Advertisement

The Adhesion GPCRs; Gene Repertoire, Phylogeny and Evolution

  • Helgi B. Schiöth
  • Karl J. V. Nordström
  • Robert Fredriksson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 706)

Abstract

The Adhesion family is unique among the GPCR (G protein-coupled receptor) families because of several features including long N-termini with multiple domains. The gene repertoire has recently been mined in great detail in several species including mouse, rat, dog, chicken and the early vertebrate Branchiostoma (Branchiostoma floridae) and one of the most primitive animals, the cniderian Nematostella (Nematostella vectensis). There is a one-to-one relationship of the rodent (mouse and rat) and human orthologues with the exception the EMR2 and EMR3 that do not seem to have orthologues in either rat or mouse. All 33 human Adhesion GPCR genes are present in the dog genome but the dog genome also contains 5 additional full-length Adhesion genes. The dog and human Adhesion orthologues have higher average protein sequence identity than the rodent (rat and mouse) and the human sequences. The Adhesion family is well-represented in chicken with 21 one-to-one orthologous with humans, while 12 human Adhesion GPCRs lack a chicken ortholog. Branchiostoma has rich repertoire of Adhesion GPCRs with at least 37 genes. Moreover, the Adhesion GPCRs in Branchiostoma have several novel domains their N-termini, like Somatomedin B, Kringle, Lectin C-type, SRCR, LDLa, Immunoglobulin I-set, CUB and TNFR. Nematostella has also Adhesion GPCRs that are show domain structure and sequence similarities in the transmembrane regions with different classes of mammalian GPCRs. The Nematostella genome has a unique set of Adhesion- like sequences lacking GPS domains. There is considerable evidence showing that the Adhesion family is ancestral to the peptide hormone binding Secretin family of GPCRs.

