Advertisement

Neutrino Physics

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Neutrinos are truly fascinating particles that, due to their extraordinary properties, have played and continue to play a crucial role in our understanding of the universe. In the first part of this chapter we review the basic properties of neutrinos from a historical perspective until the discovery of neutrino mass, approximately a decade ago. We then devote one section to the topic of neutrino oscillations, the study of which constitutes the main purpose of the MINOS experiment. We end with an assessment of the open questions in neutrino physics, with a particular emphasis on those addressed by this thesis.

Keywords

Neutrino Mass Neutrino Oscillation Sterile Neutrino Solar Neutrino Neutrino Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.H. Becquerel, On the rays emitted by phosphorescence, Compt. Rend. Math. 122, 420–421 (1896).Google Scholar
  2. 2.
    J. Chadwick, Distribution in intensity in the magnetic spectrum of the \(\beta\)-rays of radium, Ver. Dtsch. Physik. Ges. 16, 383–391 (1914)Google Scholar
  3. 3.
    C.D. Ellis, W.A. Wooster, The average energy of disintegration of radium E. Proc. R. Soc. London Ser. A 117(776), 109–123 (1927)Google Scholar
  4. 4.
    W. Pauli, Letter to the Physical Society of Tübingen (1930). The letter is reproduced in Are There Really Neutrinos?: An Evidential Story, ed. by Allan Franklin (Westview Press, Boulder, 2001)Google Scholar
  5. 5.
    J. Chadwick, Possible existence of a neutron, Nature 129, 312 (1932)CrossRefADSGoogle Scholar
  6. 6.
    E. Fermi, An attempt of a theory of beta radiation. 1, Z. Phys. 88, 161–177 (1934)CrossRefMATHGoogle Scholar
  7. 7.
    H. Bethe, R. Peierls, The ‘neutrino’, Nature 133, 532 (1934)CrossRefMATHADSGoogle Scholar
  8. 8.
    C. Powell, P. Fowler, D. Perkins, The study of elementary particles by the photographic method, Nature 159, 694 (1947)CrossRefGoogle Scholar
  9. 9.
    C.L. Cowan Jr., F. Reines et al., Detection of the free neutrino: a confirmation, Science 124(3212), 103–104 (1956)Google Scholar
  10. 10.
    R. Davis, D. Harmer, Attempt to observe the \(\hbox{Cl}^{37}(\overline{\nu}, e^{-})\hbox{A}^{37}\) reaction induced by reactor antineutrinos, Bull. Am. Phys. Soc. 4, 217 (1959)Google Scholar
  11. 11.
    E.J. Konopinski, H.M. Mahmoud, The universal Fermi interaction, Phys. Rev. 92, 1045–1049 (1953)CrossRefMATHADSGoogle Scholar
  12. 12.
    G. Danby et al., Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos, Phys. Rev. Lett. 9(1), 36–44 (1962)CrossRefADSGoogle Scholar
  13. 13.
    M.L. Perl et al., Evidence for anomalous lepton production in \(e+-e-\) annihilation, Phys. Rev. Lett. 35(22), 1489–1492 (1975)CrossRefADSGoogle Scholar
  14. 14.
    K. Kodama et al., Observation of tau neutrino interactions, Phys. Lett. B 504, 218–224 (2001)CrossRefADSGoogle Scholar
  15. 15.
    C. Amsler et al. (Particle Data Group), Review of particle physics, Phys. Lett. B(667), 1 (2008)Google Scholar
  16. 16.
    J.R. Ellis, Beyond the standard model with the LHC, Nature 448, 297–301 (2007)CrossRefADSGoogle Scholar
  17. 17.
    S.L. Glashow, Partial symmetries of weak interactions, Nucl. Phys. 22, 579–588 (1961)CrossRefGoogle Scholar
  18. 18.
    A. Salam, J.C. Ward, Electromagnetic and weak interactions, Phys. Lett. 13, 168–171 (1964)CrossRefMATHADSMathSciNetGoogle Scholar
  19. 19.
    S. Weinberg, A model of leptons, Phys. Rev. Lett. 19, 1264–1266 (1967)CrossRefADSGoogle Scholar
  20. 20.
    C.S. Wu et al., Experimental test of parity conservation in beta decay, Phys. Rev. 105(4), 1413–1415 (1957)CrossRefADSGoogle Scholar
  21. 21.
    M. Goldhaber, L. Grodzins, A.W. Sunyar, Helicity of neutrinos, Phys. Rev. 109(3), 1015–1017 (1958)CrossRefADSGoogle Scholar
  22. 22.
    M.E. Peskin, D.V. Schroeder, An Introduction To Quantum Field Theory (Frontiers in Physics), (Westview Press, Boulder, 1995)Google Scholar
  23. 23.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13(9), 321–323 (1964)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13(16), 508–509 (1964)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13(20), 585–587 (1964)CrossRefADSGoogle Scholar
