Skip to main content

7TM-Cadherins: Developmental Roles and Future Challenges

  • Chapter
Adhesion-GPCRs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 706))

Abstract

The 7TM-Cadherins, Celsr/Flamingo/Starry night, represent a unique subgroup of adhesion-GPCRs containing atypical cadherin repeats, capable of homophilic interaction, linked to the archetypal adhesion-GPCR seven-transmembrane domain. Studies in Drosophila provided a first glimpse of their functional properties, most notably in the regulation of planar cell polarity (PCP) and in the formation of neural architecture. Many of the developmental functions identified in flies are conserved in vertebrates with PCP predicted to influence the development of multiple organ systems. Details of the molecular and cellular functions of 7TM-Cadherins are slowly emerging but many questions remain unanswered. Here the developmental roles of 7TM-Cadherins are discussed and future challenges in understanding their molecular and cellular roles are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 2009; 41:349–369.

    Article  PubMed  CAS  Google Scholar 

  2. Yagi T, Takeichi M. Cadherin superfamily genes: functions, genomic organization and neurologic diversity. Genes Dev 2000; 14:1169–1180.

    PubMed  CAS  Google Scholar 

  3. Davis CG. The many faces of epidermal growth factor repeats. New Biol 1990; 2:410–419.

    PubMed  CAS  Google Scholar 

  4. Timpl R, Tisi D, Talts JF et al. Structure and function of laminin LG modules Matrix Biol 2000; 19:309–317.

    Article  PubMed  CAS  Google Scholar 

  5. Oda H, Tsukita S. Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins. Dev Biol 1999; 216:406–422.

    Article  PubMed  CAS  Google Scholar 

  6. Hotta K, Takahashi H, Ueno N et al. A genome-wide survey of the genes for planar polarity signalling or convergent-extension-related genes in Ciona intestinalis and phylogenetic comparisons of evolutionary conserved signalling components. Gene 2003; 317:165–185.

    Article  PubMed  CAS  Google Scholar 

  7. Hadjantonakis A-K, Formstone CJ, Little PFR. mCelsr1 is an evolutionarily conserved seven-pass transmembrane receptor and is expressed during mouse embryonic development. Mech Dev 1998; 78:91–95.

    Article  PubMed  CAS  Google Scholar 

  8. Hill E, Broadbent ID, Chothia C et al. Cadherin Superfamily Proteins in Caenorhabditis elegans and Drosophila melanogaster. J Mol Biol 2001; 305:1011–1024.

    Article  PubMed  CAS  Google Scholar 

  9. Pettitt J. The cadherin superfamily (December 29, 2005). In: Moerman DG, Kramer JM, eds. The C. elegans Research Community, WormBook. Online review.

    Google Scholar 

  10. Hadjantonakis A-K, Sheward WJ, Harmar AJ et al. Celsr1, a neural-specific gene encoding an unusual seven-pass transmembrane receptor, maps to mouse chromosome 15 and human chromosome 22qter. Genomics 1997; 45:97–104.

    Article  PubMed  CAS  Google Scholar 

  11. Usui T, Shima Y, Shimada Y et al. Flamingo, a seven-pass transmembrane cadherin, regulates Planar Cell Polarity under the control of Frizzled. Cell 1999; 98:585–595.

    Article  PubMed  CAS  Google Scholar 

  12. Chae J, Kim MJ, Goo JH et al. The Drosophila tissue polarity gene starry night encodes a member of the protocadherin family. Development 1999; 126:5421–5429.

    PubMed  CAS  Google Scholar 

  13. Nakayama N, Nakajima D, Nagase T et al. Identification of high-molecular-weight proteins with multiple EGF-like motifs by motif-trap screening. Genomics 1998; 51:27–34.

    Article  PubMed  CAS  Google Scholar 

  14. Formstone CJ, Little PFR. The flamingo-related Celsr family (Celsr1-3) genes exhibit distinct patterns of expression during embryonic development. Mech Dev 2001; 109:91–94.

    Article  PubMed  CAS  Google Scholar 

  15. Shima Y, Copeland NG, Gilbert DJ et al. Differential expression of the seven-pass transmembrane cadherin genes Celsr1-3 and distribution of the Celsr2 protein during mouse development. Dev Dyn 2002; 223:321–332.

    Article  PubMed  CAS  Google Scholar 

  16. Tissir F, De-Backer O, Goffinet AM et al. Developmental expression profiles of Celsr (flamingo) genes in the mouse. Mech Dev 2002; 112:157–160.

    Article  PubMed  CAS  Google Scholar 

  17. Formstone CJ, Mason I. Expression of the Celsr/flamingo homologue, c-fmi1, in the early avian embryo indicates a conserved role in neural tube closure and additional roles in asymmetry and somitogenesis. Dev Dyn 2005; 232:408–413.

    Article  PubMed  CAS  Google Scholar 

  18. Davies A, Formstone C, Mason I et al. Planar polarity of hair cells in the chick inner ear is correlated with polarized distribution of c-flamingo-1 protein. Dev Dyn 2005; 233:998–1005.

    Article  PubMed  CAS  Google Scholar 

  19. Formstone CJ, Mason I. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway. Dev Biol 2005; 282:320–335.

    Article  PubMed  CAS  Google Scholar 

  20. Wada H, Tanaka H, Nakayama S et al. Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain. Development 2006; 133:4749–4759.

    Article  PubMed  CAS  Google Scholar 

  21. Morgan R, El-Kadi AM, Theokli C. Flamingo, a cadherin-type receptor involved in the Drosophila planar polarity pathway, can block signaling via the canonical wnt pathway in Xenopus laevis. Int J Dev Biol 2003; 47:245–252.

    PubMed  CAS  Google Scholar 

  22. Crompton LA, Du Roure C, Rodriguez TA. Early embryonic expression patterns of the mouse flamingo and prickle homologues. Dev Dyn 2007; 236:3137–3143.

    Article  PubMed  CAS  Google Scholar 

  23. Beall SA, Boekelheide K, Johnson KA. Hybrid GPCR/Cadherin (Celsr) Proteins in Rat Testis Are Expressed With Cell Type Specificity and Exhibit Differential Sertoli Cell—Germ Cell Adhesion Activity. J Androl 2005; 26:529–538.

    Article  PubMed  CAS  Google Scholar 

  24. Gao F-B, Kohwi M, Brenman JE et al. Control of Dendritic field formation in Drosophila: The roles of Flamingo and competition between homologous neurons. Neuron 2000; 28:91–101.

    Article  PubMed  CAS  Google Scholar 

  25. Lee RC, Clandinin TR, Lee CH et al. The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nat Neuroscience 2003; 6:57–563.

    Google Scholar 

  26. Senti K-A, Usui T, Boucke K et al. Flamingo Regulates R8 Axon-Axon and Axon-target Interactions in the Drosophila visual system. Curr Biol 2003; 13:828–832.

    Article  PubMed  CAS  Google Scholar 

  27. Lawrence PA, Shelton PMJ. The determination of polarity in the developing insect retina. J Embryol Exp Morphol 1975; 33:471–486.

    PubMed  CAS  Google Scholar 

  28. Adler PN. Planar signalling and morphogenesis in Drosophila. Dev Cell 2002; 2:525–535.

    Article  PubMed  CAS  Google Scholar 

  29. Strutt H, Strutt D. Long-range coordination of planar polarity in Drosophila. Bioessays 2005; 27:1218–1227.

    Article  PubMed  CAS  Google Scholar 

  30. Strutt D. The planar polarity pathway. Curr Biol 2008; 18:R898–R902.

    Article  PubMed  CAS  Google Scholar 

  31. Lawrence PA, Strahl G, Casal J. Planar Cell Polarity: one or two pathways? Nat Reviews Genet 2007; 8:555–562.

    Article  CAS  Google Scholar 

  32. Ma D, Amonlirdviman K, Raffard RL et al. Cell Packing influences planar cell polarity signalling. PNAS 2008; 105:18800–18806.

    Article  PubMed  CAS  Google Scholar 

  33. Simons M, Mlodzik M. Planar Cell Polarity signalling: from fly development to human disease. Ann Rev Genet 2008; 42:25.1–25.24.

    Article  CAS  Google Scholar 

  34. Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 2006; 26:2147–2156

    Article  PubMed  CAS  Google Scholar 

  35. Guo N, Hawkins C, Nathans J. Frizzled6 controls hair patterning in mice. Proc Natl Acad Sci USA 2006; 101:9277–9281.

    Article  Google Scholar 

  36. Wallingford JB, Harland RM. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 2002; 129:5815–5825.

    Article  PubMed  CAS  Google Scholar 

  37. Hamblet NS, Lijam N, Ruiz-Lozano P et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 2002; 129:5827–5838.

    Article  PubMed  CAS  Google Scholar 

  38. Wang J, Mark S, Zhang X et al. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat Genet 2005; 37:980–985.

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Hamblet NS, Mark S et al. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 2006; 133:1767–1778.

