Skip to main content

Baculovirus Pesticides: Present State and Future Perspectives

  • Chapter
  • First Online:
Microbes and Microbial Technology

Abstract

Baculoviruses pesticides are ideal tools in integrated pest management programs as they are usually highly specific to their host insects; thus, they do not affect other arthropods including pest predators and parasitoids. They are also safe to vertebrates and plants and to the biosphere. Over 50 baculovirus products have been used against different insect pests worldwide, and all have been produced in vivo, mostly on insects reared on artificial diets. However, there are cases of significant viral production in the field by applying a baculovirus against natural populations of the insect host and collecting dead or moribund larvae for further processing into a formulated product. Despite the considerable number of programs worldwide utilizing baculoviruses as biopesticides, their use is still low compared to another biological insecticide based on the bacterium Bacillus thuringiensis Berliner. As of the present, there are no programs using in vitro commercial production of baculovirus due to several technical limitations, and further developments in this area are much needed. Use of the baculovirus of the velvetbean caterpillar in Brazil has experienced a setback over the past 7 years due to modifications in cultural practices by soybean growers. Slow speed of kill by viral pesticides is a limitation that has led to considerable research effort toward developing faster killing agents through genetic modifications by either deleting or inserting toxin genes from scorpions and spiders into their genomes. However, these GMOs have not been used in practice due to significant resistance by the public to modified baculovirus genomes. Effective public extension services and farmer education toward application of biopesticides are much needed to expand the use of these products worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agathos, S. N. 1996. Insect cell bioreactors. Cytotechnology 20:173–189.

    Article  CAS  Google Scholar 

  • Arthurs, S. P., and Lacey, L. A. 2004. Field evaluation of commercial formulations of the codling moth granulovirus: persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biol. Control 31:388–397.

    Article  Google Scholar 

  • Bangham, C. R. M., and Kirkwood, T. B. L. 1990. Defective interfering particles: effects in modulating virus growth and persistence. Virology 179:821–826.

    Article  CAS  Google Scholar 

  • Bellotti, A. C. 1999. Recent advances in cassava pest management. Annu. Rev. Entomol. 44:345–370.

    Article  Google Scholar 

  • Blissard, G. W. 1996. Baculovirus-insect cell interactions. Cytotechnology 20:73–93.

    Article  CAS  Google Scholar 

  • Bloomquist, J. R. 1996. Ion channels as targets for insecticides. Annu. Rev. Entomol. 41:163–190.

    Article  CAS  Google Scholar 

  • Bonning, B. C., and Hammock, B. D. 1996. Development of recombinant baculoviruses for insect control. Annu. Rev. Entomol. 41:191–210.

    Article  CAS  Google Scholar 

  • Bonning, B. C., Roelvink, P. W., Vlak J. M., Possee R. D., and Hammock B. D. 1994. Superior expression of juvenile hormone esterase and b-galactosidase from the basic promoter of Autographa californica nuclear polyhedrosis virus compared to the p10 and polyhedrin promoters. J. Gen. Virol. 75:1551–1556.

    Article  CAS  Google Scholar 

  • Boughton, A. J., Obrycki J. J., and Bonning B. C. 2003. Effects of a protease-expressing recombinant baculovirus on nontarget insect predators of Heliothis virescens. Biol. Control 28:101–110.

    Article  Google Scholar 

  • Boyce, F. M., and Bucher, N. L. R. 1996. Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad.Sci.USA 93:2348–2352.

    Article  CAS  Google Scholar 

  • Braunagel, S. C., Russell, W. K., Rosas-Acosta, G., Russell, D. H., and Summers, M. D. 2003. Determination of protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proc. Natl. Acad. Sci. USA 100:9797–9802.

    Article  CAS  Google Scholar 

  • Bueno, R. C. O. F., Parra, J. R. P., Bueno, A. F., Moscardi, F., Oliveira, J. R. G., and Camillo, M. F. 2007. Sem barreira. Cultivar 55:12–15.

    Google Scholar 

  • Burden J. P., Hails, R. S., Windass J. D., Suner M. M., and Cory, J. S. 2000. Infectivity, speed of kill, and productivity of a baculovirus expressing the itch mite toxin txp-1 in second and fourth instar larvae of Trichoplusiani. J. Invertebr. Pathol. 75:226–236.

    Article  CAS  Google Scholar 

  • Carbonell, L. F., Hodg, M. R., Tomalski, M. D., and Miller, L. K. 1988. Synthesis of a gene coding for an insect specific scorpion neurotoxin and attempts to express it using baculovirus vectors. Gene 3:409–418.

    Article  Google Scholar 

  • Cestele S, and Catterall W. A. 2000. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892.

    Article  CAS  Google Scholar 

  • Chakraborty, S., and Reid. S. 1999. Serial passage of a Helicoverpa armigera nucleopolyhedrovirus in Helicoverpa zea cell cultures. J. Gen. Virol. 73:303–308.

    CAS  Google Scholar 

  • Chakraborty, S., Monsour, C., Teakle, R., and Reid, S.1999. Yield, biological activity, and field performance of a wild-type Helicoverpa nucleopolyhedrovirus produced in H. zea cell cultures. J. Invertebr. Pathol. 73:199–205.

    Article  CAS  Google Scholar 

  • Chang, J. H., Choi, J. Y., Jin, B. R., Roh, J. Y., Olszewski, J. A., Seo, S. J., et al. 2003. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J. Invertebr. Pathol. 84:30–37.

    Article  CAS  Google Scholar 

  • Chejanovsky, N., Zilberberg, N., Rivkin, H., Zlotkin, E., and Gurevitz, M. 1995. Functional expression of an alpha-insect scorpion neurotoxin in insect cells and lepidopterous larvae. FEBS Lett. 376:181–184.

    Article  CAS  Google Scholar 

  • Copping, L. G., and Menn, J. J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56:651–676

    Article  CAS  Google Scholar 

  • Corrêa-Ferreira, B. S., Alexandre, T. M., Pellizzaro, E. C., Moscardi, F., and Bueno, A. F. 2010. Práticas de manejo de pragas utilizadas na soja e seu impacto sobre a cultura. Embrapa Soja, Londrina, PR, Circular Técnica 78, 15p.

    Google Scholar 

  • Cunningham, J. C. 1995. Baculoviruses as microbial insecticides. In Novel Approaches to Integrated Pest Management, ed. R. Reuvei, pp. 261–292. Boca Raton: Lewis.

    Google Scholar 

  • Elazar, M., Levi, R., and Zlkotkin, E. 2001. Targeting of an expressed neurotoxin by its recombinant baculovirus. J. Exp. Biol. 204:2637–2645.

    CAS  Google Scholar 

  • Eldridge, R., Horodyski, F. M., Morton, D. B., O’Reilly, D., Truman, J. W., Riddiford L. M., and Miller, L. K. 1991. Expression of an eclosion hormone gene in insect cells using baculovirus vectors. Insect Biochem. 21:341–351.

    Article  CAS  Google Scholar 

  • Erlandson, M. 2008. Insect pest control by viruses. Encyclopedia of Virology, Third Edition, 3:125–133.

    Google Scholar 

  • Fang, M., Dai, X., and Theilmann, D. A. 2007. Autographa californica multiple nucleopolyhedrovirus exon0 (ORF141) is required for efficient egress of nucleocapsids from the nucleus.J. Virol. 81:9859–9869.

    Article  CAS  Google Scholar 

  • Fang, M. G., Nie, Y. C., Harris, S., Erlandson, M. A., and Theilmann, D. A. 2009. Autographa californica multiple nucleopolyhedrovirus core gene ac96 encodes a per Os infectivity factor (pif-4). J. Virol. 83:12569–12578.

    Article  CAS  Google Scholar 

  • Faulkner, P., Kuzio, J., Williams, G. V., and Wilson, J. A. 1997. Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. J. Gen. Virol. 78:3091–3100.

    CAS  Google Scholar 

  • Fraser, M. J., and Hink, W. F. 1982. The isolation and characterization of the MP and FP plaque variants of Galleria mellonella nuclear polyhedrosis virus. Virology 117:366–378.

    Article  CAS  Google Scholar 

  • Fraser, M. J., Smith, G. E., and Summers, M. D. 1983. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. J. Virol. 47:287–300.

    CAS  Google Scholar 

  • Froy, O., Zilberberg, N., Chejanovsky, N., Anglister, J., Loret, E., Shaanan, B., et al. 2000. Scorpion neurotoxins: structure/function relationship and application in agriculture. Pest Manag.Sci. 56:472–474.

    Article  CAS  Google Scholar 

  • Gershburg, E., Stockholm, D., Froy, O., Rashi, S., Gurevitz, M., and Chejanovsky, N. 1998. Baculovirus-mediated expression of a scorpion depressant toxin improves the insecticidal efficacy achieved with excitatory toxins. FEBS Lett. 422:132–136.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, B., Kramer, K. J., and Muthukrishnana, S. 1993. Properties of an chitinase produced in a baculovirus gene expression system. Abstr. Papers Am. Chem. Soc. 205, 79-Agro.

    Google Scholar 

  • Granados, R. R., Guoxun, L., Dersksen, A. C. G., and McKenna, K. A. 1994. A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single nuclear polyhedrosis virus. J. Invertebr. Pathol. 64:260–266.

    Article  Google Scholar 

  • Hammock, B. D., Bonning, B. C., Possee, R. D., Hanzlik, T. N., and Maeda, S. 1990. Expression and effects of the juvenile hormone esterase in a baculovirus vector. Nature 344:458–461.

    Article  CAS  Google Scholar 

  • Harrison, R. L., and Bonning, B. C. 2000. Use of scorpion neurotoxins to improve the insecticidal activity of Rachiplusia ou multicapsid nucleopolyhedrovirus. Biol. Control 17:191–201.

    Article  CAS  Google Scholar 

  • Harrison, R. L., and Bonning, B. C. 2001. Use of proteases to improve the insecticidal activity of baculoviruses. Biol. Control 20:199–209.

    Article  CAS  Google Scholar 

  • Harrison, R. L., and Jarvis, D. L. 2006. Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv. Virus Res. 68:159–191.

    Article  CAS  Google Scholar 

  • Harrison, R. L., and Summers, M. D. 1995. Mutations in the Autographa californica multinucleocapsid nuclear polyhedrosis virus 25 kDa protein gene result in reduced virion occlusion, altered intranuclear envelopment and enhanced virus production. J. Gen. Virol. 76:1451–1459.

    Article  CAS  Google Scholar 

  • Hayakawa, T., Shimojo, E., Mori, M., Kaido, M., Furusawa, I., et al. 2000. Enhancement of baculovirus infection in Spodoptera exigua (Lepidoptera: Noctuidae) larvae with Autographa californica nucleopolyhedrovirus or Nicotiana tabacum engineered with a granulovirus gene. Appl. Entomol. Zool. 35:163–170.

    Article  Google Scholar 

  • Hefferon, K. L., Oomens, A. G. P., Monsma, S. A., Finnerty, C. M., and Blissard, G. W. (1999). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 258:455–468.

    Article  CAS  Google Scholar 

  • Herniou, E. A., and Jehle, J. A. 2007. Baculovirus phylogeny and evolution. Curr. Drug Targets 8:1043–1050.

    Article  CAS  Google Scholar 

  • Herniou, E. A., Luque, T., Chen, X., Vlak, J. M., Winstanley, D., Cory, J. S., and O’Reilly, D. R. 2001. Use of whole genome sequence data to infer baculovirus phylogeny. J. Virol. 75:8117–8126.

    Article  CAS  Google Scholar 

  • Herniou, E. A., Olszewski, J. A., Cory, J. S., and O’Reilly, D. R. 2003. The genome sequence and evolution of baculoviruses. Annu. Rev. Entomol. 48:211–234.

    Article  CAS  Google Scholar 

  • Herrmann, R., Moskowitz, H., Zlotkin, E., and Hammock, B. D. 1995. Positive cooperativity among insecticidal scorpion neurotoxins. Toxicon 33:1099–1102.

    Article  CAS  Google Scholar 

  • Hinton, A. C., and Hammock, B. D. 2003. In vitro expression and biochemical characterization of juvenile hormone esterase from Manduca sexta. Insect Biochem. Mol. Biol. 33:317–329.

    Article  CAS  Google Scholar 

  • Hitchman, R., Possee, R. D., and King, L. 2009. Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat. Biotechnol. 3:46–54.

    Article  CAS  Google Scholar 

  • Hughes, P. R., Wood, H. A., Breen, J. P., Simpson, S. F., Duggan, A. J., and Dybas, J. A. 1997. Enhanced bioactivity of recombinant baculoviruses expressing insect-specific spider toxins in lepidopteran crop pests. J. Invertebr. Pathol. 69:112–118.

    Article  Google Scholar 

  • Ignoffo, C. M., and Couch, T. L. 1981. The nucleopolyhedrosis virus of Heliothis species as a microbial pesticide. In Microbial Control of Pests and Plant Diseases, ed. H. D. Burges, pp. 329–362. London: Academic Press.

    Google Scholar 

  • Ijkel, W. F., Westenberg, M., Goldbach, R. W., et al. 2000. A novel baculovirus envelope protein with a proprotein convertase cleavage site. Virology 275:30–41.

    Article  CAS  Google Scholar 

  • Ikonomou, L., Schneider, J. Y., and Agathos, S. N. 2003. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62:1–20.

    Article  CAS  Google Scholar 

  • Inceoglu, A. B., Kamita, S. G., Hinton, A. C., Huang, Q., Severson, T. F., Kang, K. D., and Hammock, B. D. 2001. Recombinant baculoviruses for insect control. Pest Manag. Sci. 57:981–987.

    Article  CAS  Google Scholar 

  • Inceoglu, A. B., Kamita, S. G., and Hammock, B. D. 2007. Genetically modified baculoviruses: a historical overview and future outlook. Adv. Virus Res. 68:323–360.

    Article  CAS  Google Scholar 

  • Jehle, J. A., Blissard, G. W., Bonning, B. C., Cory, J. S., Herniou, E. A., Rohrmann, G. F., Theilmann, D. A., Thiem, S. M., and Vlak, J. M. 2006. On the classification and nomenclature of baculoviruses: a proposal for revision. Arch. Virol. 151:1257–1266.

    Article  CAS  Google Scholar 

  • Jem, K. J., Gong, T., Mullen, J., and Georgis, R. 1997. Development of an industrial insect cell culture process for large scale production of baculovirus biopesticides. In Invertebrate Cell Culture: Novel Directions and Biotechnology Applications, eds. K. Maramorosch, and J. Mitsuhashi, pp. 173–180. New Hampshire: Science Publishers.

    Google Scholar 

  • Kamita, S. G., Kang, K. D., and Hammock, B. D. 2005a. Genetically modified baculoviruses for pest insect control. In Comprehensive Molecular Insect Science, eds. K. Iatrou, L. Gilbert, and S. Gill, pp. 271–322. Oxford: Elsevier.

    Chapter  Google Scholar 

  • Kamita, S. G., Nagasaka, K., Chua, J. W., Shimada, T., Mita, K., Kobayashi, M., Maeda, S., and Hammock B. D. 2005b. A baculovirus-encoded protein tyrosine phosphatase gene induces enhanced locomotory activity in a lepidopteran host. Proc. Natl. Acad. Sci. USA 102:2584–2589.

    Article  CAS  Google Scholar 

  • Kikhno, I., Gutiérrez, S., Croizier, L., Croizier, G., and Ferber, M. L. 2002. Characterization of pif, a gene required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus. J. Gen. Virol. 83:3013–3022.

    CAS  Google Scholar 

  • Kitts, P. A., and Possee, R. D. 1993. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 14:810–817.

    CAS  Google Scholar 

  • Kitts, P. A., Ayres, M. D., and Possee, R. D. 1990. Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Nucleic Acids Res. 18:5667–5672.

    Article  CAS  Google Scholar 

  • Kool, M., Voncken, J. W., Van Lier, F. L., Tramper, and J., Vlak, J. M. 1991. Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology 183:739–746.

    Article  CAS  Google Scholar 

  • Kost, T. A., Condreay, J. P., and Jarvis, D. L. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23:567–575.

    Article  CAS  Google Scholar 

  • Krell, P. J. 1996. Passage effect of virus infection in insect cells. Cytotechnology 20:125–137.

    Article  Google Scholar 

  • Kreutzweiser, D., England, L., Shepherd, J., Conklin, J., and Holmes, S. 2001. Comparative effects of a genetically engineered insect virus and a growth-regulating insecticide on microbial communities in aquatic microcosms. Ecotoxicol. Environ. Saf. 48:85–98.

    Article  CAS  Google Scholar 

  • Kumari, V., and Singh, N. P. 2009. Spodoptera litura nuclear polyhedrosis virus (NPV-S) as a component in Integrated Pest Management (IPM) of Spodoptera litura (Fab.) on cabbage. J. Biopestic. 2:84–86.

    CAS  Google Scholar 

  • Kutinkova, H., Samietz, J., Dzhuvinov, V., and Tallot, Y. 2008. Use of Carpovirusine for control of the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), in Bulgaria: Progress report. J. Biopestic. 1:38–40.

    CAS  Google Scholar 

  • Kuzio, J., Jaques, R., and Faulkner P. 1989. Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology 173:759–763.

    Article  CAS  Google Scholar 

  • Li, J., Heinz, K. M., Flexner, J. L., and McCutchen, B. F. 1999. Effects of recombinant baculoviruses on three nontarget heliothine predators. Biol. Control 15:293–302.

    Article  Google Scholar 

  • Li, Q. J., Li, L. L., Moore, K., Donly, C., Theilmann, D. A. et al. 2003. Characterization of Mamestra configurata nucleopolyhedrovirus enhancin and its functional analysis via expression in an Autographa californica M nucleopolyhedrovirus recombinant. J. Gen. Virol. 84:123–132.

    Article  CAS  Google Scholar 

  • Li, H., Tang, H., Harrison, R. L., and Bonning, B. C. 2007. Impact of a basement membrane-degrading protease on dissemination and secondary infection of Autographa californica multiple nucleopolyhedrovirus in Heliothis virescens (Fabricius). J. Gen. Virol. 88:1109–1119.

    Article  CAS  Google Scholar 

  • Lua, L. H. L., Pedrini, M. R. S., Reid, S., Robertson, A., and Tribe, D. E. 2002. Phenotypic and genotypic analysis of Helicoverpa armigera nucleopolyhedrovirus serially passed in cell culture. J. Gen. Virol. 83:945–955.

    CAS  Google Scholar 

  • Lucarotti, C. J., Moreau, G., and Kettela, E. G. 2007. Abietiv, a viral biopesticide for control of the balsam fir sawfly. In Biological Control: A Global Perspective, eds. C. Vincent, M. S. Goethel, and G. Lazarovits, pp. 353–361. Oxfordshire, UK, and Cambridge, USA: CAB International.

    Chapter  Google Scholar 

  • Luckov, V. A., Lee, S. C., Barry, G. F., and Olins, P. O. 1993. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J. Virol. 67:4566–4579.

    Google Scholar 

  • Lung, O., Westenberg, M., Vlak, J. M., Zuidema, D., and Blissard, G. W. 2002. Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. J. Virol. 76:5729–5736.

