, “Yield model for fault clusters within integrated circuits,” IBM J. Res. Dev., vol. 28, pp. 636–640, Sep. 1984.

    Article  Google Scholar 

  10. S. Kikuda, H. Miyamoto, S. Mori, M. Niiro and M. Yamada, “Optimized redundancy selection based on failure-related yield model for 64-Mb DRAM and beyond,” IEEE J. Solid-State Circuits, vol. 26, pp. 1550–1555, Nov. 1991.

    Article  Google Scholar 

  11. T. Yamagata, H. Sato, K. Fujita, Y. Nishimura and K. Anami, “A distributed globally replaceable redundancy scheme for sub-half-micron ULSI memories and beyond,” IEEE J. Solid-State Circuits, vol. 31, pp. 195–201, Feb. 1996.

    Article  Google Scholar 

  12. K. Imamiya, J. Miyamoto, N. Ohtsuka, N. Tomita and Y. Iyama, “Statistical memory yield analysis and redundancy design considering fabrication line improvement,” IEICE Trans. Electron., vol. E76-C, pp. 1626–1631, Nov. 1993.

    Google Scholar 

  13. R. P. Cenker, D. G. Clemons, W. R. Huber, J. B. Petrizzi, F. J. Procyk and G. M. Trout, “A fault-tolerant 64K dynamic random-access memory,” IEEE Trans. Electron Devices, vol. ED-26, pp. 853–860, June 1979.

    Article  Google Scholar 

  14. E. A. Reese, D. W. Spaderna, S. T. Flannagan and F. Tsang, “A 4K × 8 dynamic RAM with self-refresh,” IEEE J. Solid-State Circuits, vol. SC-16, pp. 479–487, Oct. 1981.

    Article  Google Scholar 

  15. K. Kokkonen, P. O. Sharp, R. Albers, J. P. Dishaw, F. Louie and R. J. Smith, “Redundancy techniques for fast static RAMs,” in ISSCC Dig. Tech. Papers, Feb. 1981, pp. 80–81.

    Google Scholar 

  16. A. Ohba, S. Ohbayashi, T. Shiomi, S. Takano, K. Anami, H. Honda, Y. Ishigaki, M. Hatanaka, S. Nagao and S. Kayano, “A 7-ns 1-Mb BiCMOS ECL SRAM with shift redundancy,” IEEE J. Solid-State Circuits, vol. 26, pp. 507–512, Apr. 1991.

    Article  Google Scholar 

  17. H. Noda, K. Inoue, M. Kuroiwa, A. Amo, A. Hachisuka, H. J. Mattausch, T. Koide, S. Soeda, K. Dosaka and K. Arimoto, “A 143MHz 1.1W 4.5Mb dynamic TCAM with hierarchical searching and shift redundancy architecture,” ISSCC Dig. Tech. Papers, Feb. 2004, pp. 208–209.

    Google Scholar 

  18. A. Roth, D. Foss, R. McKenzie and D. Perry, “Advanced ternary CAM circuits on 0.13 μm logic process technology,” in Proc. CICC, Oct. 2004, pp. 465–468.

    Google Scholar 

  19. T. Namekawa, S. Miyano, R. Fukuda, R. Haga, O. Wada, H. Banba, S. Takeda, K. Suda, K. Mimoto, S. Yamaguchi, T. Ohkubo, H. Takato and K. Numata, “Dynamically shift-switched dataline redundancy suitable for DRAM macro with wide data bus,” IEEE J. Solid-State Circuits, vol. 35, pp. 705–712, May 2000.

    Article  Google Scholar 

  20. M. Horiguchi, “Redundancy techniques for high-density DRAMs,” in Proc. Int. Conf. on Innovative Systems Silicon, Oct. 1997, pp. 22–29.

    Google Scholar 

  21. R. Hori, K. Itoh, J. Etoh, S. Asai, N. Hashimoto, K. Yagi and H. Sunami, “An experimental 1 Mbit DRAM based on high S/N design,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 634–640, Oct. 1984.

    Article  Google Scholar 

  22. K. Itoh, “Trends in megabit DRAM circuit design,” IEEE J. Solid-State Circuits, vol. 25, pp.778–789, June 1990.

    Article  Google Scholar 

  23. K. Itoh, VLSI Memory Design, Baifukan, Tokyo, 1994 (in Japanese), Chapter 2.

    Google Scholar 

  24. K. Itoh, VLSI Memory Chip Design, Springer, NY, 2001, Chapter 3.

    MATH  Google Scholar 

  25. M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara, H. Takagi, S. Nagao, S. Kayano and T. Nakano, “A divided word-line structure in the static RAM and its application to a 64k full CMOS RAM,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 479–485, Oct. 1983.

    Article  Google Scholar 

  26. K. Noda, T. Saeki, A. Tsujimoto, T. Murotani and K. Koyama, “A boosted dual word-line decoding scheme for 256Mb DRAMs,” in Symp. VLSI Circuits Dig. Tech. Papers, June 1992, pp. 112–113.

    Google Scholar 

  27. D. Galbi, K. Althoff, R. Parent, O. Kiehl, R. Houghton, F. Bonner, M. Killian, A. Wilson, K. Lau, M. Clinton, D. Chapman and H. Fischer, “A 33-ns 64-Mbit DRAM with master-wordline architecture,” in Proc. ESSCIRC, Sep. 1992, pp. 131–134.

    Google Scholar 

  28. K. Furutani, T. Hamamoto, T. Miki, M. Nakano, T. Kono, S. Kikuda, Y. Konishi and T. Yoshihara, “Highly flexible row and column redundancy and cycle time adaptive read data path for double data rate synchronous memories,” IEICE Trans. Electron., vol. E88-C, pp. 255–263, Feb. 2005.

    Article  Google Scholar 

  29. Y. Takai, M. Fujita, K. Nagata, S. Isa, S. Nakazawa, A. Hirobe, H. Ohkubo, M. Sakao, S. Horiba, T. Fukase, Y. Takaishi, M. Matsuo, M. Komuro, T. Uchida, T. Sakoh, K. Saino, S. Uchiyama, Y. Takada, J. Sekine, N. Nakanishi, T. Oikawa, M. Igeta, H. Tanabe, H. Miyamoto, T. Hashimoto, H. Yamaguchi, K. Koyama, Y. Kobayashi and T. Okuda, “A 250-Mb/s/pin, 1-Gb double-data-rate SDRAM with a bidirectional delay and an interbank shared redundancy scheme,” IEEE J. Solid-State Circuits, vol. 35, pp. 149–162, Feb. 2000.

    Article  Google Scholar 

  30. H. Yahata, Y. Okuda, H. Miyashita, H. Chigasaki, B. Taruishi, T. Akiba, Y. Kawase, T. Tachibana, S. Ueda, S. Aoyama, A. Tsukimori, K. Shibata, M. Horiguchi, Y. Saiki and Y. Nakagome, “A 256-Mb double-data-rate SDRAM with a 10-mW analog DLL circuit,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2000, pp. 74–75.

    Google Scholar 

  31. K. Sasaki, K. Ishibashi, T. Yamanaka, N. Hashimoto, T. Nishida, K. Shimohigashi, S. Hanamura and S. Honjo, “A 9-ns 1-Mbit CMOS SRAM,” IEEE J. Solid-State Circuits, vol. 24, pp. 1219–1225, Oct. 1989.

    Article  Google Scholar 

  32. H. Yamauchi, T. Suzuki, A. Sawada, T. Iwata, T. Tsuji, M. Agata, T. Taniguchi, Y. Odake, K. Sawada, T. Ohnishi, M. Fukumoto, T. Fujita and M. Inoue, “A circuit technology for high-speed battery-operated 16-Mb CMOS DRAM’s,” IEEE J. Solid-State Circuits, vol. 28, pp. 1084–1091, Nov. 1993.

    Article  Google Scholar 

  33. Y. Yokoyama, N. Itoh, M. Katayama, M. Hasegawa, K. Takashima, H. Akasaki, M. Kaneda, T. Ueda, Y. Tanaka, E. Yamasaki, M. Todokoro, K. Toriyama, H. Miki, M. Yagyu, T. Kobayashi, S. Miyaoka and N. Tamba, “A 1.8-V embedded 18-Mb DRAM macro with a 9-ns RAS access time and memory-cell area efficiency of 33%,” IEEE J. Solid-State Circuits, vol. 36, pp. 503–509, Mar. 2001.

    Article  Google Scholar 

  34. K. Ishibashi, K. Komiyaji, S. Morita, T. Aoto, S. Ikeda, K. Asayama, A. Koike, T. Yamanaka, N. Hashimoto, H. Iida, F. Kojima, K. Motohashi and K. Sasaki, “A 12.5-ns 16-Mb CMOS SRAM with common-centroid-geometry-layout sense amplifiers,” IEEE J. Solid-State Circuits, vol. 29, pp. 411–418, Apr. 1994.

    Article  Google Scholar 

  35. M. Asakura, T. Oishi, S. Tomishima, H. Hidaka, K. Arimoto and K. Fujishima, “A hierarchical bit-line architecture with flexible redundancy and block compare test for 256Mb DRAM,” in Symp. VLSI Circuits Dig. Tech. Papers, May 1993, pp. 93–94.

    Google Scholar 

  36. T. Kirihata, Y. Watanabe, H. Wong, J. K. DeBrosse, M. Yoshida, D. Katoh, S. Fujii, M. R. Wordeman, P. Poechmueller, S. A. Parke and Y. Asao, “Fault-tolerant designs for 256 Mb DRAM,” IEEE J. Solid-State Circuits, vol. 31, pp. 558–566, Apr. 1996.

    Article  Google Scholar 

  37. G. Kitsukawa, M. Horiguchi, Y. Kawajiri, T. Kawahara, T. Akiba, Y. Kawase, T. Tachibana, T. Sakai, M. Aoki, S. Shukuri, K. Sagara, R. Nagai, Y. Ohji, N. Hasegawa, N. Yokoyama, T. Kisu, H. Yamashita, T. Kure and T. Nishida, “256-Mb DRAM circuit technologies for file applications,” IEEE J. Solid-State Circuits, vol. 28, pp. 1105–1113, Nov. 1993.

    Article  Google Scholar 

  38. K. Furutani, T. Ooishi, M. Asakura, H. Hidaka, H. Ozaki and M. Yamada, “A board level parallel test circuit and a short circuit failure repair circuit for high-density, low-power DRAMs,” IEICE Trans. Electron., vol. E80-C, pp. 582–589, Apr. 1997.

    Google Scholar 

  39. M. Asakura, T. Ohishi, M. Tsukude, S. Tomishima, H. Hidaka, K. Arimoto, K. Fujishima, T. Eimori, Y. Ohno, T. Nishimura, M. Yasunaga, T. Kondoh, S. Satoh, T. Yoshihara and K. Demizu, “A 34ns 256Mb DRAM with boosted sense-ground scheme,” in ISSCC Dig. Tech. Papers, Feb. 1994, pp. 140–141.

    Google Scholar 

  40. K. Lim, S. Kang, J. Choi, J. Joo, Y. Lee, J. Lee S. Cho and B. Ryu, “Bit line coupling scheme and electrical fuse circuit for repairable operation of high density DRAM,” Symp. VLSI Circuits Dig. Tech. Papers, June 2001, pp. 33–34.

    Google Scholar 

  41. K. H. Kyung, C. W. Kim, J. Y. Lee, J. H. Kook, S. M. Seo, D. Y. Kim, J. H. Kim, J. Sunwoo, H. C. Lee, C. S. Kim, B. H. Jeong, Y. S. Sohn, S. P. Hong, J. H. Lee, J. H. Yoo and S. I. Cho, “A 800Mb/s/pin 2Gb DDR2 SDRAM with an 80nm triple metal technology,” ISSCC Dig. Tech. Papers, Feb. 2005, pp. 468–469.

    Google Scholar 

  42. K. Shimohigashi, M. Ishihara and S. Shimizu, “Redundancy techniques for dynamic RAMs,” Jpn. J. Appl. Phys., vol. 22, pp. 63–67, Apr. 1983.

    Google Scholar 

  43. S. Ohbayashi, M. Yabuuchi, K. Kono, Y. Oda, S. Imaoka, K. Usui, T. Yonezu, T. Iwamoto, K. Nii, Y. Tsukamoto, M. Arakawa, T. Uchida, M. Okada, A. Ishii, T. Yoshihara, H. Makino, K. Ishibashi and H. Shinohara, “A 65nm embedded SRAM with wafer level burn-in mode, leak-bit redundancy and Cu e-trim fuse for known good die,” IEEE J. Solid-State Circuits, vol. 43, pp. 96–108, Jan. 2008.

    Article  Google Scholar 

  44. T. Mano, K. Takeya, T. Watanabe, N. Ieda, K. Kiuchi, E. Arai, T. Ogawa and K. Hirata, “A fault-tolerant 256K RAM fabricated with molybdenum-polysilicon technology,” IEEE J. Solid-State Circuits, vol. SC-15, pp. 865–872, Oct. 1980.

    Article  Google Scholar 

  45. O. Minato, T. Masuhara, T. Sasaki, Y. Sakai, T. Hayashida, K. Nagasawa, K. Nishimura and T. Yasui, “A Hi-CMOSII 8K × 8 bit static RAM,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 793–798, Oct. 1982.

    Article  Google Scholar 

  46. J.-K. Wee, W. Yang, E.-K. Ryou, J.-S. Choi, S.-H. Ahn, J.-Y. Chung and S.-C. Kim, “An antifuse EPROM circuitry scheme for field-programmable repair in DRAM,” IEEE J. Solid-State Circuits, vol. 35, pp. 1408–1414, Oct. 2000.

    Article  Google Scholar 

  47. J.-K. Wee, K.-S. Min, J.-T. Park, S.-P. Lee, Y.-H. Kim, T.-H. Yang, J.-D. Joo and J.-Y. Chung, “A post-package bit-repair scheme using static latches with bipolar-voltage programming antifuse circuit for high-density DRAMs,” IEEE J. Solid-State Circuits, vol. 37, pp. 251–254, Feb. 2002.

    Article  Google Scholar 

  48. E. M. Lucero, N. Challa and J. Fields Jr., “A 16 kbit smart 5 V-only EEPROM with redundancy,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 539–544, Oct. 1983.

    Article  Google Scholar 

  49. S. Shukuri, K. Yanagisawa and K. Ishibashi, “CMOS process compatible ie-flash (inverse gate electrode flash) technology for system-on-a chip,” IEICE Trans. Electron., vol. E84-C, pp. 734–739, June 2001.

    Google Scholar 

  50. M. Yamaoka, K. Yanagisawa, S. Shukuri, K. Norisue and K. Ishibashi, “A system LSI memory redundancy technique using an ie-flash (inverse-gate-electrode flash) programming circuit,” IEEE J. Solid-State Circuits, vol. 37, pp. 599–604, May 2002.

    Article  Google Scholar 

  51. M. Tarr, D. Boudreau and R. Murphy, “Defect analysis system speeds test and repair of redundant memories,” Electronics, vol. 57, pp. 175–179, Jan. 1984.

    Google Scholar 

  52. J. R. Day, “A fault-driven, comprehensive redundancy algorithm,” IEEE Design Test Comput., vol. 2, pp. 35–44, June 1985.

    Article  Google Scholar 

  53. W. K. Huang, Y.-N. Shen and F. Lombardi, “New approaches for the repairs of memories with redundancy by row/column deletion for yield enhancement,” IEEE Trans. Comput. Aided Des., vol. 9, pp. 323–328, Mar. 1990.

    Article  Google Scholar 

  54. T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada and H. Hidaka, “A built-in self-repair analyzer (CRESTA) for embedded DRAMs,” in Proc. ITC, Oct. 2000, pp. 567–574.

    Google Scholar 

  55. C.-T. Huang, C.-F. Wu, J.-F. Li and C.-W. Wu, “Built-in redundancy analysis for memory yield improvement,” IEEE Trans. Reliab., vol. 52, pp. 386–399, Dec. 2003.

    Article  Google Scholar 

  56. N. Ohtsuka, S. Tanaka, J. Miyamoto, S. Saito, S. Atsumi, K. Imamiya, K. Yoshikawa, N. Matsukawa, S. Mori, N. Arai, T. Shinagawa, Y. Kaneko, J. Matsunaga and T. Iizuka, “A 4-Mbit CMOS EPROM,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 669–675, Oct. 1987.

    Article  Google Scholar 

  57. D. Kantz, J. R. Goetz, R. Bender, M. Baehring, J. Wawersig, W. Meyer and W. Mueller, “A 256K DRAM with descrambled redundancy test capability,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 596–602, Oct. 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Horiguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Horiguchi, M., Itoh, K. (2011). Redundancy. In: Nanoscale Memory Repair. Integrated Circuits and Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7958-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7958-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7957-5

  • Online ISBN: 978-1-4419-7958-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics