Fair-Division Problems

  • Mark de Longueville
Part of the Universitext book series (UTX)


Almost every day, we encounter fair-division problems: in the guise of dividing a piece of cake, slicing a ham sandwich, or by dividing our time with respect to the needs and expectations of family, friends, work, etc.




  1. [Aig88]
    Martin Aigner, Combinatorial search, Wiley-Teubner, 1988.Google Scholar
  2. [Alo87]
    Noga Alon, Splitting necklaces, Adv. Math. 63 (1987), 247–253.MATHCrossRefGoogle Scholar
  3. [Arc95]
    Dan Archdeacon, The thrackle conjecture, http://www.emba.uvm.edu/~archdeac/problems/thrackle.htm. Accessed August 2012.
  4. [Arn49]
    Bradford H. Arnold, A topological proof of the fundamental theorem of algebra, Am. Math. Monthly 56 (1949), 465–466.MATHCrossRefGoogle Scholar
  5. [AS92]
    Noga Alon and Joel H. Spencer, The probabilistic method, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1992.Google Scholar
  6. [Bár78]
    Imre Bárány, A short proof of Kneser’s conjecture, J. Combinatorial Theory, Ser. A 25 (1978), 325–326.Google Scholar
  7. [Bár79]
    to3em______ , On a common generalization of Borsuk’s and Radon’s theorem, Acta Math. Acad. Sci. Hung. 34 (1979), 347–350.Google Scholar
  8. [BEBL74]
    M. R. Best, P. van Emde Boas, and H. W. jun. Lenstra, A sharpened version of the Aanderaa–Rosenberg conjecture, Afd. zuivere Wisk. ZW 300/74 (1974).Google Scholar
  9. [Bie92]
    Thomas Bier, A remark on Alexander duality and the disjunct join, unpublished preprint, 7 pages, 1992.Google Scholar
  10. [Bin64]
    R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on Modern Mathematics (T.L. Saaty, ed.), vol. II, Wiley, 1964, pp. 93–128.Google Scholar
  11. [Bjö80]
    Anders Björner, Shellable and Cohen–Macaulay partially ordered sets, Trans. AMS 260 (1980), no. 1, 159–183.MATHCrossRefGoogle Scholar
  12. [Bjö94]
    to3em__________________________________________________________________________________________________ , Topological methods, Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, eds.), North Holland, Amsterdam, 1994, pp. 1819–1872.Google Scholar
  13. [BK07]
    Eric Babson and Dmitry Kozlov, Proof of the Lovász conjecture, Annals of Mathematics (Second Series) 165 (2007), no. 3, 965–1007.MathSciNetMATHCrossRefGoogle Scholar
  14. [Bol04]
    Bela Bollobas, Extremal graph theory, ch. 8. Complexity and Packing, Dover Publications, Mineola, New York (2004).Google Scholar
  15. [Bre72]
    Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London (1972).Google Scholar
  16. [Bre93]
    to3em___________ , Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, 1993.Google Scholar
  17. [Bre06]
    Felix Breuer, Gauss codes and thrackles, Master’s thesis, Freie Universität Berlin, 2006.Google Scholar
  18. [Bro03]
    Torsten Bronger, PP3 – Celestial Chart Generation, http://pp3.sourceforge.net/, 2003. Accessed March 2010.