Keywords

Amino Acid Identity Gene Repertoire Nematostella Vectensis Hormone Binding Domain Adhesion GPCRs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fredriksson R, Lagerstrom MC, Lundin LG et al. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups and fingerprints. Mol Pharmacol 2003; 63(6):1256–1272.PubMedCrossRefGoogle Scholar
  2. 2.
    Bjarnadottir TK, Geirardsdottir K, Ingemansson M et al. Identification of novel splice variants of Adhesion G protein-coupled receptors. Gene 2007; 387(1-2):38–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Bjarnadottir TK, Fredriksson R, Hoglund PJ et al. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 2004; 84(1):23–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Fredriksson R, Gloriam DE, Hoglund PJ et al. There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini. Biochem Biophys Res Commun 2003; 301(3):725–734.PubMedCrossRefGoogle Scholar
  5. 5.
    Fredriksson R, Lagerstrom MC, Hoglund PJ et al. Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions. FEBS Lett 2002; 531(3):407–414.PubMedCrossRefGoogle Scholar
  6. 6.
    Lagerstrom MC, Hellstrom AR, Gloriam DE et al. The G Protein-Coupled Receptor Subset of the Chicken Genome. PLoS Comput Biol 2006; 2(6):e54.PubMedCrossRefGoogle Scholar
  7. 7.
    Gloriam DE, Fredriksson R, Schioth HB. The G protein-coupled receptor subset of the rat genome. BMC genomics 2007; 8:338.PubMedCrossRefGoogle Scholar
  8. 8.
    Lagerstrom MC, Schioth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008; 7(4):339–357.PubMedCrossRefGoogle Scholar
  9. 9.
    Harmar AJ. Family-B G-protein-coupled receptors. Genome Biol 2001; 2(12):3013.CrossRefGoogle Scholar
  10. 10.
    McKnight AJ, Gordon S. The EGF-TM7 family: unusual structures at the leukocyte surface. J Leukoc Biol 1998; 63(3):271–280.PubMedGoogle Scholar
  11. 11.
    Parmentier ML, Galvez T, Acher F et al. Conservation of the ligand recognition site of metabotropic glutamate receptors during evolution. Neuropharmacology 2000; 39(7): 1119–1131.PubMedCrossRefGoogle Scholar
  12. 12.
    Stacey M, Lin HH, Gordon S et al. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 2000; 25(6):284–289.PubMedCrossRefGoogle Scholar
  13. 13.
    Kwakkenbos MJ, Kop EN, Stacey M et al. The EGF-TM7 family: a postgenomic view. Immunogenetics 2004; 55(10):655–666.PubMedCrossRefGoogle Scholar
  14. 14.
    Nordstrom KJ, Lagerstrom MC, Waller LM et al. The Secretin GPCRs descended from the family of Adhesion-GPCRs. Mol Biol Evol 2009; 26(1):71–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Bjarnadottir TK, Fredriksson R, Schioth HB. The gene repertoire and the common evolutionary history of glutamate, pheromone (V2R), taste(1) and other related G protein-coupled receptors. Gene 2005; 362:70–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Bjarnadottir TK, Gloriam DE, Hellstrand SH et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 2006; 88(3):263–273.PubMedCrossRefGoogle Scholar
  17. 17.
    Bjarnadottir TK, Fredriksson R, Schioth HB. The adhesion-GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci 2007; 64(16):2104–2119.PubMedCrossRefGoogle Scholar
  18. 18.
    Chung DA, Wade SM, Fowler CB et al. Mutagenesis and peptide analysis of the DRY motif in the alpha2A adrenergic receptor: evidence for alternate mechanisms in G protein-coupled receptors. Biochem Biophys Res Commun 2002; 293(4):1233–1241.PubMedCrossRefGoogle Scholar
  19. 19.
    Palczewski K, Kumasaka T, Hori T et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000; 289(5480):739–745.PubMedCrossRefGoogle Scholar
  20. 20.
    Lagerstrom MC, Klovins J, Fredriksson R et al. High affinity agonistic metal ion binding sites within the melanocortin 4 receptor illustrate conformational change of transmembrane region 3. J Biol Chem 2003; 278(51):51521–51526.PubMedCrossRefGoogle Scholar
  21. 21.
    Haitina T, Fredriksson R, Foord SM et al. The G protein-coupled receptor subset of the dog genome is more similar to that in humans than rodents. BMC genomics 2009; 10:24.PubMedCrossRefGoogle Scholar
  22. 22.
    Kwakkenbos MJ, Matmati M, Madsen O et al. An unusual mode of concerted evolution of the EGF-TM7 receptor chimera EMR2. FASEB J 2006; 20(14):2582–2584.PubMedCrossRefGoogle Scholar
  23. 23.
    Fredriksson R, Schioth HB. The repertoire of G-protein coupled receptors in fully sequenced genomes. Mol Pharmacol 2005.Google Scholar
  24. 24.
    Metpally RP, Sowdhamini R. Genome wide survey of G protein-coupled receptors in Tetraodon nigroviridis. BMC Evol Biol 2005; 5:41.PubMedCrossRefGoogle Scholar
  25. 25.
    Holland LZ, Laudet V, Schubert M. The chordate amphioxus: an emergingmodel organism for developmental biology. Cell Mol Life Sci 2004; 61(18):2290–2308.PubMedCrossRefGoogle Scholar
  26. 26.
    Nordstrom KJ, Fredriksson R, Schioth HB. The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors. BMC Evol Biol 2008; 8:9.PubMedCrossRefGoogle Scholar
  27. 27.
    Patthy L, Trexler M, Vali Z et al. Modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases. FEBS Lett 1984; 171(1): 131–136.PubMedCrossRefGoogle Scholar
  28. 28.
    Salasznyk RM, Zappala M, Zheng M et al. The uPA receptor and the somatomedin B region of vitronectin direct the localization of uPA to focal adhesions in microvessel endothelial cells. Matrix Biol 2007; 26(5):359–370.PubMedCrossRefGoogle Scholar
  29. 29.
    Delsuc F, Brinkmann H, Chourrout D et al. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006; 439(7079):965–968.PubMedCrossRefGoogle Scholar
  30. 30.
    Putnam NH, Srivastava M, Hellsten U et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007; 317(5834):86–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Ji Y, Zhang Z, Hu Y. The repertoire of G-protein-coupled receptors in Xenopus tropicalis. BMC genomics 2009; 10:263.PubMedCrossRefGoogle Scholar
  32. 32.
    Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22(21):2688–2690.PubMedCrossRefGoogle Scholar
  33. 33.
    Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008; 9(4):286–298.PubMedCrossRefGoogle Scholar
  34. 34.
    Kamesh N, Aradhyam GK, Manoj N. The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis. BMC Evol Biol 2008; 8:129.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Helgi B. Schiöth
    • 1
  • Karl J. V. Nordström
  • Robert Fredriksson
  1. 1.Department of NeuroscienceBiomedical CenterUppsalaSweden

Personalised recommendations