    Article  CAS  Google Scholar 

  • Ma, P. W. K., Davis, T. R., Wood, H. A., Knipple, D. C., and Roelofs, W. L. 1998. Baculovirus expression of an insect gene that encodes multiple neuropeptides. Insect Biochem. Mol. Biol. 28:239–249.

    Article  CAS  Google Scholar 

  • Maeda, S. 1989. Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem. Biophys. Res. Commun. 165:1177–1183.

    Article  CAS  Google Scholar 

  • Maeda, S., Volrath, S. L., Hanzlik, T. N., Harper, S. A., Majima, K., Maddox, D. W. et al. 1991. Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology 184:77–80.

    Article  Google Scholar 

  • McCutchen, B. F., Hoover, K., Preisler, H. K., Betana, M. D., Herrmann, R., Robertson, J. L., and Hammock, B. D. 1997. Interaction of recombinant and wild-type baculoviruses with classical insecticides and pyrethroid-resistant tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 90:1170–1180.

    CAS  Google Scholar 

  • McNitt, L., Espelie, K. E., and Miller, L. K. 1995. Assessing the safety of toxin-producing baculovirus biopesticides to a non-target predator, the social wasp Polistes metricus Sey. Biol.Control 5:267–278.

    Article  Google Scholar 

  • Mishra, S. 1998. Baculoviruses as pesticides. Curr. Sci. 75:1015–1022.

    Google Scholar 

  • Monsma, S. A., Oomens, A. G., and Blissard, G. W. 1996. The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J. Virol. 70:4607–4616.

    CAS  Google Scholar 

  • Morales, L., Moscardi, F., Sosa-Gomez, D. R., Paro, F. E., and Soldorio, I. L. 2001. Fluorescent brighteners improve Anticarsia gemmatalis (Lepidoptera: Noctuidae) nucleopolyhedrovirus (AgMNPV) activity on AgMNPV susceptible and resistant strains of the insect. Biol. Control 20:247–253.

    Article  CAS  Google Scholar 

  • Moscardi, F. 1989. Use of viruses for pest control in Brazil: the case of the nuclear polyhedrosis virus of the soybean caterpillar, Anticarsia gemmatalis. Mem. Inst. Oswaldo Cruz 84:51–56.

    Article  Google Scholar 

  • Moscardi, F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44:257–289.

    Article  CAS  Google Scholar 

  • Moscardi, F. 2007. A Nucleopolyhedrovirus for control of the velvetbean caterpillar in Brazilian Soybeans. In Biological Control: A Global Perspective, eds. C. Vincent, M. S. Goethel, and G. Lazarovits, pp. 344–352. Oxfordshire, UK, and Cambridge, USA: CAB International.

    Chapter  Google Scholar 

  • Moscardi, F., and Sosa-Gómez, D. R. 1996. Soybean in Brazil. In Biotechnology and Integrated Pest Management, ed. G. J. Persley, pp. 98–112. Wallingford: CAB international.

    Google Scholar 

  • Moscardi, F., Leite, L. G., and Zamataro, C. E. 1997. Production of nuclear polyhedrosis virus of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae): effect of virus dosage, host density and age. Ann. Soc. Entomol. Brasil 26:121–132.

    Google Scholar 

  • Nakamura T. 2003. Control of leafrollers in tea fields using “Hamaki tenteki”. http://www.agrofrontier.com/guide/f_105.html.

  • Nishi, Y., and Nonaka, T. 1996. Biological control of the tea tortrix using granulosis virus in the tea field. Agrochem. Jpn. 69:7–10.

    Google Scholar 

  • O’Reilly, D. R., and Miller, L. K. 1991. Improvement of a baculovirus pesticide by deletion of the egt gene. Biotechnology 9:1086–1089.

    Article  Google Scholar 

  • O’Reilly, D. R., Miller, L. K., and Luckov, V. A. 1992. The Baculovirus Expression System: A Laboratory Manual. New York: Freeman.

    Google Scholar 

  • O’Reilly, D. R., Kelly, T. J., Masler, E. P., Thyagaraja, B. S., Robson, R. M., Shaw, T. C., and Miller, L. K. 1995. Overexpression of Bombyx mori prothoracicotropic hormone using baculovirus vectors. Insect Biochem. Mol. Biol. 25:45–85.

    Google Scholar 

  • Ohkawa, T., Washburn, J. O., Sitapara, R., Sid, E., and Volkman, L. E. 2005. Specific binding of Autographa californica M Nucleopolyhedrovirus occlusion-derived virus to mdgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115. J. Virol. 79:15258–15264.

    Article  CAS  Google Scholar 

  • Olszewski, J., and Miller, L. 1997. Identification and characterization of a baculovirus structural protein, VP1054, required for nucleocapsid formation. J. Virol. 71:5040–5050.

    CAS  Google Scholar 

  • Pearson, M., Groten, C., and Rohrmann, G. F. 2000. Identification of the Lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of Baculoviridae. J. Virol. 74:6126–6131.

    Article  CAS  Google Scholar 

  • Pedrini, M. R. S., Wolff, J. L. C., and Reid, S. 2004. Fast accumulation of Few Polyhedra mutants during passage of a Spodoptera frugiperda multicapsid nucleopolyhedrovirus (Baculoviridae) in Sf9 cell cultures. Ann. Appl. Biol. 145:107–112.

    Article  Google Scholar 

  • Pedrini, M. R. S., Nielsen, L. K., Reid, S., and Chan, L. C. L. 2005. Properties of a unique mutant of Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus that exhibits a partial Many Polyhedra and Few Polyhedra phenotype on extended serial passaging in suspension cell cultures. In Vitro Cell. Dev. Biol. Anim. 41:289–297.

    Article  CAS  Google Scholar 

  • Pedrini, M. R. S., Christian, P., Nielsen, L. K., Reid, S., and Chan, L. C. L. 2006. Importance of virus-medium interactions on the biological activity of wild-type Heliothine nucleopolyhedroviruses propagated via suspension insect cell cultures. J. Virol. Methods 136:267–272.

    Article  CAS  Google Scholar 

  • Pijlman, G. P., van den Born, E., Martens, D. E., and Vlak, J. M. 2001. Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected cells. Virology 283:132–138.

    Article  CAS  Google Scholar 

  • Pijlman, G. P., Pruijssers, A. J. P., and Vlak, J. M. 2003. Identification of pif-2, a third conserved baculovirus gene required for per os infection of insects. J. Gen. Virol. 84:2041–2049.

    Article  CAS  Google Scholar 

  • Popham, H. J. R., Li, Y., and Miller, L. K. 1997. Genetic improvement of Helicoverpa zea polyhedrosis virus as a biopesticide. Biol. Control 10:83–91.

    Article  Google Scholar 

  • Raman, K. V., Alcazar, J., and Valdez, A. 1992. Biological control of the potato tuber moth using Phthorimaea baculovirus. Int. Potato Cent. Lima, CIP Train. Bull. 2, 27 p.

    Google Scholar 

  • Reardon, R., Podgwaite, J. P., and Zerillo, R. T. 1996. GYPCHECK – the gypsy moth nucleopolyhedrosis virus product. USDA Forest Service Publication FHTET-96 – 16.

    Google Scholar 

  • Regev, A., Rivkin, H., Inceoglu, B., Gershburg, E., Hammock, B. D., Gurevitz, M., and Chejanovsky, N. 2003. Further enhancement of baculovirus insecticidal efficacy with scorpion toxins that interact cooperatively. FEBS Lett. 537:106–110.

    Article  CAS  Google Scholar 

  • Rezende, S. H. M. S., Castro, M. B. C., and Souza, M. L. 2009. Accumulation of few-polyhedra mutants upon serial passage of Anticarsia gemmatalis multiple nucleopolyhedrovirus in cell culture. J. Invertebr. Pathol. 100:153–159.

    Article  CAS  Google Scholar 

  • Rhodes, D. J. 1996. Economics of baculovirus-insect cell production systems. Cytotechnology 20:291–297.

    Article  Google Scholar 

  • Rohrmann, G. F. 2008a. Baculovirus Molecular Biology. Bethesda: National Library of Medicine (US), NCBI.

    Google Scholar 

  • Rohrmann, G. F. 2008b. Structural proteins of baculovirus occlusion bodies and virions. In Baculovirus Molecular Biology, ed. G. F. Rohrmann. Bethesda: NCBI.

    Google Scholar 

  • Roy, P. 1992. From genes to complex structures of bluetongue virus and their efficacy as vaccines. Vet.Microbiol. 33:155–68.

    Article  CAS  Google Scholar 

  • Santos, B. 2003. Avanços na produção massal de lagartas de Anticarsia gemmatalis Hübner 1818 (Lepidoptera: Noctuidae) infectadas com o seu vírus de poliedrose nuclear, em laboratório e do bioinseticida à base desse vírus. PhD thesis, Universidade Federal do Paraná, Curitiba, Brazil.

    Google Scholar 

  • Shapiro, M. 1995. Radiation protection and activity enhancement of viruses. In Biorational Pest Control Agents: Formulation and Delivery, ed. F. R. Hall, pp. 153–164. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Slavicek, J. M., and Popham, H. J. 2005. The Lymantria dispar nucleopolyhedrovirus enhancins are components of occlusion-derived virus. J. Virol. 79:10578–10588.

    Article  CAS  Google Scholar 

  • Slavicek, J. M., Mercer, M., Kelly, M., and Hayes-Plazolles, N. 1996, Isolation of a baculovirus variant that exhibits enhanced polyhedra production stability during serial passage in cell culture. J. Invertebr. Pathol. 67:153–160.

    Article  Google Scholar 

  • Slavicek, J. M., Hayes-Plazolles, N., and Kelly, M. E. 2001. Identification of a Lymantria dispar nucleopolyhedrovirus isolate that does not accumulate few-polyhedra mutants during extended serial passage in cell culture. Biol. Control 22:159–168.

    Article  Google Scholar 

  • Smith, C. R., Heinz, K. M., Sanson, C. G., and Flexner, J. L. 2000. Impact of recombinant baculovirus field applications on a non-target heliothine parasitoid, Microplitis croceipes (Hymenoptera: Braconidae). J. Econ. Entomol. 93:1109–1117.

    Article  CAS  Google Scholar 

  • Sosa-Gómez, D. R., Delpin, K. E., Moscardi, F., and Nozaki, M. H. 2003. The impact of funcicides on Nomuraea rileyi (Farlow) Samson epizootics and on populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), on soybean. Neotrop. Entomol. 32:287–291.

    Article  Google Scholar 

  • Sosa-Gómez, D. R., Moscardi, F., Santos, B., Alves, L. F. A., and Alves, S. B. 2008. Produção e uso de vírus para o controle de pragas na América Latina. In Controle Microbiano de Pragas na América Latina: avanços e desafios, eds. S. B. Alves and R. B. Lopes, pp. 49–68. Piracicaba: FEALQ.

    Google Scholar 

  • Souza, M. L., Castro, M. E. B. de Sihler, W., Krol, E., and Szewczyk, B. 2007. Baculoviruses: a safe alternative in pest control? Pest Technol. 1:53–60.

    Google Scholar 

  • Srinivasa, M., Jagadeesh Babu, C. S., Anitha, C. N., and Girish, G. 2008. Laboratory evaluation of available commercial formulations of HaNPV against Helicoverpa armigera (Hub.). J. Biopestic. 1:138–139.

    CAS  Google Scholar 

  • Stewart, L. M., Hirst, M., Ferber, M. L., Merryweather, A. T., Cayley, P. J., and Possee, R. D. 1991. Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature (London) 352:85–88.

    Article  CAS  Google Scholar 

  • Summers, M. D., and Smith, G. E. 1987. A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agric. Exp. Stn. Bull. 1555, 57 p.

    Google Scholar 

  • Sun, X. L., and Peng, H. 2007. Recent advances in biological pest insects by using viruses in China. Virol. Sin. 22:158–162.

    Article  CAS  Google Scholar 

  • Sun, X., Wang, H., Sun, X., Chen, X., Peng, C., Pan, D., et al. 2004. Biological activity and field efficacy of a genetically modified Helicoverpa armigera SNPV expressing an insect-selective toxin from a chimeric promoter. Biol. Control 29:124–137.

    Article  Google Scholar 

  • Sun. X. L., Wang, H. L., Sun, X., Chen, X. W., van der Werf, W., Vlak, J. M., and Hu, Z. H. 2002. Evaluation of control efficacy and biosafety of genetically modified Helicoverpa armigera nucleopolyhedrovirus. Abstr. 7th Int. Symp. Biosafety Gen. Mod. Org., Beijing, China.

    Google Scholar 

  • Szewczyk, B., Hoyos-Carvajal, L., Paluszek, M., Skrzecz, I., and Souza, M. L. 2006. Baculovirus – re-emerging biopesticides. Biotechnol. Adv. 24:143–160.

    Article  CAS  Google Scholar 

  • Szewczyk, B., Rabalski, L., Krol, E., Sihler, W., and Souza, M. L. 2009. Baculovirus biopesticides – a safe alternative to chemical protection of plants. J. Biopestic. 2:209–216.

    CAS  Google Scholar 

  • Szolajska, E., Poznanski, J., Ferber, M. L., Michalik, J., Gout, E., Fender, P., Bailly, I., Dublet, B., and Chroboczek, J. 2004. Poneratoxin, a neurotoxin from ant venom. Structure and expression in insect cells and construction of a bio-insecticide. Eur. J. Biochem. 271:2127–2136.

    Article  CAS  Google Scholar 

  • Tanada, Y., and Kaya, H. K. 1993. Insect Pathology, ch. 6, pp. 171–244. San Diego and New York: Academic Press.

    Google Scholar 

  • Theilmann, D. A., Blissard, G. W., Bonning, B., Jehle, J. A., O’Reilly D. R., Rohrmann, G. F., Thiem, S., and Vlak, J. M. 2005. Baculoviridae. In Virus Taxonomy – Classification and Nomenclature of Viruses, 8th Report of the International Committee on Viruses, eds. C. X. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, and L. A. Ball, pp. 177–185. Amsterdam: Elsevier.

    Google Scholar 

  • Tomalski, M. D., and Miller, L. K. 1991. Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature (London), 352:82–85.

    Article  CAS  Google Scholar 

  • Treacey, M. F., Rensner, P. E., and All, J. N. 2000. Comparative insecticidal properties of two nucleopolyhedrosis vectors encoding a similar toxin gene chimer. J. Econ. Entomol. 93:1096–1104.

    Article  Google Scholar 

  • Tuan, S. J., Hou, R. F., Kao, S. S., Lee, C. F., and Chao, Y. C., 2005. Improved plant protective efficacy of a baculovirus using an early promoter to drive insect-specific neurotoxin expression. Bot. Bull. Acad. Sin. 46:11–20.

    CAS  Google Scholar 

  • Tumilasci, V. F., Leal, E., Zanotto, P. M. A., Luque, T., and Wolff, J. L. C. 2003. Sequence analysis of a 5.1 kbp region of the Spodoptera frugiperda multicapsid nucleopolyhedrovirus genome that comprises a functional ecdysteroid UDP-glucosyltransferase (egt) gene. Virus Genes 27:137–144.

    Article  CAS  Google Scholar 

  • Valicente, F. H., and Cruz, I. 1991. Controle biológico da lagarta-do-cartucho, Spodoptera frugiperda, com o baculovirus. Embrapa, Sete Lagoas, Circular Técnica 15, 23 p.

    Google Scholar 

  • van Beek, N., Lu, A., Presnail, J, Davis, D., Greenamoyer, C., Joraski, K., et al. 2003. Effect of signal sequence and promoter on the speed of action of a genetically modified Autographa californica nucleopolyhedrovirus expressing the scorpion toxin LqhIT2. Biol. Control 27:53–64.

    Article  CAS  Google Scholar 

  • van Meer, M. M. M., Bonning, B. C., Ward, V. K., Vlak, J. M., and Hammock, B. D. 2000. Recombinant, catalytically inactive juvenile hormone esterase enhances efficacy of baculovirus insecticides. Biol. Control 19:191–199.

    Article  Google Scholar 

  • van Oers, M. M. 2006. Vaccines for viral and parasitic diseases produced with baculovirus vectors. Adv. Virus Res. 68:193–253.

    Article  CAS  Google Scholar 

  • van Oers, M. M., and Vlak, J. M. 2007. Baculovirus genomics. Curr. Drug Targets 8:1051–1068.

    Article  Google Scholar 

  • Vincent, C., Andermatt, M., and Valéro, J. 2007. Madex® and VirosoftCP4®, viral biopesticides for codling moth control. In Biological Control: A Global Perspective, eds. C. Vincent, M. S. Goethel, and G. Lazarovits, pp. 336–343. Oxfordshire, UK, and Cambridge, USA: CAB International.

    Chapter  Google Scholar 

  • Volkman, L. E., Blissard, G. W., Friesen, P. D., Keddie, B. A., Possee, R. D., and Theilman, D. A. 1995. Family Baculoviridae. In Virus Taxonomy: Sixth Report of the International Committee on Taxonomy of Viruses, eds. F. A. Murphy, C. M. Fauquet, S. A. Bishop, A. W. Ghabrial, G. P. Jarvis, M. A. Martelli, M. A. Mayo, and M. D. Summers, pp. 104–113. Vienna: Springer.

    Google Scholar 

  • Wang, P., and Granados, R. R. 1997. An intestinal mucin is the target substance for a baculovirus enhancin. Proc. Natl. Acad. Sci. USA 94:6977–6982.

    Article  CAS  Google Scholar 

  • Wang, P., Hammer, D. A., and Granados, R. R. 1994. Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of 4 lepidopteran insects. J. Gen. Virol. 75:1961–1967.

    Article  CAS  Google Scholar 

  • Westenberg, M., Veenman, F., Roode, E. C., Goldbach, R. W., Vlak, J. M., and Zuidema, D. 2004. Functional analysis of the putative fusion domain of the baculovirus envelope fusion protein F. J. Virol. 78:6946–6954.

    Article  CAS  Google Scholar 

  • Wood, H. A., Trotter, K. M., Davis, T. R., and Hughes, P. R. 1993. Per os infectivity of preoccluded virions from polyhedrin minus recombinant baculoviruses. J. Invertebr. Pathol. 62:64–67.

    Article  Google Scholar 

  • Zanotto, P. M. D., Kessing, B. D., and Maruniak J. E. 1993. Phylogenetic interrelationships among baculoviruses evolutionary rates and host associations. J. Invertebr. Pathol. 62:147–164.

    Article  CAS  Google Scholar 

  • Zhang, G. Y., Sun, X. L., Zhang, Z. X., Zhang, Z. F., and Wan, F. F. 1995. Production and effectiveness of the new formulation of Helicoverpa virus pesticide-emulsifiable suspension. Virol. Sin. 10:242–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Moscardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moscardi, F., de Souza, M.L., de Castro, M.E.B., Lara Moscardi, M., Szewczyk, B. (2011). Baculovirus Pesticides: Present State and Future Perspectives. In: Ahmad, I., Ahmad, F., Pichtel, J. (eds) Microbes and Microbial Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7931-5_16

Download citation

Publish with us

Policies and ethics