  19. [BSS81]
    Imre Bárány, Senya B. Schlosman, and András Szűcs, On a topological generalization of a theorem of Tverberg, J. London Math. Soc. 23 (1981), no. 2, 158–164.MathSciNetMATHCrossRefGoogle Scholar
  20. [Bir59]
    Bryan John Birch, On 3N points in a plane, Math. Proc. Cambridge Phil. Soc. 55 (1959), 289–293.CrossRefGoogle Scholar
  21. [BW83]
    Anders Björner and Michelle Wachs, On lexicographically shellable posets, Trans. AMS 277 (1983), no. 1, 323–341.MATHCrossRefGoogle Scholar
  22. [CLSW04]
    Péter Csorba, Carsten Lange, Ingo Schurr, and Arnold Wassmer, Box complexes, neighborhood complexes, and the chromatic number, J. Comb. Theory, Ser. A 108 (2004), no. 1, 159–168.Google Scholar
  23. [CN00]
    Grant Cairns and Yury Nikolayevsky, Bounds for generalized thrackles, Discrete Comput. Geom. 23 (2000), no. 2, 191–206.MathSciNetMATHCrossRefGoogle Scholar
  24. [Die06]
    Reinhard Diestel, Graph theory, 3rd ed., Graduate Texts in Mathematics, vol. 173, Springer, New York, 2006.Google Scholar
  25. [Dol83]
    Albrecht Dold, Simple proofs of some Borsuk–Ulam results, Contemp. Math. 19 (1983), 65–69.MathSciNetMATHCrossRefGoogle Scholar
  26. [Fan52]
    Ky Fan, A generalization of Tucker’s combinatorial lemma with topological applications, Ann. Math. 56 (1952), no. 2, 431–437.MATHCrossRefGoogle Scholar
  27. [FT81]
    Robert M. Freund and Michael J. Todd, A constructive proof of Tucker’s combinatorial lemma, J. Comb. Theory, Ser. A 30 (1981), 321–325.Google Scholar
  28. [Gal56]
    David Gale, Neighboring vertices on a convex polyhedron, Linear Inequalities and Related Systems (H. W. Kuhn and A. W. Tucker, eds.), Annals of Math. Studies, vol. 38, Princeton University Press, 1956, pp. 255–263.Google Scholar
  29. [GR92]
    J. E. Green and Richard D. Ringeisen, Combinatorial drawings and thrackle surfaces, Graph Theory, Combinatorics, and Algorithms 1 (1992), no. 2, 999–1009.Google Scholar
  30. [Gre02]
    Joshua E. Greene, A new short proof of Kneser’s conjecture, Amer. Math. Monthly 109 (2002), 918–920.MathSciNetMATHCrossRefGoogle Scholar
  31. [HT74]
    John Hopcroft and Robert Tarjan, Efficient planarity testing, J. of the Assoc. for Computing Machinery 21 (1974), no. 4, 549–568.MathSciNetMATHCrossRefGoogle Scholar
  32. [Hun74]
    Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer, 1974.Google Scholar
  33. [JA01]
    Elizabeth J. Jewell and Frank R. Abate (eds.), New Oxford American Dictionary, Oxford University Press, 2001.Google Scholar
  34. [Jän84]
    Klaus Jänich, Topology, Springer-Verlag New York, 1984.Google Scholar
  35. [KK80]
    D.J. Kleitman and D.J. Kwiatkowski, Further results on the Aanderaa-Rosenberg conjecture, J. Comb. Theory, Ser. B 28 (1980), 85–95.Google Scholar
  36. [Kne55]
    Martin Kneser, Aufgabe 360, Jahresbericht der Deutschen Mathematiker-Vereinigung 58 (1955), no. 2, 27.Google Scholar
  37. [Koz07]
    Dmitry N. Kozlov, Chromatic numbers, morphism complexes, and Stiefel-Whitney characteristic classes, Geometric combinatorics (Ezra Miller et al., ed.), 13, Institute for Advanced Studies. IAS/Park City Mathematics, American Mathematical Society; Princeton, NJ, 2007, pp. 249–315.Google Scholar
  38. [KSS84]
    Jeff Kahn, Michael Saks, and Dean Sturtevant, A topological approach to evasiveness, Combinatorica 4 (1984), no. 4, 297–306.MathSciNetMATHCrossRefGoogle Scholar
  39. [Lon04]
    Mark de Longueville, Bier spheres and barycentric subdivision, J. Comb. Theory, Ser. A 105 (2004), 355–357.Google Scholar
  40. [Lov78]
    László Lovász, Kneser’s conjecture, chromatic number and homotopy, J. Combinatorial Theory, Ser. A 25 (1978), 319–324.Google Scholar
  41. [LPS97]
    László Lovász, János Pach, and Mario Szegedy, On Conway’s thrackle conjecture, Discrete Comput. Geom. 18 (1997), no. 4, 369–376.MathSciNetMATHCrossRefGoogle Scholar
  42. [Mas77]
    William S. Massey, Algebraic topology: An introduction, Graduate Texts in Mathematics, vol. 56, Springer-Verlag, 1977.Google Scholar
  43. [Mas91]
    to3em_____ , A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127, Springer Verlag, 1991.Google Scholar
  44. [Mat04]
    Jiří Matoušek, A combinatorical proof of Kneser’s conjecture, Combinatorica 24 (2004), no. 1, 163–170.MathSciNetMATHCrossRefGoogle Scholar
  45. [May99]
    J. Peter May, A concise course in algebraic topology, The University of Chicago Press, 1999.Google Scholar
  46. [Meu05]
    Frédéric Meunier, A \( {\mathbb{Z}}_{q} \) -Fan formula, preprint (2005), 14 pages.Google Scholar
  47. [Mun84]
    James R. Munkres, Elements of algebraic topology, Addison-Wesley, Menlo Park, California, 1984.Google Scholar
  48. [MW76]
    Eric Charles Milner and Dominic J. A. Welsh, On the computational complexity of graph theoretical properties, Proc. 5th Br. comb. Conf. (Aberdeen 1975), 1976, pp. 471–487.Google Scholar
  49. [MZ04]
    Jiří Matoušek and Günter M. Ziegler, Topological lower bounds for the chromatic number: a hierarchy., Jahresbericht der Deutschen Mathematiker-Vereinigung 106 (2004), no. 2, 71–90.MathSciNetMATHGoogle Scholar
  50. [Oli75]
    Robert Oliver, Fixed-point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), no. 50, 155–177.MathSciNetMATHCrossRefGoogle Scholar
  51. [Ore67]
    Oystein Ore, The four color problem, Academic Press, New York, 1967.MATHGoogle Scholar
  52. [Öza87]
    Murad Özaydin, Equivariant maps for the symmetric group, unpublished preprint (1987), 17 pages, University of Wisconsin, Madison.Google Scholar
  53. [Pak08]
    Igor Pak, The discrete square peg problem, http://arxiv.org/abs/0804.0657, 2008. Accessed June 2010
  54. [Pól56]
    George Pólya, On picture-writing, Am. Math. Mon. 63 (1956), 689–697.MATHCrossRefGoogle Scholar
  55. [PS05]
    Timothy Prescott and Francis Edward Su, A constructive proof of Ky Fan’s generalization of Tucker’s lemma, J. Comb. Theory, Ser. A 111 (2005), no. 2, 257–265.Google Scholar
  56. [PSŠ07]
    Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič, Removing even crossings, J. Comb. Theory, Ser. B 97 (2007), 489–500.Google Scholar
  57. [Rot87]
    Gian-Carlo Rota, The Lost Café, Los Alamos Science, Special Issue (1987), 23–32.Google Scholar
  58. [RV76]
    Ronald L. Rivest and Jean Vuillemin, On recognizing graph properties from adjacency matrices, Theor. Comput. Sci. 3 (1976), 371–384.MathSciNetCrossRefGoogle Scholar
  59. [RW98]
    Jack Robertson and William Webb, Cake-cutting algorithms. Be fair if you can., A. K. Peters., 1998.Google Scholar
  60. [Saa72]
    Thomas L. Saaty, Thirteen colorful variations on Guthrie’s Four–Color conjecture, Amer. Math. Monthly 79 (1972), no. 1, 2–43.MathSciNetMATHCrossRefGoogle Scholar
  61. [Sar91]
    Karanbir S. Sarkaria, A one-dimensional Whitney trick and Kuratowski’s graph planarity criterion, Israel J. Math. 73 (1991), no. 1, 79–89.MathSciNetCrossRefGoogle Scholar
  62. [Sar92]
    to3em__ , Tverberg’s theorem via number fields, Israel J. Math. 79 (1992), no. 2-3, 317–320.Google Scholar
  63. [Sar00]
    to3em______ , Tverberg partitions and Borsuk–Ulam theorems, Pacific J. Math. 196 (2000), 231–241.Google Scholar
  64. [Sch78]
    Alexander Schrijver, Vertex critical subgraphs of Kneser graphs, Nieuw Arch. Wiskd. 26 (1978), no. III., 454–461.Google Scholar
  65. [Schu06]
    Carsten Schultz, Graph colorings, spaces of edges and spaces of circuits, Advances in Math. 221 (2006), no. 6, 1733–1756.CrossRefGoogle Scholar
  66. [Sch10]
    to3em_________________________________________________________________________________________ , On the \( {\mathbb{Z}}_{2} \) -homotopy equivalence of \( \vert \mathcal{L}(G)\vert \) and |Hom (K 2 ,G) |, personal communication, 2010.Google Scholar
  67. [Schy06]
    Daria Schymura, Über die Fragekomplexität von Mengen- und Grapheneigenschaften, Master’s thesis, Freie Universität Berlin, 2006.Google Scholar
  68. [See06]
    K. Seetharaman, Pretzel production and quality control, Bakery Products: Science and Technology (Y. H. Hui, Harold Corke, Ingrid De Leyn, Wai-Kit Nip, and Nanna A. Cross, eds.), Blackwell, first ed., 2006, pp. 519–526.Google Scholar
  69. [Spe28]
    Emanuel Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abhandlungen Hamburg 6 (1928), 265–272.MATHCrossRefGoogle Scholar
  70. [SS03]
    Francis Edward Su and Forest W. Simmons, Consensus-halving via theorems of Borsuk–Ulam and Tucker, Math. Social Sci. 45 (2003), 15–25.MathSciNetMATHCrossRefGoogle Scholar
  71. [ST07]
    Gábor Simonyi and Gábor Tardos, Colorful subgraphs in Kneser-like graphs, European J. Combin. 28 (2007), no. 8, 2188–2200.MathSciNetMATHCrossRefGoogle Scholar
  72. [Su99]
    Francis Edward Su, Rental harmony: Sperner’s lemma in fair division, Am. Math. Monthly 10 (1999), 930–942.Google Scholar
  73. [Tho92]
    Carsten Thomassen, The Jordan–Schoenflies theorem and the classification of surfaces, Amer. Math. Monthly 99 (1992), 116–130.MathSciNetMATHCrossRefGoogle Scholar
  74. [Tho94]
    to3em___________________________________________________________________________________________________ , Embeddings and minors, Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, eds.), North Holland, Amsterdam, 1994, pp. 301–349.Google Scholar
  75. [Tho98]
    Robin Thomas, An update on the Four–Color theorem, Notices of the Amer. Math. Soc. 45 (1998), no. 7, 848–859.MATHGoogle Scholar
  76. [Tut70]
    William Thomas Tutte, Toward a theory of crossing numbers, J. Comb. Theory 8 (1970), 45–53.CrossRefGoogle Scholar
  77. [Tve66]
    Helge Tverberg, A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966), 123–128.MathSciNetMATHCrossRefGoogle Scholar
  78. [vK32]
    Egbert R. van Kampen, Komplexe in euklidischen Räumen, Abh. Math. Semin. Hamb. Univ. 9 (1932), 72–78, 152–153.Google Scholar
  79. [Vol96]
    Alexey Yu. Volovikov, On a topological generalization of the Tverberg theorem, Math. Notes 59 (1996), no. 3, 324–326.MathSciNetCrossRefGoogle Scholar
  80. [Wal83]
    James W. Walker, From graphs to ortholattices and equivariant maps, J. Comb. Theory, Ser. B 35 (1983), 171–192.Google Scholar
  81. [Wes05]
    Douglas B. West, Introduction to graph theory, Prentice-Hall, 2005.Google Scholar
  82. [Woo71]
    Douglas R. Woodall, Thrackles and deadlock, Proc. Conf. Combinatorial Mathematics and Its Applications, Oxford 1969 (1971), 335–347.Google Scholar
  83. [Woo80]
    to3em_________________________ , Dividing a cake fairly, J. Math. Anal. Appl. 78 (1980), 233–247.Google Scholar
  84. [Zee63]
    E.C. Zeeman, On the dunce hat, Topology 2 (1963), 341–358.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mark de Longueville
    • 1
  1. 1.Hochschule für Technik und Wirtschaft BerlinUniversity of Applied SciencesBerlinGermany

Personalised recommendations