Skip to main content

Molecular Strategies: Detection of Foodborne Bacterial Pathogens

  • Chapter
  • First Online:
  • 3189 Accesses

Abstract

Conventional methods of pathogen identification have often depended on the identification of disease symptoms, isolation, and culturing of the organisms, and identification by morphology and biochemical tests. The major limitations of these culture-based morphological approaches, however, are the reliance on the ability of the organism to be cultured, the time-consuming nature, and requirement of extensive taxonomic expertise. The use of molecular methods can circumvent many of these shortcomings. Accordingly, there have been significant developments in the area of molecular detection of bacterial pathogens in the last 3 decades. We report here a brief overview of the molecular detection methods applicable to microbes from food.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, M.R. and Moss, M.O. 1995. Food microbiology. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Aitman, T.J. 2001. DNA microarrays in medical practice. BMJ 323: 611–615.

    Article  CAS  Google Scholar 

  • Anon 2005. Foodborne illness.www.eatwelleatsafe.ca/illness/foodborne.htm.

  • Arbeit, R.D. 1995. Laboratory procedures for the epidemiologic analysis of microorganisms. In P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover and R.H. Yolken (eds.), Manual of clinical microbiology, 6th edn, pp. 190–208. Washington, DC: American Society of Microbiology.

    Google Scholar 

  • Bej, K., Mahbubani, M. H., Boyce, M. J. and Atlas, R. M. 1994. Detection of Salmonella spp. in oysters by PCR. Appl. Environ. Microbiol. 60: 368–373.

    CAS  Google Scholar 

  • Belgrader, P., Bennett, W., Hadley, D., Long, G., Mariella, R., Milanovich, F., Nasarabadi, S., Nelson, W. 1998. Rapid pathogen detection using a microchip PCR array instrument. Clin. Chem. 44: 2191–2194.

    CAS  Google Scholar 

  • Berganza, J., Olabarria, G., Garcia, R., Verdoy, D., Rebollo, A. and Arana, S. 2007. DNA microdevice for electrochemical detection of Escherichia coli 0157:H7 molecular markers. Biosens. Bioelectron. 22: 2132–2137.

    Article  CAS  Google Scholar 

  • Bingen, E.H., Denamur, E. and Elion. J. 1994. Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clin. Microbiol. Rev. 7: 311–327.

    CAS  Google Scholar 

  • Blears, M.J., De Grandis, S.A., Lee, H. and Trevors, J.T. 1998. Amplified fragment length polymorphism (AFLP): review of the procedure and its applications. J. Ind. Microbiol. Biotechnol. 21: 99–114.

    Article  CAS  Google Scholar 

  • Brosch, R., Bruchrieser, C. and Rocourt, J. 1991. Subtyping Listeria monocytogenes serovar-4b by use of low frequency-cleavage restriction endonucleases and pulsed field gel electrophoresis. Res. Microbiol. 142: 667–675.

    Article  CAS  Google Scholar 

  • Buzby, J.C. and Roberts, T. 1997. Economic costs and trade impacts of microbial foodborne illness. World Health Stat. Q. 50 (1–2): 57–66.

    CAS  Google Scholar 

  • Byun, S.K., Jung, S.C. and Yoo, H.S. 2001. Random amplification of polymorphic DNA for tracing and epidemiology of Listeria monocytogenes isolated from meat. Int. J. Food Microbiol. 69: 227–235.

    Article  CAS  Google Scholar 

  • Call, D.R. 2005. Challenges and opportunities for pathogen detections using DNA microarrays. Crit. Rev. Microbiol. 31: 91–99.

    Article  CAS  Google Scholar 

  • Call, D.R., Brockman, F.J. and Chandler, D.P. 2001. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. Int. J. Food Microbiol. 67: 71–80.

    Article  CAS  Google Scholar 

  • Call, D.R., Borucki, M.K. and Loge, F. J. 2003. Detection of bacterial pathogens in environmental samples using DNA microarrays. J. Microbiol. Methods 53: 235–243.

    Article  CAS  Google Scholar 

  • Cerniglia, C.E., Wang, R.F. and Cao, W.W. 1997. A universal protocol for PCR detection of 13 species of food borne pathogens in foods. J. Appl. Microbiol. 83: 727 – 736.

    Article  Google Scholar 

  • Chiang, Y.C., Yang, C.Y., Li, C., Ho, Y.C., Lin, C.K. and Tsen, H.Y. 2006. Identification of Bacillus spp., Escherichia coli, Salmonella spp., Staphylococcus spp., and Vibrio spp. with 16S ribosomal DNA-based oligonucleotide array hybridization. Int. J. Food Microbiol. 107: 131–137.

    Article  CAS  Google Scholar 

  • Daniel, M.C. and Astruc, D. 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.104: 293–346.

    Article  CAS  Google Scholar 

  • Demarco, D.R. and Lim, D.V. 2002. Detection of Escherichia coli O157:H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides. J. Food Prot. 65: 596–602.

    Google Scholar 

  • Duffy, G., Kilbride, B., Fitzmaurice, J. and Sheridan, J.J. 2001. Routine diagnostics tests for food borne pathogens. Dublin: Agriculture and Food Development authority. ISBN 1 84170 189 0.

    Google Scholar 

  • Eom, H.S., Hwang, B.H., Kim, D.H., Lee, I.B., Kim, Y.H. and Cha. H.J. 2007. Multiple detection of food-borne pathogenic bacteria using a novel 16S rDNA-based oligonucleotide signature chip. Biosens. Bioelectron. 22: 845–853.

    Article  CAS  Google Scholar 

  • Feng, P. 1992. Commercial assay systems for detecting food-borne Salmonella: a review. J. Food Prot.55: 927–934.

    CAS  Google Scholar 

  • Finlay, P. L. and Falkow, S. (1988). Virulence factors associated with Salmonella species. Microbiol. Sci. 5: 324–328.

    CAS  Google Scholar 

  • Fratamico, P.M., Strobaugh, T.P., Medina, M.B. and Gehring, A.G. 1997. A surface plasmon resonance biosensor for real-time immunologic detection of Escherichia coli O157:H7, new techniques in the analysis of foods, pp. 103–112. Washington DC: American Chemical Society.

    Google Scholar 

  • Garaizer, J., Rementeria, A. and Porwollik, S. 2006. DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens. FEMS Immunol. Med. Microbiol. 47: 178–189.

    Article  Google Scholar 

  • Gehring, A.G., Brewster, J.D., Irwin, P.L, Tu, S.I. and Van Houten, L.J. 1999. 1-Naphtyl phosphate as an enzymatic substrate for enzyme-linked immunomagnetic electrochemistry. J. Electroanal. Chem. 469: 27–33.

    Article  CAS  Google Scholar 

  • Gerner-Smidt, P., Hise, K., Kincaid, J., Hunter, S., Rolando, S., Hyytiä-Trees, E., Ribot, E.M., Swaminathan, B. and the PulseNet Taskforce. 2006. PulseNet USA: A five-year update. Foodborne Pathog. Dis. 3: 9–19.

    Article  CAS  Google Scholar 

  • Hamza, A.A., El Gaali, E.I. and Mahdi, A.A. 2009. Use of the RAPD-PCR fingerprinting and API system for clustering lactic acid bacteria isolated from traditional Sudanese sour milk (Roab). Afr. J. Biotechnol. 8(15): 3399–3404, 1684–5315.

    CAS  Google Scholar 

  • Higuchi, R., Dollinger, G., Walsh, P.S. and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10:413–417. http://www.molecularstation.com/real-time-pcr/.

    Article  CAS  Google Scholar 

  • Higuchi, R., Fockler, C., Dollinger, G. and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11: 1026–1030.

    Article  CAS  Google Scholar 

  • Hu, Y., Zhang, Q. and Meitzler, J.C. 1999. Rapid and sensitive detection of Escherichia coli O157:H7 in bovine faeces by a multiplex PCR. J. Appl. Microbiol. 87: 867–876.

    Article  CAS  Google Scholar 

  • Huixiang, L. and Rothberg, L.J. 2004. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc. 126: 10958–10961.

    Article  Google Scholar 

  • Islam, M.S., Hasan, M.K., Miah, M.A., Sur, G.C., Elsenstien, A., Venkatesan, M., Sack, R.B. and Albert, M.J. 1993. Use of the polymerase chain reaction and fluorescent-antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms. Appl. Environ. Microbiol. 59(2): 536–540.

    CAS  Google Scholar 

  • Jackson, P.J., Hill, K.K., Laker, M.T., Ticknor, L.O. and Keim, P. 1999. Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis. J. Appl. Microbiol. 87: 263–269.

    Article  CAS  Google Scholar 

  • Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M., Vos, P., Zabeau, M. and Kersters, K. 1996. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142: 1881–1893.

    Article  CAS  Google Scholar 

  • Johnson, P.E., Lund, M.L., Shorthill, R.W., Swanson, J.E. and Kellogg, J.L. 2001. Real time biodetection of individual pathogenic microorganisms in food and water. Biomedical Sciences Institute, 37:191–96.

    Article  CAS  Google Scholar 

  • Jureen, R., Harthug, S., Sørnes, S., Digranes, A., Willems, R.J.L. and Langeland, N. 2004. Comparative analysis of amplified fragment length polymorphism and pulsed-field gel ­electrophoresis in a hospital outbreak and subsequent endemicity of ampicillin-resistant Enterococcus faecium. FEMS Immunol. Med. Microbiol. 40: 33–39.

    Article  CAS  Google Scholar 

  • Kabadjova, P., Dousset, X., Le Cam, V. and Prevost, H. 2002. Differentiation of closely related Carnobacterium food isolates based on 16S-23S ribosomal DNA intergenic spacer region polymorphism. Appl. Environ. Microbiol. 68: 5358–5366.

    Article  CAS  Google Scholar 

  • Keer, J.T. and Birch, L. 2003. Molecular methods for the assessment of bacterial viability. J. Microbiol. Methods 53: 175–183.

    Article  CAS  Google Scholar 

  • Kim, H.J., Park, S.H., Lee, T.H., Nahm, B.H., Kim, Y.R. and Yeong, H. 2008. Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics. Biosens. Bioelectron. 24 (2): 238–246.

    Article  CAS  Google Scholar 

  • Koeleman, J.G., Parlevliet, G.A., Dijkshoorn, L., Savelkoul, P.H. and Vandenbroucke-Grauls, C.M. 1997. Nosocomial outbreak of multiresistant Acinetobacter baumannii on a surgical ward: epidemiology and risk factors for acquisition. J. Hosp. Infect. 37: 113–123.

    Article  CAS  Google Scholar 

  • Koeleman, J.G.M., Stoof, J., Biesmans, D.J., Savelkoul, P. H. M. and Vandenbrouke-Grauls, C.M.J.E. 1998. Comparison of amplified ribosomal DNA restriction analysis, random fragment polymorphic DNA analysis, and amplified fragment length polymorphism fingerprinting for identification of Acinetobacter genomic species and typing of Acinetobacter baumannii. J. Clin. Microbiol. 36: 2522–2529.

    CAS  Google Scholar 

  • Kopp, M.U., De Mello, A.J. and Manz, A. 1998. Chemical amplification: continuous-flow PCR on a chip. Science 280: 1046–1048.

    Article  CAS  Google Scholar 

  • Kostrzynska, M. and Bachand, A. 2006. Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens. Can. J. Microbiol. 52: 1–8.

    Article  CAS  Google Scholar 

  • Kumar, S.H., Iddya, K. and Karunasagar, I. 2002. Molecular methods for rapid and specific detection of pathogens in seafood. Aquacult. Asia 3: 34–37.

    Google Scholar 

  • Lee, L.G., Connell, C.R. and Bloch, W. 1993. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Research, 21(16):3761–3766.

    Article  CAS  Google Scholar 

  • Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T. and O’kennedy, R. 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 32: 3–13.

    Article  CAS  Google Scholar 

  • Liao, J.C., Mastali, M., Li, Y., Gau, V., Suchard, M.A., Babbitt, J., Gornbein, J., Landaw, E.M., Edward, R.B.E., Churchill, M.B.M. and Haake, D.A. 2007. Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection. J. Mol. Diagn. 9(2): 158–168.

    Article  CAS  Google Scholar 

  • Life Technologies. 2010. TaqMan® Food Pathogen Detection Solution. http://www.TaqMan-Food-Pathogen-Detection-html.

  • Lin, J. J., Kuo, J. and Ma, J. 1996. A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria. Nucleic Acids Res. 18: 3649–3650.

    Article  Google Scholar 

  • Livak, K.J. 2000. Quantitation of DNA/RNA Using Real-time PCR Detection. http://www.appliedbiosystems.com/molecularbiology/ about/pcr/sds/white.html.

  • Lu, Y.C., Chuang, Y.S., Chen, Y.Y., Shu, A.C., Hsu, H.Y., Chang, H.Y., Yew, T.R. 2008. Bacterial detection utilizing electrical conductivity. Biosens. Bioelectron., 23:1856–1861.

    Article  CAS  Google Scholar 

  • Lukinmaa, S., Aarnisalo, K., Suihko, M.L. and Siitonen, A. 2004. Diversity of Listeria monoocytogenes isolates of human and food origin studied by serotyping, automated ribotyping and pulsed-field gel electrophoresis. Clin. Microbiol. Infect. 10: 562–568.

    Article  CAS  Google Scholar 

  • Malorny, B., Paccassoni, E., Fach, P., Bunge, C., Martin, A. and Helmuth, R. 2004. Diagnostic real-time PCR for detection of Salmonella in food. Appl. Environ. Microbiol. 17 (12): 7046–7052.

    Article  Google Scholar 

  • Manceau, C. and Horvais, A. 1997. Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Appl. Environ. Microbiol. 63: 498–505.

    CAS  Google Scholar 

  • Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M. and Tauxe, R.V. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607–625.

    Article  CAS  Google Scholar 

  • Melles, D.C., Leeuwen, W.B.V., Snijders, S.V., Horst-Kreft, D., Peeters, J.K., Verbrugh, H.A. and Belkum, A.V. 2007. Comparison of multilocus typing (MLST), pulsed-field gel electrophoresis (PFGE), and amplified fragment length polymorphism (AFLP) for genetic typing of Staphylococcus aureus. J. Microbiol. Methods 69: 371–375.

    Article  CAS  Google Scholar 

  • Mueller, U. G. and Wolfenbarger, L. L. 1999. AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14: 389–394.

    Article  Google Scholar 

  • Mumford, R., Boonham, N., Tolinson, J. and Barker, I. 2006. Advances in molecular phytodiagnostics – new solutions for old problems. Eur. J. Plant Pathol. 116: 1–19.

    Article  CAS  Google Scholar 

  • Newton, C.R. and Graham, A. 1997. PCR, 2nd edn. Oxford: Bios Scientific.

    Google Scholar 

  • Nguyen, A. V., Khan, M. I. and Lu, Z. 1994. Amplification of Salmonella chromosomal DNA using the polymerase chain reaction. Avian Dis. 38: 119–126.

    Article  CAS  Google Scholar 

  • Nogva, H.K., Dromtorp, S.M., Nissen, H. and Rudi, K. 2003. Ethidium Monoazide for DNA-Based differentiation of viable and dead bacteria by 5-Nuclease, PCR BioTechn. 34:804–813.

    Article  CAS  Google Scholar 

  • Olive, D.M. and Bean. P. 1999. Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37: 1661–1669.

    CAS  Google Scholar 

  • Oliver, J.D., 2005. The viable but nonculturable state in bacteria. J. Microbiol. 43: 93–100.

    Google Scholar 

  • Park, Y.S., Lee, S.R. and Kim, Y.G. (2006). Detection of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes in Kimchi by multiplex polymerase chain reaction (mPCR). J. Microbiol. 44 (1): 92–97.

    CAS  Google Scholar 

  • Poltronieri, P., De Blasi, M.D. and D’Urso, O.F. 2009. Detection of Listeria monocytogenes through real-time PCR and biosensor methods. Plant Soil Environ. 55(9): 363–369.

    CAS  Google Scholar 

  • Prasad, D. and Vidyarthi, A.V. 2009. DNA based methods used for characterization and detection of food borne bacterial pathogens with special consideration to recent rapid methods. Afr. J. Biotechnol. 8 (9): 1768–1775.

    CAS  Google Scholar 

  • Restrepo, S., Duque, M., Tohme, J. and Verdier, V. 1999. AFLP fingerprinting: an efficient technique for detecting genetic variation of Xanthomonas axonopodis pv. manihotis. Microbiology 145: 107–114.

    Article  CAS  Google Scholar 

  • Richter, E.R. 1993. Biosensors: applications for dairy food industry. J. Dairy Sci. 76: 3114–3117

    Article  CAS  Google Scholar 

  • Rodríguez-Lázaro, D., Lombard, B., Smith, H., Rzezutka, A., D’Agastino, M., Helmuth, R., Schroeter, A., Malorny, B., Miko, A., Guerra, B., Davison, J., Kobilinsky, A., Hernández, M., Berhteau, Y. and Cook, N. 2007. Trends in analytical methodology in food safety and quality: monitoring microorganisms and genetically modified organisms. Trends Food Sci. Technol. 18: 306–319.

    Article  Google Scholar 

  • Rudi, K., Nogva, H.K., Moen, B., Nissen, H., Bredholt, S., Moretro, T., Naterstad, K. and Holok, A. 2002. Development and application of new nucleic acid-based technologies for microbial community analyses in foods. Int. J. Food Microbiol. 78: 171–180.

    Article  CAS  Google Scholar 

  • Rudi, K., Moen, B., Dromtorp, S.M. and Holok, A. 2005Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl. Environ. Microbiol. 71: 1018–1024.

    Article  CAS  Google Scholar 

  • Sangchul, R., Kim, S.J., Lee, S.C., Chang, J.H., Kang, H.G. and Choi, J. 2009. Colorimetric detection of ssDNA in a solution. Curr. Appl. Phys. 9: 534–537.

    Article  Google Scholar 

  • Saunders, N.A., Harrison, T.G. Haththotuwa, A. Kachwalla, N. and Taylor, A.G. 1990. A method for typing strains of Legionella pneumophila serogroup I by analysis of restriction. J. Med. Microbiol. 31(1): 45–55.

    Article  CAS  Google Scholar 

  • Schlichting, C., Branger, C., Fournier, J.M., Witte, W., Boutonnier, A., Wolz, C., Goullet, P. and Döring, G. 1993. Typing of Staphylococcus aureus by pulsed-field gel electrophoresis, zymotyping, capsular typing, and phage typing: resolution of clonal relationships. J. Clin. Microbiol. 31: 227–232.

    CAS  Google Scholar 

  • Schwartz, D.C. and Cantor, C.R. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 37: 67–75.

    Article  CAS  Google Scholar 

  • Sergeev, N., Distler, M., Courtney, S., AL-Khadi, S.F., Volokhov, D., Chizhikov, V. and Rasooly. A. 2004. Multipathogen oligonucleotide microarray for environmental and biodefence applications. Biosens. Bioelectron. 20: 684–698.

    Article  CAS  Google Scholar 

  • Sergeev, N., Distler, M., Vargas, M., Chizhikov, V., Herold, K.E. and Rasooly, A. 2006. Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Methods 65: 488–502.

    Article  CAS  Google Scholar 

  • Silk, T.M. and Donnelly, C.W. 1997. Increased detection of acid injured Escherichia coli O157:H7 in autoclaved apple cider by using non selective repair on trypicase soy agar. J. Food Prot. 60: 1483–1486.

    CAS  Google Scholar 

  • Sockett, P. N. 1991. The economic implications of human Salmonella infection. J. Appl. Bacteriol. 71: 289–295.

    CAS  Google Scholar 

  • Swaminathan, B., Barrett, T.J., Hunter, S.B., Tauxe, R.V. and the CDC PulseNet Task Force. 2001. PulseNet: The molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg. Infect. Dis. 7: 382–389.

    CAS  Google Scholar 

  • Tenover, F.C, Arbeit, R.C., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H. and Swaminathan, B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33: 2233–2239.

    CAS  Google Scholar 

  • Towner, K.J. and Cockayne, A. 1993. Molecular methods for microbial identification and typing, 1st edn, pp. 1–202. London, UK: Chapman & Hall.

    Google Scholar 

  • Uyttendaele, M., van Boxstael, S. and Debevre, J. 1999. PCR assay detection of the E. coli O157:H7 eae-gene and effect of the sample preparation method on PCR detection of heat-killed E. coli O157:H7 in ground beef. Int. J. Food Microbiol. 52: 85–95.

    Article  CAS  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Rijans, M., Lee, T.V., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA-fingerprinting. Nucleic Acid Res. 23: 4407–4414.

    Article  CAS  Google Scholar 

  • Wagner, M., Maderner, A. and Brandl, E. 1996. Random amplification of polymorphic DNA for tracing and epidemiology of Listeria contamination in a cheese plant. J. Food Prot. 59: 384–389.

    CAS  Google Scholar 

  • Wang, X.W., Zhang, L., Jin, L.Q., Jin, M., Shen, Z.Q., An, S., Chao, F.H. and Li, J.W. 2007b. Development and application of an oligonucleotide microarray for the detection of foodborne bacterial pathogens. Appl. Microbiol. Biotechnol. 76: 225–233.

    Article  CAS  Google Scholar 

  • Welsh, J. and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213–7218.

    Article  CAS  Google Scholar 

  • Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.

    Article  CAS  Google Scholar 

  • Wolffs, P., Norling, B. and Radstrom, P. 2005. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells. J. Microbiol. Methods 60: 315–323.

    Article  CAS  Google Scholar 

  • Woolley, A.T., Hadley, D., Landre, P., de Mello, A.J., Mathies, R.A. and Northrup, M.A. 1996. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 68: 4081–4086.

    Article  CAS  Google Scholar 

  • Yan, W., Chang, N. and Taylor, D.E. 1991. Pulsed-field gel electrophoresis of Campylobacter jejuni and Campylobacter coli genomic DNA and its epidemiologic application. J. Infect. Dis. 163: 1068–1072.

    CAS  Google Scholar 

  • Yaron, S. and Matthews, K.R. 2002. A reverse transcriptase polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. J. Appl. Microbiol. 92: 633–640.

    Article  CAS  Google Scholar 

  • Zabeau, M. and Vos, P. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. Publication 0 534 858 A1, bulletin 93/13. European Patent Office, Munich, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Ahamad Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khan, J.A., Rathore, R.S., Ahmad, I., Khan, S. (2011). Molecular Strategies: Detection of Foodborne Bacterial Pathogens. In: Ahmad, I., Ahmad, F., Pichtel, J. (eds) Microbes and Microbial Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7931-5_8

Download citation

Publish with us

Policies and ethics