Skip to main content

Food By-products for Biofuels

  • Chapter
  • First Online:
Novel Technologies in Food Science

Abstract

The rise in global energy usage, together with the disappearance of fossil fuel reserves, has highlighted the importance of developing technologies to harness new and renewable energy sources. In addition to sustainability, climate change is another major issue that has driven the search for clean carbon-neutral fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahring BK. Status on science and application of thermophilic anaerobic digestion. Water Sci Technol. 1994;30:241–9.

    CAS  Google Scholar 

  • Anonymous. Waste-fat feedstock only way to boost biodiesel energy efficiency, says top NREL researcher. Diesel Fuel News, 10 Nov 2003.

    Google Scholar 

  • Angelidaki I, Hansen T L, Schmidt J E, Marca E, Mosbæk H, Christensen T H. Method for determination of methane potentials of solid organic waste. Waste Managem. 2004;4:393–400.

    Google Scholar 

  • Beszédes S, Kertész Sz, László Zs, Zsuzsanna, Szabó G, Hodúr C. (2008): Biogas production of ozone and/or microwave-pretreated canned maize production sludge Ozone Science & Engineering Journal Vol. 31(3) pp. 257–261.

    Google Scholar 

  • Beszédes S, László Zs, Kertész Sz, Hodúr C, Szabó G, Kiricsi I. The effect of microwave ­pre-treatment on biogas product of dairy sludge MTA AMB XXXII. Kutatási és Fejlesztési Tanácskozás, Gödöllő, p. 99104.

    Google Scholar 

  • Blesa MJ, Miranda JL, Moliner R, Izquierdo MT. Curing temperature effect on smokeless fuel briquettes prepared with molasses and H3PO4. Fuel. 2003;82:1669–73.

    Article  CAS  Google Scholar 

  • Buendía IM, Fernández FJ, Villaseñor J, Rodríguez L. Biodegradability of meat industry wastes under anaerobic and aerobic conditions. Water Res. 2008;42:3767–74.

    Article  CAS  Google Scholar 

  • Cara C, Ruiz E, Ballestoros I, Negro MJ, Castro E. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignaification. Process Biochem. 2006;41:423–9.

    Article  CAS  Google Scholar 

  • Christopher HV. The molecular composition of lignin in spruce decayed by white-rot fungi (Phanerochaete chrysosporium and Trametes versicolor) using pyrolysis-GC–MS and thermochemolysis with tetramethylammonium hydroxide. International Biodeterioration & Biodegradation. 51:67–75.

    Article  CAS  Google Scholar 

  • Cristi Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.

    Article  CAS  Google Scholar 

  • Dale BE. Why cellulosic ethanol is nearer than you may think. NACAA Conference Grand Rapids. 16 July 2007, Michigan.

    Google Scholar 

  • del Campo I, Alegria I, Zazpe M, Echeverria M, Echverria I. Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind Crops & Prod. 2006;24:214–21.

    Article  CAS  Google Scholar 

  • Demirbas A. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manag. 2002;43:2349–56.

    Article  CAS  Google Scholar 

  • Demirbas A. Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energ Source. 2005;27:327–37.

    Article  CAS  Google Scholar 

  • Demirbas A. The influence of temperature on the yields of compounds existing in bio-oils obtaining from biomass samples via pyrolysis. Fuel Proc Technol. 2007;88:591–7.

    Article  CAS  Google Scholar 

  • Demirbas A. Biofuel sources, biofuel policy, biofuel economy and global biofuel projections. Energ Convers Manag. 2008;49:2106–16.

    Article  CAS  Google Scholar 

  • Demirbas A, Gullu D. Acetic acid, methanol and acetone from lignocellulosics by pyrolysis. Energy Educ Sci Technol. 1998;2:11–115.

    Google Scholar 

  • EC – Directorate General for Energy and Transport (2009) SMILE The gateway to sustainable mobility from http://www.managenergy.net/products/R633.htm.

  • EC (European Commission). Promoting biofuels in Europe. European Commission, Directorate-General for Energy and Transport, Brussels, 2004. http://europa.eu.int/comm/dgs/energy_transport/index_en.html .

  • Energie-Cites and Plan-Energi Co. Biogas CHP from: http://www.energie-cites.eu/db/­aalborg_139_en.pdf (1999).

  • IEA (International Energy Agency), 2002, Renewables in global energy supply. An IEA Fact Sheet. Paris, November 2002.

    Google Scholar 

  • Fellows PJ. Food processing technology. Principles and practice. Boca Raton: CRC.; 2000.

    Google Scholar 

  • Gavala HN, Yenal U, Skiadas IV, Westermann P, Ahring BK. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevate temperature. Water Res. 2003;37:4561–72.

    Article  CAS  Google Scholar 

  • Gray K. Bioethanol. Curr Opin Chem Biol. 2006;10:41–146.

    Article  CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M. Bioethanol. Chem Biol. 2006;10:141–6.

    CAS  Google Scholar 

  • Harasimowicz M, Orluk, Zakrzewska-Trznadel G, Chmielewski AG. Application of polyimide membranes for biogas purification and enrichment. J.l of Hazardous Mat. 2007;144:698–702.

    Article  CAS  Google Scholar 

  • Hilber, T., Mittelbach, M., Schmidt, E., 2005, Animal Fats Perform Well in Biodiesel”5th International Colloquium FUELS in Germany, January 12–13.

    Google Scholar 

  • Hills DJ, Roberts DW. Anaerobic digestion of dairy manure and field crop residues. Agric Wastes. 1981;3:179–89.

    Article  CAS  Google Scholar 

  • Hodúr C,. Beszédes S., László Zs., Szabó G., 2007, Extraction and Biodegradability of Marcs. CIGR Section VI International Symposium on Food And Agricultural Products: Processing And Innovations Naples, Italy, 24–26 September.

    Google Scholar 

  • Hodúr, C., Beszédes, S., László, Zs., 2008, Bioethanol production from lignocelluloses containing material. MTA AMB XXXII. Kutatási és Fejlesztési Tanácskozás, Gödöllő, 22 Jan 2008. p 94–9.

    Google Scholar 

  • Huang H-J, Ramaswamy S, Tschirner UW, Ramarao BV. A review of separation technologies in current and future biorefineries. Sep Purif Technol. 2008;62:1–21.

    Article  CAS  Google Scholar 

  • Kapdi SS, Vijay VK, Rajesh SK, Prasad R. Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy. 2005;30:1195–202.

    Article  CAS  Google Scholar 

  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy. 2004;26:361–375.

    Article  CAS  Google Scholar 

  • Kopsahelis N, Agouridis A, Bekatorou N, Kanellaki M. Comparative study of spent grains and delignified spent grains as yeast supports for alcohol production from molasses. Bioresour Technol. 2007;98:1440–7.

    Article  CAS  Google Scholar 

  • Lastella G, Sharma VK, Testa C, Cornacchia G, Comparato MP. Inclined-plug-flow type reactor for anaerobic digestion of semi-solid waste. Applied Energy. 2000;65:173–185.

    Google Scholar 

  • Lastella G, Testa C, Cornacchia G, Notornicola M, Voltasio F. Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy Conversion and Manag. 2002;43:63–75.

    Google Scholar 

  • László Z, Beszédes S, Kertész S, Hodúr C, Szabó G, Kiricsi I. Bioethanol from sweet sorghum. Hung Agric Eng. 2007;20:15–7.

    Google Scholar 

  • Malca J, Freire F. Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl ­tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy. 2006;31:3362–80.

    Article  CAS  Google Scholar 

  • Maya-Altamira L, Baun A, Angelidaki I, Schmidt J E. Influence of wastewater characteristics on methane potential in food-processing industry waste waters. Water Research. 2008;42: 2195–2203.

    Google Scholar 

  • Mirón SA. Comparative evaluation of compact photobioreactors for large scale monoculture of microalgae. J Biotechnol. 1999;70:149–270.

    Google Scholar 

  • Murias, A, 2007, Fish fat wastes studies for biodiesel production from: http://fis.com/fis/­worldnews/worldnews.asp?l=e&ndb=1&id=25625.

  • Neményi M, Kovács AJ, Lakatos E, Kacz K. Liquid biofuels. Renew Energy. 2008;2:3.

    Google Scholar 

  • Nuntagij A, Lassus C, Sayag D, André L. Aerobic nitrogen fixation during the biodegradation of lignocellulosic wastes. Biol Waste. 1989;29:43–61.

    Article  CAS  Google Scholar 

  • O’Brien S, Wang Ya-Jane. Susceptibility of annealed starches to hydrolysis by α-amylase and glucoamylase. Carbohydr Polym. 2008;72:597–607.

    Article  CAS  Google Scholar 

  • Pagella C, Faveri D M. H2S gas treatment by iron bioprocess. Chem Eng Sci. 1999;55:2185–2194

    Article  CAS  Google Scholar 

  • Pieper A. Utilization of waste material in alcohol industry. Food Biotechnol. 1990;4:203–4.

    Article  CAS  Google Scholar 

  • Potter NN, Hotchkiss H. Food Science. Gaithersburg: Aspen; 1998.

    Google Scholar 

  • Rajeshwari KV, Balakrishnan M, Kansal A, Kusum Lata V, Kishore VN. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sustain Energy Rev. 2000;4:135–56.

    Article  CAS  Google Scholar 

  • Ramirez SA, Nascimento MAR, Lora E S, Corrêa PSP, Andrade RV, Rendon MA, Venturini OJ. Biodiesel fuel in diesel micro-turbine engines: Modelling and experimental evaluation Energy. 2008;33:233–240.

    Article  CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. A green light for engineered algae: ­redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol. 2008;19:430–6.

    Article  CAS  Google Scholar 

  • Roy I, Nath Gupta M. Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzyme Microb Technol. 2004;34:26–32.

    Article  CAS  Google Scholar 

  • Saska M, Oser E. Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup. Bioethanol Bioeng. 1995;45:517–23.

    Article  CAS  Google Scholar 

  • Sivers M, Zacchi G, Olsson L, Hahn-Hagerdal B. Cost analysis of ethanol production from willow using recombinant E.coli. Biotechnol Prog. 1994;10:555–60.

    Article  Google Scholar 

  • Sjöström E. Wood chemistry. Fundamentals and applications. New York: Academic; 1981.

    Google Scholar 

  • Stam AJM, Oude-Elferink S. Understanding and advancing wastewater treatment. Current Opinion in Biotechnology. 1997;8:328–334.

    Google Scholar 

  • Sticklen M. Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol. 2006;17:315–9.

    Article  CAS  Google Scholar 

  • Strevett KA, Vieth RF, Grasso F. Chemo-autotrophic biogas purification for methane enrichment: mechanism and kinetics. The Chem.l Eng. J. and the Biochemical Eng. J. 1995;58:71–79.

    Article  CAS  Google Scholar 

  • Tengerdy RP, Szakacs G. Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J. 2003;13:169–79.

    Article  CAS  Google Scholar 

  • Tiehm AN, Kneis U. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci Technol. 1997;36:121–8.

    Article  CAS  Google Scholar 

  • Tucker MP, Kim KH, Newman MM, Nguyen QA. Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility. Biochem Bioethanol. 2003;105:165–77.

    Google Scholar 

  • Vigneron V, Ponthieu M, Barina G, Audic J, Duquennoi C, Mazéas L, et al. Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation. Waste Manag. 2007;27:778–91.

    Article  CAS  Google Scholar 

  • Wang S, Thomas KC, Sosulski K, Ingledew WM, Sosulski FW. Grain pearling and very high ­gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale. Process Biochem. 1999;34:421–8.

    Article  CAS  Google Scholar 

  • Yang YF, Feng CP, Inamori Y, Maekawa T. Analysis of energy conversion characteristics in ­liquefaction of algae. Resour Conserv Recycling. 2004;43:21–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Hodúr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hodúr, C., László, Z., Tommaso, G. (2012). Food By-products for Biofuels. In: McElhatton, A., do Amaral Sobral, P. (eds) Novel Technologies in Food Science. Integrating Food Science and Engineering Knowledge into the Food Chain, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7880-6_3

Download citation

Publish with us

Policies and ethics