  26. 26.
    N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10(12), 531–533 (1963)CrossRefADSGoogle Scholar
  27. 27.
    M. Kobayashi, T. Maskawa, \(CP\)-Violation in the renormalizable theory of weak interaction, Progr. Theor. Phys. 49(2), 652–657 (1973)CrossRefADSGoogle Scholar
  28. 28.
    D. Griffiths, Introduction to Elementary Particles, 2nd edn. (Wiley-VCH, Weinheim, 2008)Google Scholar
  29. 29.
    R.D. Field, R.P. Feynman, A parametrization of the properties of quark jets, Nucl. Phys. B136, 1 (1978)CrossRefADSGoogle Scholar
  30. 30.
    T.D. Lee, C.N. Yang, Parity nonconservation and a two-component theory of the neutrino, Phys. Rev. 105, 1671–1675 (1957)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    F.J. Hasert et al., Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment, Phys. Lett. B46, 138–140 (1973)CrossRefADSGoogle Scholar
  32. 32.
    S. van der Meer, Stochastic cooling and the accumulation of antiprotons, Rev. Mod. Phys. 57(3), 689–697 (1985)CrossRefADSGoogle Scholar
  33. 33.
    G. Arnison et al., Experimental observation of isolated large transverse energy electrons with associated missing energy at \(\sqrt{s}=540\) GeV, Phys. Lett. B 122, 103–116 (1983)Google Scholar
  34. 34.
    M. Banner et al., Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN pp collider, Phys. Lett. B 122, 476–485 (1983)CrossRefADSGoogle Scholar
  35. 35.
    The ALEPH Collaboration et al, Precision electroweak measurements on the \(Z\) resonance, hep-ex/0509008 (2006)Google Scholar
  36. 36.
    T. Wyatt, High-energy colliders and the rise of the standard model, Nature 448, 274–280 (2007)CrossRefADSGoogle Scholar
  37. 37.
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the homestake chlorine detector, Astrophys. J. 496(1), 505–526 (1998)CrossRefADSGoogle Scholar
  38. 38.
    J.N. Bahcall, Solar neutrinos. I: Theoretical, Phys. Rev. Lett. 12, 300–302 (1964)CrossRefADSGoogle Scholar
  39. 39.
    J.N. Abdurashitov et al., The Russian–American Gallium Experiment (SAGE) Cr neutrino source measurement, Phys. Rev. Lett. 77(23), 4708–4711 (1996)CrossRefADSGoogle Scholar
  40. 40.
    W. Hampel et al., GALLEX solar neutrino observations: results for GALLEX IV, Phys. Lett. B447, 127–133 (1999)CrossRefADSGoogle Scholar
  41. 41.
    K.S. Hirata et al., Real time, directional measurement of \(^{8}{\hbox{B}}\) solar neutrinos in the Kamiokande-II detector, Phys. Rev. D44, 2241–2260 (1991)CrossRefADSGoogle Scholar
  42. 42.
    Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81(8), 1562–1567 (1998)CrossRefADSGoogle Scholar
  43. 43.
    T.J. Haines et al., Calculation of atmospheric neutrino-induced backgrounds in a nucleon-decay search, Phys. Rev. Lett. 57(16), 1986–1989 (1986)CrossRefADSGoogle Scholar
  44. 44.
    S.P. Ahlen et al., Atmospheric neutrino flux measurement using upgoing muons, Phys. Lett. B357, 481–486 (1995)CrossRefADSGoogle Scholar
  45. 45.
    W.W.M. Allison et al., Measurement of the atmospheric neutrino flavour composition in Soudan-2, Phys. Lett. B391, 491–500 (1997)CrossRefADSGoogle Scholar
  46. 46.
    Q.R. Ahmad et al., Measurement of the rate of \({\nu_e}+d {\rightarrow}p+p+e^-\) interactions produced by \(^{8}\hbox{B}\) solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87(7), 071301 (2001)CrossRefADSGoogle Scholar
  47. 47.
    B. Aharmim et al., Measurement of the \(\nu_e\) and total B-8 solar neutrino fluxes with the Sudbury Neutrino Observatory phase I data set, Phys. Rev. C75, 045502 (2007)CrossRefADSGoogle Scholar
  48. 48.
    B. Pontecorvo, Mesonium and antimesonium, Sov. Phys. JETP 6, 429 (1957)ADSGoogle Scholar
  49. 49.
    Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles, Progr. Theor. Phys. 28(5), 870–880 (1962)CrossRefMATHADSGoogle Scholar
  50. 50.
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17(9), 2369–2374 (1978)CrossRefADSGoogle Scholar
  51. 51.
    S.P. Mikheyev, A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Sov. J. Nucl. Phys. 42, 913–917 (1985)Google Scholar
  52. 52.
    Q.R. Ahmad et al., Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett. 89(1), 011302 (2002)CrossRefADSGoogle Scholar
