Skip to main content

Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment

  • Chapter
  • First Online:
Book cover Microbes and Microbial Technology

Abstract

Culture-based methods are important in investigating the microbial ecology of natural and anthropogenically impacted environments, but they are extremely biased in their evaluation of microbial genetic diversity by selecting a particular population of microorganisms. With recent advances in genomics and sequencing technologies, microbial community analyses using culture-independent molecular techniques have initiated a new era of microbial ecology. Molecular analyses of environmental communities have revealed that the cultivable fraction represents <1% of the total number of prokaryotic species present in any given sample. A variety of molecular methods based on direct isolation and analysis of nucleic acids, proteins, and lipids from environmental samples have been discovered and revealed structural and functional information about microbial communities. Molecular approaches such as genetic fingerprinting, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics are vital for discovering and characterizing the vast microbial diversity and understanding their interactions with biotic and abiotic environmental factors. This chapter summarizes recent progress in the area of molecular microbial ecology with an emphasis on novel techniques and approaches that offer new insights into the phylogenetic and functional diversity of microbial assemblages. The advantages and pitfalls of commonly used molecular methods to investigate microbial communities are discussed. The potential applications of each molecular technique and how they can be combined for a greater comprehensive assessment of microbial diversity has been illustrated with example studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk, J., Hesselsoe, M., Iversen, N., Horn, M., Lehner, A., Nielsen, P.H., Schloter, M., Roslev, P., Wagner, M. 2003. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol. 69:6875–6887.

    Article  CAS  Google Scholar 

  • Amann, R.I., Ludwig, W., Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143–169.

    CAS  Google Scholar 

  • Banfield, J.F., Verberkmoes, N.C., Hettich, R.L., Thelen, M.P. 2005. Proteogenomic approaches for the molecular characterization of natural microbial communities. OMICS 9:301–333.

    Article  CAS  Google Scholar 

  • Banowetz, G.M., Whittaker, G.W., Dierksen, K.P., Azevedo, M.D., Kennedy, A.C., Griffith, S.M., Steiner, J.J. 2006. Fatty acid methyl ester analysis to identify sources of soil in surface water. J. Environ. Qual. 3:133–140.

    Article  Google Scholar 

  • Benndorf, D., Balcke, G.U., Harms, H., von Bergen, M. 2007. Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J. 1:224–234.

    Article  CAS  Google Scholar 

  • Brodie, E.L., DeSantis, T.Z., Parker, J.P., Zubietta, I.X., Piceno, Y.M., Andersen, G.L. 2007. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. USA. 104:299–304.

    Article  CAS  Google Scholar 

  • Bustin, S.A., Benes, V., Nolan, T., Pfaffl, M.W. 2005. Quantitative real-time RT-PCR – a perspective. J. Mol. Endocrinol. 34:597–601.

    Article  CAS  Google Scholar 

  • Caracciolo, A.B., Bottoni, P., Grenni, P. 2010. Fluorescence in situ hybridization in soil and water ecosystems: a useful method for studying the effect of xenobiotics on bacterial community structure. Toxicol. Environ. Chem. 92:567–579.

    Article  CAS  Google Scholar 

  • Cupples, A.M., Sims, G.K. 2007. Identification of in situ 2,4 dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing. Soil Biol. Biochem. 39:232–238.

    Article  CAS  Google Scholar 

  • Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., von Mering, C., Vorholt, J.A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA. 106:16428–16433.

    Article  CAS  Google Scholar 

  • DeSantis, T.Z., Brodie, E.L., Moberg, J.P., Zubieta, I.X., Piceno, Y.M., Andersen, G.L. 2007. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb. Ecol. 53:371–383.

    Article  CAS  Google Scholar 

  • Dunbar, J., Barns, S.M., Ticknor, L.O., Kuske, C.R. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. Appl. Environ. Microbiol. 68:3035–3045.

    Article  CAS  Google Scholar 

  • Feinstein, L.M., Sul, W.J., Blackwood, C.B. 2009. Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl. Environ. Microbiol. 75:5428–5433.

    Google Scholar 

  • Fierer, N., Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 103:626–631.

    Article  CAS  Google Scholar 

  • Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71:4117–4120.

    Article  CAS  Google Scholar 

  • Fisher, M.M., Triplett, E.W. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65:4630–4636.

    CAS  Google Scholar 

  • Foti, M., Sorokin, D.Y., Lomans, B., Mussman, M., Zacharova, E.E., Pimenov, N.V., Kuenen, J.G., Muyzer, G. 2007. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl. Environ. Microbiol. 73:2093–3000.

    Article  CAS  Google Scholar 

  • Franklin, R.B., Taylor, D.R., Mills, A.L. 1999. Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). J. Microbiol. Methods. 35:225–235.

    Article  CAS  Google Scholar 

  • Garbeva, P., van Veen, J.A., van Elsas, J.D. 2004. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243–270.

    Article  CAS  Google Scholar 

  • Gentry, T.J., Wickham, G.S., Schadt, C.W., He, Z., Zhou, J. 2006. Microarray applications in microbial ecology research. Microb. Ecol. 52:159–175.

    Article  CAS  Google Scholar 

  • Ghebremedhin, B., Layer, F., König, W., König, B. 2008. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16 rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J. Clin. Microbiol. 46:1019–1025.

    Article  CAS  Google Scholar 

  • Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., Tiedje, J.M. 2007. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57:81–91.

    Article  CAS  Google Scholar 

  • Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68:669–685.

    Article  CAS  Google Scholar 

  • Hansel, C.M., Fendorf, S., Jardine, P.M., Francis, C.A. 2008. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl. Environ. Microbiol. 74:1620–1633.

    Article  CAS  Google Scholar 

  • He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., Wu, W., Gu, B., Jardine, P., Criddle, C., Zhou, J. 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1:67–77.

    Article  CAS  Google Scholar 

  • Henne, A., Schmitz, R.A., Bömeke, M., Gottschalk, G., Daniel, R. 2000. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66:3113–3116.

    Article  CAS  Google Scholar 

  • Huang, W.E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., Whiteley, A.S., Wagner, M. 2007. Raman–FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9:1878–1889.

    Article  CAS  Google Scholar 

  • Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3:Reviews 0003.

    Article  Google Scholar 

  • Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C. 2007. MEGAN analysis of metagenomic data. Genome Res. 17:377–386.

    Article  CAS  Google Scholar 

  • Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M., Omura, S. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21:526–531.

    Article  Google Scholar 

  • Keller, M., Hettich, R. 2009. Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol. Mol. Biol. Rev. 73:62–70.

    Article  CAS  Google Scholar 

  • Kirk, JL., Beaudette, L.A., Hart, M., Moutoglis, P., Klironomos, J.N., Lee, H., Trevors, J.T. 2004. Methods of studying soil microbial diversity. J Microbiol Methods. 58:169–188.

    Article  CAS  Google Scholar 

  • Kolb, S., Knief, C., Stubner, S., Conrad, R. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69:2423–2429.

    Article  CAS  Google Scholar 

  • Konstantinidis, K.T., Ramette, A., Tiedje, J.M. 2006. The bacterial species definition in the genomic era. Philos. Trans. R. Soc. B. 361:1929–1940.

    Article  Google Scholar 

  • Lauber, C.L., Hamady, M., Knight, R., Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75:5111–5120.

    Article  CAS  Google Scholar 

  • Li, X., Luo, Q., Wofford, N.Q., Keller, K.L., McInerney, M.J., Wall, J.D., Krumholz, L.R. 2009. A molybdopterin oxidoreductase is involved in H2 oxidation in Desulfovibrio desulfuricans G20. J. Bacteriol. 191:2675–2682.

    Article  Google Scholar 

  • Li, T., Wu, T.D., Mazéas, L., Toffin, L., Guerquin-Kern, J.L., Leblon, G., Bouchez, T. 2008. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10:580–588.

    Article  CAS  Google Scholar 

  • Markowitz, V.M., Chen, I.M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Anderson, I., Lykidis, A., Mavromatis, K., Ivanova, N.N., Kyrpides, N.C. 2010. The integrated microbial genomes system: an expanding comparative analysis resource. Nucl. Acids Res. 38:382–390.

    Article  Google Scholar 

  • Metzker, M.L. 2010. Sequencing technologies – the next generation. Nat. Rev. Genet. 11:31–46.

    Article  CAS  Google Scholar 

  • Mills, D.K., Entry, J.A., Gillevet, P.M. 2007. Assessing microbial community diversity using amplicon length heterogeneity polymerase chain reaction. Soil Sci. Soc. Am. J. 71:572–578.

    Article  CAS  Google Scholar 

  • Moran, M.A. 2009. Metatranscriptomics: eavesdropping on complex microbial communities. Microbe. 4:329–335.

    Google Scholar 

  • Mühling, M., Woolven-Allen, J., Murrell, J.C., Joint, I. 2008. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2:379–392.

    Article  Google Scholar 

  • Muyzer, G. 1999. Genetic fingerprinting of microbial communities – present status and future perspectives. Methods of microbial community analysis. Proceedings of the 8th international symposium on microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada.

    Google Scholar 

  • Muyzer, G., Waal, E.C.D., Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700.

    CAS  Google Scholar 

  • Nakatsua, C.H., Torsvik, V., Ovreas, L. 2000. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J. 64:1382–1388.

    Article  Google Scholar 

  • Nielsen, J.L., Christensen, D., Kloppenborg, M., Nielsen, P.H. 2003. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ. Microbiol. 5:202–211.

    Article  CAS  Google Scholar 

  • Nüsslein, K., Tiedje, J.M. 1999. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl. Environ. Microbiol. 65:3622–3626.

    Google Scholar 

  • Okabe, S., Kindaichi, T., Tsukasa, I. 2004. MAR–FISH: an ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microbes Environ. 19:83–98.

    Article  Google Scholar 

  • Okabe, S., Kindaichi, T., Ito, T. 2005. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl. Environ. Microbiol. 71:3987–3994.

    Article  CAS  Google Scholar 

  • Oliver, J.D. 2005. The viable but nonculturable state in bacteria. J. Microbiol. 43:93–100.

    Google Scholar 

  • Pernthaler, A., Pernthaler, J., Amann, R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:3094–3101.

    Article  CAS  Google Scholar 

  • Poretsky, R.S., Bano, N., Buchan, A., LeCleir, G., Kleikemper, J., Pickering, M., Pate, W.M., Moran, M.A., Hollibaugh, J.T. 2005. Analysis of microbial gene transcripts in environmental samples. Appl. Environ. Microbiol. 71:4121–4126.

    Article  CAS  Google Scholar 

  • Ranjard, L., Poly, F., Lata, J.C., Mougel, C., Thioulouse, J., Nazaret, S. 2001. Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl. Environ. Microbiol. 67:4479–4487.

    Article  CAS  Google Scholar 

  • Rastogi, G., Stetler, L.D., Peyton, B.M., Sani, R.K. 2009. Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA. J. Microbiol. 47:371–384.

    Article  Google Scholar 

  • Rastogi, G., Osman, S., Vaishampayan, P.A., Andersen, G.L., Stetler, L.D., Sani, R.K. 2010. Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Microb. Ecol. 59:94–108.

    Article  CAS  Google Scholar 

  • Riesenfeld, C.S., Schloss, P.D., Handelsman, J. 2004. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38:525–552.

    Article  CAS  Google Scholar 

  • Ritchie, N.J., Schutter, M.E., Dick, R.P., Myrold, D.D. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl. Environ. Microbiol. 66:1668–1675.

    Article  CAS  Google Scholar 

  • Rogers, S.W., Moorman, T.B., Ong, S.K. 2007. Fluorescent in situ hybridization and micro-autoradiography applied to ecophysiology in soil. Soil Sci. Soc. Am. J. 71:620–631.

    Article  CAS  Google Scholar 

  • Rondon, M.R., August, P.R., Bettermann, A.D., Brady, S.F., Grossman, T.H., Liles, M.R., Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., Tiong, C.L., Gilman, M., Osburne, M.S., Clardy, J., Handelsman, J., Goodman, R.M. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66:2541–2547.

    Article  CAS  Google Scholar 

  • Schloss, P.D., Handelsman J. 2004. Status of the microbial census. Microbiol. Mol. Biol. Rev. 68:686–691.

    Article  Google Scholar 

  • Schwieger, F., Tebbe, C.C. 1998. A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64:4870–4876.

    CAS  Google Scholar 

  • Singh, B.K., Campbell, C.D., Sorenson, S.J., Zhou, J. 2009. Soil genomics. Nature Reviews Microbiology 7:756 doi:10.1038/nrmicro2119-c1.

    CAS  Google Scholar 

  • Smit, E., Leeflang, P., Wernars, K. 1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 23:249–261.

    Article  CAS  Google Scholar 

  • Smith, C.J., Osborn, A.M. 2009. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67:6–20.

    Article  CAS  Google Scholar 

  • Thies, J.E. 2007. Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci. Soc. Am. J. 71:579–591.

    Article  CAS  Google Scholar 

  • Torsvik, V., Øvreås, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5:240–245.

    Article  CAS  Google Scholar 

  • Urich, T., Lanzen, A., Qi, J., Huson, D.H., Schleper, C., Schuster, S.C. 2008. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 3:e2527.

    Article  Google Scholar 

  • von Wintzingerode, F., Göbel, U.B., Stackebrandt, E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213–229.

    Article  Google Scholar 

  • Wellington, E.M., Berry, A., Krsek, M. 2003. Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr. Opin. Microbiol. 6:295–301.

    Article  CAS  Google Scholar 

  • Whitman, W.B., Coleman, D.C., Wiebe, W.J. 1998. Prokaryotes: the unseen majority. Proc Natl. Acad. Sci. USA. 95:6578–6583.

    Article  CAS  Google Scholar 

  • Wilmes, P., Bond, P.L. 2006. Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol. 14:92–97.

    Article  CAS  Google Scholar 

  • Yang, Y., Yao, J., Hu, S., Qi, Y. 2000. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb. Ecol. 39:72–79.

    Article  CAS  Google Scholar 

  • Yergeau, E., Schoondermark-Stolk, S.A., Brodie, E.L., Déjean, S., DeSantis, T.Z., Gonçalves, O., Piceno, Y.M., Andersen, G.L., Kowalchuk, G.A. 2009. Environmental microarray analyses of Antarctic soil microbial communities. ISME J. 3:340–351.

    Article  CAS  Google Scholar 

  • Yuhong, Z., Shi, P., Liu, W., Meng, K., Bai, Y., Wang, G., Zhan, Z., Yao, B. 2009. Lipase diversity in glacier soil based on analysis of metagenomic DNA fragments and cell culture. J. Microbiol. Biotechnol. 19:888–897.

    Article  Google Scholar 

  • Zengler, K., Walcher, M., Clark, G., Haller, I., Toledo, G., Holland, T., Mathur, E.J., Woodnutt, G., Short, J.M., Keller, M. 2005. High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol. 397:124–130.

    Article  CAS  Google Scholar 

  • Zwolinski, M.D. 2007. DNA sequencing: strategies for soil microbiology. Soil Sci. Soc. Am. J. 71:592–600.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to sincerely thank Dr. David E. Cummings, Point Loma Nazarene University, San Diego, CA for providing critical comments and suggestions on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurdeep Rastogi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rastogi, G., Sani, R.K. (2011). Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment. In: Ahmad, I., Ahmad, F., Pichtel, J. (eds) Microbes and Microbial Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7931-5_2

Download citation

Publish with us

Policies and ethics