    Article  PubMed  CAS  Google Scholar 

  40. Etheridge SL, Ray S, Li S et al. Murine dishevelled 3 functions inredundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea and neural tube development. PLoS Genet 2008; 4:e1000259.

    Article  PubMed  CAS  Google Scholar 

  41. Park TJ, Mitchell BJ, Abitua PB et al. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 2008; 40:871–879.

    Article  PubMed  CAS  Google Scholar 

  42. Cirone P, Lin S, Griesbach HL et al. A role for planar cell polarity signaling in angiogenesis. Angiogenesis 2008; 11:347–360.

    Article  PubMed  Google Scholar 

  43. Darken RS, Scola AM, Rakeman AS et al. The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J 2002; 21:976–985.

    Article  PubMed  CAS  Google Scholar 

  44. Jessen JR, Topczewski J, Bingham S et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 2002; 4:610–615.

    PubMed  CAS  Google Scholar 

  45. Voiculescu O, Bertocchini F, Wolpert L et al. The amniote primitive streak is defined by epithelial cell interaction before gastrulation. Nature 2007; 449:1049–1052.

    Article  PubMed  CAS  Google Scholar 

  46. Murdoch JN, Doudney K, Paternotte C et al. Severe neural tube defects in the loop-tail mouse result from mutation of Lppl, a novel gene involved in floor plate specification. Hum Mol Gen 2001; 10:2593–2601.

    Article  PubMed  CAS  Google Scholar 

  47. Montcouquiol M, Rachel RA, Lanford PJ et al. Identification of Vang12 and Scrb1 as planar polarity genes in mammals. Nature 2003; 423:173–177.

    Article  PubMed  CAS  Google Scholar 

  48. López-Schier H, Hudspeth AJ. A two-step mechanism underlies the planar polarization of regenerating sensory hair cells. Proc Natl Acad Sci USA 2006; 103:18615–18620.

    Article  PubMed  CAS  Google Scholar 

  49. Devenport D, Fuchs E. Planar polarisation in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nat Cell Biol 2008; 10:1257–1289.

    Article  PubMed  CAS  Google Scholar 

  50. Phillips HM, Murdoch JN, Chaudhry B et al. Vang12 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract. Circ Res 2005; 96:292–299.

    Article  PubMed  CAS  Google Scholar 

  51. Bingham SM, Higashijima S, Okamoto H et al. The zebrafish trilobite gene is essential for tangential migration of branchiomotor neurons. Dev Biol 2002; 242:149–160.

    Article  PubMed  CAS  Google Scholar 

  52. Ross AJ, May-Simera H, Eichers ER et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 2005; 37:1135–1140.

    Article  PubMed  CAS  Google Scholar 

  53. Lake BB, Sokol SY. Strabismus regulates asymmetric cell divisions and cell fate determination in the mouse brain. J Cell Biol 2009; 185:59–66.

    Article  PubMed  CAS  Google Scholar 

  54. Veeman MT, Slusarski DC, Kaykas A et al. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 2003; 13:680–685.

    Article  PubMed  CAS  Google Scholar 

  55. Takeuchi M, Nakabayashi J, Sakaguchi T et al. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 2003; 13:674–679.

    Article  PubMed  CAS  Google Scholar 

  56. Carreira-Barbosa F, Concha M, Takeuchi M et al. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 2003; 130:4037–4046.

    Article  PubMed  CAS  Google Scholar 

  57. Wallingford JB, Vogeli KM, Harland RM. Regulation of convergent extension in Xenopus by Wnt5a and Frizzled-8 is independent of the canonical Wnt pathway. Int J Dev Biol 2001; 45:225–227.

    PubMed  CAS  Google Scholar 

  58. Kilian B, Mansukoski H, Barbosa FC et al. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev 2003; 120:467–476.

    Article  PubMed  CAS  Google Scholar 

  59. Qian D, Jones C, Rzadzinska A et al. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 2007; 306:121–133.

    Article  PubMed  CAS  Google Scholar 

  60. Cervantes S, Yamaguchi TP, Hebrok M. Wnt5a is essential for intestinal elongation in mice. Dev Biol 2009; 326:285–294.

    Article  PubMed  CAS  Google Scholar 

  61. Vivancos V, Chen P, Spassky N et al. Wnt activity guides facial branchiomotor neuron migration and involves the PCP pathway and JNK and ROCK kinases. Neural Dev 2009; Epub ahead of print.

    Google Scholar 

  62. Tada M, Smith JC. Xwnt11 is a target of Xenopus brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 2000; 127:2227–2238.

    PubMed  CAS  Google Scholar 

  63. Ulrich F, Concha ML, Heid PJ et al. Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 2003; 130:5375–5384.

    Article  PubMed  CAS  Google Scholar 

  64. Hardy KM, Garriock RJ, Yatskievych TA et al. Noncanonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation. Dev Biol 2008; 320:391–401.

    Article  PubMed  CAS  Google Scholar 

  65. De Calisto J, Araya C, Marchant L et al. Essential role of noncanonical Wnt signalling in neural crest migration. Development 2005; 132:2587–2597.

    Article  CAS  Google Scholar 

  66. Gros J, Serralbo O, Marcelle C. WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature 2009; 457:589–593.

    Article  PubMed  CAS  Google Scholar 

  67. Murdoch JN, Henderson DJ, Doudney K et al. Disruption of Scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 2003; 12:87–98.

    Article  PubMed  CAS  Google Scholar 

  68. Phillips HM, Rhee HJ, Murdoch JN et al. Disruption of planar cell polarity signalling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization. Circ Res 2007; 101:137–145.

    Article  PubMed  CAS  Google Scholar 

  69. Wada H, Iwasaki M, Sato T et al. Dual roles of zygotic and maternal Scribblel in neural migration and convergent extension movements in zebrafish embryos. Development 2005; 132:2273–2285.

    Article  PubMed  CAS  Google Scholar 

  70. Lu X, Borchers AD, Jolicoeur C et al. PTK-7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 2004; 430:93–98.

    Article  PubMed  CAS  Google Scholar 

  71. Shnitsar I, Borchers A. PTK7 recruits dsh to regulate neural crest migration. Development 2008; 135:4015–4024.

    Article  PubMed  CAS  Google Scholar 

  72. Montcouquiol M, Sans N, Huss D et al. Asymmetric localization of Vang12 and Fz3 indicate novel mechanisms for planar cell polarity in mammals. J Neurosci2006; 26:5265–5275.

    Article  PubMed  CAS  Google Scholar 

  73. Thorpe CJ, Schlesinger A, Bowerman B. Wnt signalling in C.elegans: regulating repressors and polarising the cytoskeleton. Trends Cell Biol 2000; 10:10–17.

    Article  PubMed  Google Scholar 

  74. Yamamoto S, Nishimura O, Misaki K et al. Cthrc 1 selectively activates the planar cell polarity pathway of Wnt signalling by stabilising the Wnt-receptor complex. Dev Cell 2008; 15:23–26.

    Article  PubMed  CAS  Google Scholar 

  75. Lawrence PA, Casal J, Struhl G. Towards a model of the organisation of planar polarity and pattern in the Drosophila abdomen. Development 2002; 129:2749–2760.

    PubMed  CAS  Google Scholar 

  76. Bilder D, Perrimon N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 2000; 403:676–680.

    Article  PubMed  CAS  Google Scholar 

  77. Gubb D, Garcia-Bellido A. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J Embryol Exp Morphol 1982; 68:37–57.

    PubMed  CAS  Google Scholar 

  78. Adler PN, Krasnow RE, Liu J. Tissue polarity points from cells that have higher Frizzled levels towards cells that have lower Frizzled levels. Curr Biol 1997; 7:940–949.

    Article  PubMed  CAS  Google Scholar 

  79. Widelitz R. Wnt signaling through canonical and noncanonical pathways: recent progress. Growth Factors 2005; 23:111–116.

    Article  PubMed  CAS  Google Scholar 

  80. Grigoryan T, Wend P, Klaus A et al. Deciphering the function of canonical Wnt signals in development and disease: conditional loss-and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22:2308–2341.

    Article  PubMed  CAS  Google Scholar 

  81. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors and multiple transcription factors. J Biol Chem 2006; 281:22429–22433.

    Article  PubMed  CAS  Google Scholar 

  82. Tree DR, Shulman JM, Rousset R et al. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signalling. Cell 2002; 109:371–381.

    Article  PubMed  CAS  Google Scholar 

  83. Amonlirdviman K, Khare NA, Tree DR et al. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 2005; 307:423–426.

    Article  PubMed  CAS  Google Scholar 

  84. Lawrence PA, Casal J, Struhl G. Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development 2004; 131:4651–4664.

    Article  PubMed  CAS  Google Scholar 

  85. Das G, Reynolds-Kenneally J, Mlodzik M. The Atypical Cadherin Flamingo links Frizzled and Notch Signalling in Planar Polarity establishment in the Drosophila eye. Dev Cell 2002; 2:655–666.

    Article  PubMed  CAS  Google Scholar 

  86. Lu B, Usui T, Uemura T et al. Flamingo controls planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr Biol 1999; 9:1247–1250.

    Article  PubMed  CAS  Google Scholar 

  87. Vinson CR, Adler PN. Directional noncell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 1987; 329:549–551.

    Article  PubMed  CAS  Google Scholar 

  88. Adler PN, Taylor J, Charlton J. The domineering non-autonomy of frizzled and van Gogh clones in the Drosophila wing is a consequence of a disruption in local signalling. Mech Dev 2000; 96:197–207.

    Article  PubMed  CAS  Google Scholar 

  89. Shimada Y, Usui T, Yanagawa S et al. Asymmetric colocalisation of Flamingo, a seven-pass transmembrane cadherin and Dishevelled in planar cell polarisation. Curr Biol 2001; 11:859–863.

    Article  PubMed  CAS  Google Scholar 

  90. Strutt D. Asymmetric localisation of Frizzled and the establishment of cell polarity in the Drosophila wing. Mol Cell 2001; 7:367–375.

    Article  PubMed  CAS  Google Scholar 

  91. Chen WS, Antic D, Matis M et al. Asymmetric homotypic interactions of the atypical cadherin Flamingo mediate intercellular polarity signalling. Cell 2008; 133:1093–1105.

    Article  PubMed  CAS  Google Scholar 

  92. Strutt H, Strutt D. Differential stability of Flamingo protein complexes underlies the establishment of planar polarity in Drosophila. Curr Biol 2008; 18:1555–1564.

    Article  PubMed  CAS  Google Scholar 

  93. Wu J, Mlodzik M. The Frizzled extracellular domain is a ligand for Van Gogh/Stbm during non-autonomous planar cell polarity signalling. Dev Cell 2008; 15:462–469.

    Article  PubMed  CAS  Google Scholar 

  94. Lawrence PA, Strahl G, Casal J. Planar Cell polarity: a bridge too far? Curr. Biol 2008; 18:R959–R960.

    Article  PubMed  CAS  Google Scholar 

  95. Mlodzik M. Planar polarity in the Drosophila eye: a multifaceted view of signaling specificity and cross-talk. EMBO J 1999; 18:6873–6879.

    Article  PubMed  CAS  Google Scholar 

  96. Curtin JA, Quint E, Tsipouri V et al. Mutation in Celsrl disrupts Planar Polarity of Inner Ear Hair Cells and Causes Severe Neural Tube Defects in the Mouse. Curr Biol 2003; 13:1129–1133.

    Article  PubMed  CAS  Google Scholar 

  97. Tissir F, Bar I, Jossin Y et al. Protocadherin Celsr3 is crucial in axonal tract development. Nat Neuro 2005; 8:451–457.

    CAS  Google Scholar 

  98. Zhou L, Bar I, Tissir F et al. Early Forebrain Wiring: Genetic dissection using conditional mutant mice. Science 2008; 320:946–950.

    Article  PubMed  CAS  Google Scholar 

  99. Ying G, Wu S, Hou R et al. Protocadherin Celsr3 is required for interneuron migration in the mouse forebrain. Mol Cell Biol 2009; Epub ahead of print.

    Google Scholar 

  100. Warga RM, Kimmel CB. Cell movements during epiboly and gastrulation in zebrafish. Development 1990; 108:569–580.

    PubMed  CAS  Google Scholar 

  101. Solnica-Krezel L. Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 2005; 15:R213–R228.

    Article  PubMed  CAS  Google Scholar 

  102. Carreira-Barbosa F, Kajita M, Morel V et al. Flamingo regulates epiboly and convergence/extension movements through cell cohesive and signalling functions during zebrafish gastrulation. Development 2009; 136:383–392.

    Article  PubMed  CAS  Google Scholar 

  103. Ybot-Gonzalez P, Savery D, Gerrelli D et al. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 2007; 134:789–799.

    Article  PubMed  CAS  Google Scholar 

  104. Ciruna B, Jenny A, Lee D et al. Planar cell polarity signalling couples cell division and morphogenesis during neuralation. Nature 2006; 439:220–224.

    Article  PubMed  CAS  Google Scholar 

  105. Deans MR, Antic D, Suyama K et al. Asymmetric distribution of prickle-like 2 reveals an early underlying polarization of vestibular sensory epithelia in the inner ear. J Neurosci 2007; 27:3139–3147.

    Article  PubMed  CAS  Google Scholar 

  106. Ravni A, Yibo Q, Goffinet A et al. Planar Cell Polarity Cadherin Celsr1 regulates skin hair patterning in the mouse. J Invest Derm 2009; Epub ahead of print.

    Google Scholar 

  107. Shima Y, Kengaku M, Hirano T et al. Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev Cell 2004; 7:205–216.

    Article  PubMed  CAS  Google Scholar 

  108. Shima Y, Kawaguchi S-y, Kosaka K et al. Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neuroscience 2007; 10:963–969.

    Article  CAS  Google Scholar 

  109. Tissir F, Goffinet AM. Expression of planar cell polarity genes during development of the mouse CNS. Eur J Neuro 2006; 23:5976–5607.

    Google Scholar 

  110. Chandrasekhar A. Turning heads: development of vertebrate branchiomotor neurons. Dev Dyn 2004; 229:143–161.

    Article  PubMed  CAS  Google Scholar 

  111. Chen P-L, Clandinin TR. The cadherin Flamingo mediates level-dependent interactions that guide photoreceptor target choice in Drosophila. Neuron 2008; 58:26–33.

    Article  PubMed  CAS  Google Scholar 

  112. Steinel MC, Whitington PM. The atypical cadherin Flamingo is required for sensory axon advance beyond intermediate target cells. Dev Biol 2009:327:447–457.

    Article  PubMed  CAS  Google Scholar 

  113. Zhou L, Qu Y, Tissir F et al. Role of the Atypical Cadherin Celsr3 during Development of the Internal Capsule. Cereb Cortex 2009; Epub ahead of print.

    Google Scholar 

  114. Sweeney NT, Li W, Gao F-B. Genetic manipulation of single neurons in vivo reveals specific roles of Flamingo in neuronal morphogenesis. Dev Biol 2002; 247:76–88.

    Article  PubMed  CAS  Google Scholar 

  115. Kimura H, Usui T, Tsubouchi A et al. Potential dual molecular interaction of the Drosophila 7-pass transmembrane cadherin Flamingo in dendritic morphogenesis. J Cell Sci 2006; 119:1118–1129.

    Article  PubMed  CAS  Google Scholar 

  116. Volynski KE, Silva JP, Lelianova VG et al. Latrophilin fragments behave as independent proteins that associate and signal on binding LTX (N4C). EMBO J 2004; 23:4423–4433.

    Article  PubMed  CAS  Google Scholar 

  117. Silva JP, Lelianova V, Hopkins C et al. Functional cross-interaction of the fragments produced by the cleavage of distinct adhesion G-protein-coupled receptors. J Biol Chem 2009; 284:6495–6506.

    Article  PubMed  CAS  Google Scholar 

  118. Witzel S, Zimyanin V, Carreira-Barbosa F et al. Wntl 1 controls cell contact persistence by local accumulation of Frizzled7 at the plasma membrane. J Cell Biol 2006; 175:791–802.

    Article  PubMed  CAS  Google Scholar 

  119. Wasserscheid I, Thomas U, Knust E. Isoform-specific interaction of Flamingo/Starry Night with excess Bazooka affects Planar Cell Polarity in the Drosophila wing. Dev Dyn 2007; 236:1064–1071.

    Article  PubMed  CAS  Google Scholar 

  120. Ye B, Jan YN. The cadherin superfamily and dendrite development. Trends Cell Biol 2005; 15:65–67.

    Article  CAS  Google Scholar 

  121. Reuter JE, Nardine TM, Penton A et al. A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development 2003; 130:1203–1213.

    Article  PubMed  CAS  Google Scholar 

  122. Sakai T, Oshima A, Nozaki Y et al. Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 2008; 28:143–150.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Formstone, C.J. (2010). 7TM-Cadherins: Developmental Roles and Future Challenges. In: Yona, S., Stacey, M. (eds) Adhesion-GPCRs. Advances in Experimental Medicine and Biology, vol 706. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7913-1_2

Download citation

Publish with us

Policies and ethics