  53. 53.
    S.N. Ahmed et al., Measurement of the total active \(^{8}\hbox{B}\) solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity, Phys. Rev. Lett. 92(18), 181301 (2004)CrossRefADSGoogle Scholar
  54. 54.
    S. Abe et al. (the KamLAND Collaboration), Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100(22), 221803 (2008)Google Scholar
  55. 55.
    H. Murayama, CPT tests: kaon vs neutrinos, Phys. Lett. B597, 73–77 (2004)CrossRefADSGoogle Scholar
  56. 56.
    P. Adamson et al., Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam, Phys. Rev. Lett. 101, 131802 (2008)CrossRefADSGoogle Scholar
  57. 57.
    Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillations, Phys. Rev. Lett. 93(10), 101801 (2004)CrossRefADSGoogle Scholar
  58. 58.
    Y. Ashie et al., Measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I, Phys. Rev. D 71(11), 112005 (2005)CrossRefADSGoogle Scholar
  59. 59.
    V. Barger et al., Neutrino decay as an explanation of atmospheric neutrino observations, Phys. Rev. Lett. 82(13), 2640–2643 (1999)CrossRefADSGoogle Scholar
  60. 60.
    G.L. Fogli et al., Status of atmospheric neutrino \(\nu_{\mu} \rightarrow \nu_\tau\) oscillations and decoherence after the first K2K spectral data, Phys. Rev. D 67(9), 093006 (2003)CrossRefADSGoogle Scholar
  61. 61.
    E. Komatsu et al., Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180, 330–376 (2009)CrossRefADSGoogle Scholar
  62. 62.
    S. Hannestad, Neutrino mass bounds from cosmology, Nucl. Phys. Proc. Suppl. 145, 313–318 (2005)CrossRefADSGoogle Scholar
  63. 63.
    R.N. Mohapatra, P.B. Pal, Massive Neutrinos in Physics and Astrophysics, 3rd edn. World Scientific Lecture Notes in Physics, vol. 72 (World Scientific, Singapore, 2004) pp. 1–451Google Scholar
  64. 64.
    C. Kraus et al., Final results from phase II of the Mainz Neutrino Mass Search in tritium \(\beta\) decay, Eur. Phys. J. C40, 447–468 (2005)CrossRefADSGoogle Scholar
  65. 65.
    A. Osipowicz et al., KATRIN: a next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass FZKA report 6691 (2001)Google Scholar
  66. 66.
    F.T. Avignone III, S.R. Elliott, J. Engel, Double beta decay, Majorana neutrinos, and neutrino mass, Rev. Mod. Phys. 80(2), 481 (2008)CrossRefADSGoogle Scholar
  67. 67.
    A.A. Aguilar-Arevalo et al., A search for electron neutrino appearance at the \({\Updelta}m^{2} {\sim} 1\)eV\(^{2}\) scale, Phys. Rev. Lett. 98, 231801 (2007)Google Scholar
  68. 68.
    G. Karagiorgi et al., Leptonic CP violation studies at MiniBooNE in the (3+2) sterile neutrino oscillation hypothesis, Phys. Rev. D75, 013011 (2007)CrossRefADSGoogle Scholar
  69. 69.
    G. Barenboim, J.D. Lykken, Status of CPT-violating neutrinos, hep-ph/0908.2993 (2009)Google Scholar
  70. 70.
    P. Adamson et al., Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment, Phys. Rev. Lett. 101, 221804 (2008)CrossRefADSGoogle Scholar
  71. 71.
    E. Ma, Leptogenesis: Neutrinos and new lepton flavor violation at the TeV energy scale, hep-ph/0010139 (2000)Google Scholar
  72. 72.
    A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, Sov. Phys. JETP Lett. (5), 24–27 (1967)Google Scholar
  73. 73.
    J.H. Christenson et al., Evidence for the 2\(\pi\) Decay of the \(K_2^0\) Meson, Phys. Rev. Lett. 13, 138–140 (1964)CrossRefADSGoogle Scholar
  74. 74.
    M. Apollonio et al. (the CHOOZ Collaboration), Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station, Eur. Phys. J. C(27), 331–374 (2003)Google Scholar
  75. 75.
    F. Ardellier et al., Double Chooz: a search for the neutrino mixing angle \(\theta_{13}\), hep-ex/0606025 (2006)Google Scholar
  76. 76.
    X. Guo et al., A precision measurement of the neutrino mixing angle \(\theta_{13}\) using reactor antineutrinos at Daya Bay, hep-ex/0701029 (2007)Google Scholar
  77. 77.
    D.S. Ayres et al., NOvA proposal to build a 30-kiloton off-axis detector to study neutrino oscillations in the Fermilab NuMI beamline, hep-ex/0503053 (2004)Google Scholar
  78. 78.
    Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC  2011

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations