Fair-Division Problems

  • Mark de Longueville
Part of the Universitext book series (UTX)


Almost every day, we encounter fair-division problems: in the guise of dividing a piece of cake, slicing a ham sandwich, or by dividing our time with respect to the needs and expectations of family, friends, work, etc.


Simplicial Complex Combinatorial Proof Ulam Theorem Continuous Probability Measure Cross Polytope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Aig88]
    Martin Aigner, Combinatorial search, Wiley-Teubner, 1988.Google Scholar
  2. [Alo87]
    Noga Alon, Splitting necklaces, Adv. Math. 63 (1987), 247–253.MATHCrossRefGoogle Scholar
  3. [Arc95]
    Dan Archdeacon, The thrackle conjecture, Accessed August 2012.
  4. [Arn49]
    Bradford H. Arnold, A topological proof of the fundamental theorem of algebra, Am. Math. Monthly 56 (1949), 465–466.MATHCrossRefGoogle Scholar
  5. [AS92]
    Noga Alon and Joel H. Spencer, The probabilistic method, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1992.Google Scholar
  6. [Bár78]
    Imre Bárány, A short proof of Kneser’s conjecture, J. Combinatorial Theory, Ser. A 25 (1978), 325–326.Google Scholar
  7. [Bár79]
    to3em______ , On a common generalization of Borsuk’s and Radon’s theorem, Acta Math. Acad. Sci. Hung. 34 (1979), 347–350.Google Scholar
  8. [BEBL74]
    M. R. Best, P. van Emde Boas, and H. W. jun. Lenstra, A sharpened version of the Aanderaa–Rosenberg conjecture, Afd. zuivere Wisk. ZW 300/74 (1974).Google Scholar
  9. [Bie92]
    Thomas Bier, A remark on Alexander duality and the disjunct join, unpublished preprint, 7 pages, 1992.Google Scholar
  10. [Bin64]
    R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on Modern Mathematics (T.L. Saaty, ed.), vol. II, Wiley, 1964, pp. 93–128.Google Scholar
  11. [Bjö80]
    Anders Björner, Shellable and Cohen–Macaulay partially ordered sets, Trans. AMS 260 (1980), no. 1, 159–183.MATHCrossRefGoogle Scholar
  12. [Bjö94]
    to3em__________________________________________________________________________________________________ , Topological methods, Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, eds.), North Holland, Amsterdam, 1994, pp. 1819–1872.Google Scholar
  13. [BK07]
    Eric Babson and Dmitry Kozlov, Proof of the Lovász conjecture, Annals of Mathematics (Second Series) 165 (2007), no. 3, 965–1007.MathSciNetMATHCrossRefGoogle Scholar
  14. [Bol04]
    Bela Bollobas, Extremal graph theory, ch. 8. Complexity and Packing, Dover Publications, Mineola, New York (2004).Google Scholar
  15. [Bre72]
    Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London (1972).Google Scholar
  16. [Bre93]
    to3em___________ , Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, 1993.Google Scholar
  17. [Bre06]
    Felix Breuer, Gauss codes and thrackles, Master’s thesis, Freie Universität Berlin, 2006.Google Scholar
  18. [Bro03]
    Torsten Bronger, PP3 – Celestial Chart Generation,, 2003. Accessed March 2010.
  19. [BSS81]
    Imre Bárány, Senya B. Schlosman, and András Szűcs, On a topological generalization of a theorem of Tverberg, J. London Math. Soc. 23 (1981), no. 2, 158–164.MathSciNetMATHCrossRefGoogle Scholar
  20. [Bir59]
    Bryan John Birch, On 3N points in a plane, Math. Proc. Cambridge Phil. Soc. 55 (1959), 289–293.CrossRefGoogle Scholar
  21. [BW83]
    Anders Björner and Michelle Wachs, On lexicographically shellable posets, Trans. AMS 277 (1983), no. 1, 323–341.MATHCrossRefGoogle Scholar
  22. [CLSW04]
    Péter Csorba, Carsten Lange, Ingo Schurr, and Arnold Wassmer, Box complexes, neighborhood complexes, and the chromatic number, J. Comb. Theory, Ser. A 108 (2004), no. 1, 159–168.Google Scholar
  23. [CN00]
    Grant Cairns and Yury Nikolayevsky, Bounds for generalized thrackles, Discrete Comput. Geom. 23 (2000), no. 2, 191–206.MathSciNetMATHCrossRefGoogle Scholar
  24. [Die06]
    Reinhard Diestel, Graph theory, 3rd ed., Graduate Texts in Mathematics, vol. 173, Springer, New York, 2006.Google Scholar
  25. [Dol83]
    Albrecht Dold, Simple proofs of some Borsuk–Ulam results, Contemp. Math. 19 (1983), 65–69.MathSciNetMATHCrossRefGoogle Scholar
  26. [Fan52]
    Ky Fan, A generalization of Tucker’s combinatorial lemma with topological applications, Ann. Math. 56 (1952), no. 2, 431–437.MATHCrossRefGoogle Scholar
  27. [FT81]
    Robert M. Freund and Michael J. Todd, A constructive proof of Tucker’s combinatorial lemma, J. Comb. Theory, Ser. A 30 (1981), 321–325.Google Scholar
  28. [Gal56]
    David Gale, Neighboring vertices on a convex polyhedron, Linear Inequalities and Related Systems (H. W. Kuhn and A. W. Tucker, eds.), Annals of Math. Studies, vol. 38, Princeton University Press, 1956, pp. 255–263.Google Scholar
  29. [GR92]
    J. E. Green and Richard D. Ringeisen, Combinatorial drawings and thrackle surfaces, Graph Theory, Combinatorics, and Algorithms 1 (1992), no. 2, 999–1009.Google Scholar
  30. [Gre02]
    Joshua E. Greene, A new short proof of Kneser’s conjecture, Amer. Math. Monthly 109 (2002), 918–920.MathSciNetMATHCrossRefGoogle Scholar
  31. [HT74]
    John Hopcroft and Robert Tarjan, Efficient planarity testing, J. of the Assoc. for Computing Machinery 21 (1974), no. 4, 549–568.MathSciNetMATHCrossRefGoogle Scholar
  32. [Hun74]
    Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer, 1974.Google Scholar
  33. [JA01]
    Elizabeth J. Jewell and Frank R. Abate (eds.), New Oxford American Dictionary, Oxford University Press, 2001.Google Scholar
  34. [Jän84]
    Klaus Jänich, Topology, Springer-Verlag New York, 1984.Google Scholar
  35. [KK80]
    D.J. Kleitman and D.J. Kwiatkowski, Further results on the Aanderaa-Rosenberg conjecture, J. Comb. Theory, Ser. B 28 (1980), 85–95.Google Scholar
  36. [Kne55]
    Martin Kneser, Aufgabe 360, Jahresbericht der Deutschen Mathematiker-Vereinigung 58 (1955), no. 2, 27.Google Scholar
  37. [Koz07]
    Dmitry N. Kozlov, Chromatic numbers, morphism complexes, and Stiefel-Whitney characteristic classes, Geometric combinatorics (Ezra Miller et al., ed.), 13, Institute for Advanced Studies. IAS/Park City Mathematics, American Mathematical Society; Princeton, NJ, 2007, pp. 249–315.Google Scholar
  38. [KSS84]
    Jeff Kahn, Michael Saks, and Dean Sturtevant, A topological approach to evasiveness, Combinatorica 4 (1984), no. 4, 297–306.MathSciNetMATHCrossRefGoogle Scholar
  39. [Lon04]
    Mark de Longueville, Bier spheres and barycentric subdivision, J. Comb. Theory, Ser. A 105 (2004), 355–357.Google Scholar
  40. [Lov78]
    László Lovász, Kneser’s conjecture, chromatic number and homotopy, J. Combinatorial Theory, Ser. A 25 (1978), 319–324.Google Scholar
  41. [LPS97]
    László Lovász, János Pach, and Mario Szegedy, On Conway’s thrackle conjecture, Discrete Comput. Geom. 18 (1997), no. 4, 369–376.MathSciNetMATHCrossRefGoogle Scholar
  42. [Mas77]
    William S. Massey, Algebraic topology: An introduction, Graduate Texts in Mathematics, vol. 56, Springer-Verlag, 1977.Google Scholar
  43. [Mas91]
    to3em_____ , A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127, Springer Verlag, 1991.Google Scholar
  44. [Mat04]
    Jiří Matoušek, A combinatorical proof of Kneser’s conjecture, Combinatorica 24 (2004), no. 1, 163–170.MathSciNetMATHCrossRefGoogle Scholar
  45. [May99]
    J. Peter May, A concise course in algebraic topology, The University of Chicago Press, 1999.Google Scholar
  46. [Meu05]
    Frédéric Meunier, A \( {\mathbb{Z}}_{q} \) -Fan formula, preprint (2005), 14 pages.Google Scholar
  47. [Mun84]
    James R. Munkres, Elements of algebraic topology, Addison-Wesley, Menlo Park, California, 1984.Google Scholar
  48. [MW76]
    Eric Charles Milner and Dominic J. A. Welsh, On the computational complexity of graph theoretical properties, Proc. 5th Br. comb. Conf. (Aberdeen 1975), 1976, pp. 471–487.Google Scholar
  49. [MZ04]
    Jiří Matoušek and Günter M. Ziegler, Topological lower bounds for the chromatic number: a hierarchy., Jahresbericht der Deutschen Mathematiker-Vereinigung 106 (2004), no. 2, 71–90.MathSciNetMATHGoogle Scholar
  50. [Oli75]
    Robert Oliver, Fixed-point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), no. 50, 155–177.MathSciNetMATHCrossRefGoogle Scholar
  51. [Ore67]
    Oystein Ore, The four color problem, Academic Press, New York, 1967.MATHGoogle Scholar
  52. [Öza87]
    Murad Özaydin, Equivariant maps for the symmetric group, unpublished preprint (1987), 17 pages, University of Wisconsin, Madison.Google Scholar
  53. [Pak08]
    Igor Pak, The discrete square peg problem,, 2008. Accessed June 2010
  54. [Pól56]
    George Pólya, On picture-writing, Am. Math. Mon. 63 (1956), 689–697.MATHCrossRefGoogle Scholar
  55. [PS05]
    Timothy Prescott and Francis Edward Su, A constructive proof of Ky Fan’s generalization of Tucker’s lemma, J. Comb. Theory, Ser. A 111 (2005), no. 2, 257–265.Google Scholar
  56. [PSŠ07]
    Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič, Removing even crossings, J. Comb. Theory, Ser. B 97 (2007), 489–500.Google Scholar
  57. [Rot87]
    Gian-Carlo Rota, The Lost Café, Los Alamos Science, Special Issue (1987), 23–32.Google Scholar
  58. [RV76]
    Ronald L. Rivest and Jean Vuillemin, On recognizing graph properties from adjacency matrices, Theor. Comput. Sci. 3 (1976), 371–384.MathSciNetCrossRefGoogle Scholar
  59. [RW98]
    Jack Robertson and William Webb, Cake-cutting algorithms. Be fair if you can., A. K. Peters., 1998.Google Scholar
  60. [Saa72]
    Thomas L. Saaty, Thirteen colorful variations on Guthrie’s Four–Color conjecture, Amer. Math. Monthly 79 (1972), no. 1, 2–43.MathSciNetMATHCrossRefGoogle Scholar
  61. [Sar91]
    Karanbir S. Sarkaria, A one-dimensional Whitney trick and Kuratowski’s graph planarity criterion, Israel J. Math. 73 (1991), no. 1, 79–89.MathSciNetCrossRefGoogle Scholar
  62. [Sar92]
    to3em__ , Tverberg’s theorem via number fields, Israel J. Math. 79 (1992), no. 2-3, 317–320.Google Scholar
  63. [Sar00]
    to3em______ , Tverberg partitions and Borsuk–Ulam theorems, Pacific J. Math. 196 (2000), 231–241.Google Scholar
  64. [Sch78]
    Alexander Schrijver, Vertex critical subgraphs of Kneser graphs, Nieuw Arch. Wiskd. 26 (1978), no. III., 454–461.Google Scholar
  65. [Schu06]
    Carsten Schultz, Graph colorings, spaces of edges and spaces of circuits, Advances in Math. 221 (2006), no. 6, 1733–1756.CrossRefGoogle Scholar
  66. [Sch10]
    to3em_________________________________________________________________________________________ , On the \( {\mathbb{Z}}_{2} \) -homotopy equivalence of \( \vert \mathcal{L}(G)\vert \) and |Hom (K 2 ,G) |, personal communication, 2010.Google Scholar
  67. [Schy06]
    Daria Schymura, Über die Fragekomplexität von Mengen- und Grapheneigenschaften, Master’s thesis, Freie Universität Berlin, 2006.Google Scholar
  68. [See06]
    K. Seetharaman, Pretzel production and quality control, Bakery Products: Science and Technology (Y. H. Hui, Harold Corke, Ingrid De Leyn, Wai-Kit Nip, and Nanna A. Cross, eds.), Blackwell, first ed., 2006, pp. 519–526.Google Scholar
  69. [Spe28]
    Emanuel Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abhandlungen Hamburg 6 (1928), 265–272.MATHCrossRefGoogle Scholar
  70. [SS03]
    Francis Edward Su and Forest W. Simmons, Consensus-halving via theorems of Borsuk–Ulam and Tucker, Math. Social Sci. 45 (2003), 15–25.MathSciNetMATHCrossRefGoogle Scholar
  71. [ST07]
    Gábor Simonyi and Gábor Tardos, Colorful subgraphs in Kneser-like graphs, European J. Combin. 28 (2007), no. 8, 2188–2200.MathSciNetMATHCrossRefGoogle Scholar
  72. [Su99]
    Francis Edward Su, Rental harmony: Sperner’s lemma in fair division, Am. Math. Monthly 10 (1999), 930–942.Google Scholar
  73. [Tho92]
    Carsten Thomassen, The Jordan–Schoenflies theorem and the classification of surfaces, Amer. Math. Monthly 99 (1992), 116–130.MathSciNetMATHCrossRefGoogle Scholar
  74. [Tho94]
    to3em___________________________________________________________________________________________________ , Embeddings and minors, Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, eds.), North Holland, Amsterdam, 1994, pp. 301–349.Google Scholar
  75. [Tho98]
    Robin Thomas, An update on the Four–Color theorem, Notices of the Amer. Math. Soc. 45 (1998), no. 7, 848–859.MATHGoogle Scholar
  76. [Tut70]
    William Thomas Tutte, Toward a theory of crossing numbers, J. Comb. Theory 8 (1970), 45–53.CrossRefGoogle Scholar
  77. [Tve66]
    Helge Tverberg, A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966), 123–128.MathSciNetMATHCrossRefGoogle Scholar
  78. [vK32]
    Egbert R. van Kampen, Komplexe in euklidischen Räumen, Abh. Math. Semin. Hamb. Univ. 9 (1932), 72–78, 152–153.Google Scholar
  79. [Vol96]
    Alexey Yu. Volovikov, On a topological generalization of the Tverberg theorem, Math. Notes 59 (1996), no. 3, 324–326.MathSciNetCrossRefGoogle Scholar
  80. [Wal83]
    James W. Walker, From graphs to ortholattices and equivariant maps, J. Comb. Theory, Ser. B 35 (1983), 171–192.Google Scholar
  81. [Wes05]
    Douglas B. West, Introduction to graph theory, Prentice-Hall, 2005.Google Scholar
  82. [Woo71]
    Douglas R. Woodall, Thrackles and deadlock, Proc. Conf. Combinatorial Mathematics and Its Applications, Oxford 1969 (1971), 335–347.Google Scholar
  83. [Woo80]
    to3em_________________________ , Dividing a cake fairly, J. Math. Anal. Appl. 78 (1980), 233–247.Google Scholar
  84. [Zee63]
    E.C. Zeeman, On the dunce hat, Topology 2 (1963), 341–358.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mark de Longueville
    • 1
  1. 1.Hochschule für Technik und Wirtschaft BerlinUniversity of Applied SciencesBerlinGermany

Personalised recommendations