Skip to main content

Fabrication and Applications of Glyconanomaterials

  • Conference paper
  • First Online:
The Molecular Immunology of Complex Carbohydrates-3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 705))

Abstract

Nanomaterials have unique optical, electronic, or magnetic properties, thus explaining their potential applications in complex biosystems when coupled with biomolecules, such as DNA, peptides, proteins, or carbohydrates. With a large surface-to-volume ratio and homogeneity in aqueous solutions, various biomolecule-conjugated nanomaterials are exploited for elucidating biological interactions. During the past decade, biomolecule-conjugated nanoparticles (NPs) have been prepared and used in diagnostics [1], creative therapeutics [2], biomolecular interactions [3], and in vivo cell imaging [4, 5]. For example, Mirkin et al. developed an ultrasensitive bio-barcode detection method based on oligonucleotide-conjugated gold NP (AuNP) for biomarkers in small amounts in complex biofluids [6]. Weissleder et al. fabricated antibody-conjugated iron oxide NPs and used them to enhance T2 signals in magnetic resonance imaging [7]. Since they have unique magnetic properties, diverse functionalized magnetic nanoparticles (MNPs) have been designed and prepared to purify target proteins from crude cell lysate by simple magnetic separation. Recently, the authors combined antibody-conjugated MNP with matrix-assisted laser desorption/ionization–time of flight (MALDI–TOF) mass spectrometry (MS) as a rapid and cost-effective detection method for diagnosing disease markers in human sera [8–11]. Biomolecule-modified quantum dots (QDs) have also been demonstrated as having promising applications in in vivo imaging, including cell trafficking and targeting. Besides metallic NPs, carbon nanotubes (CNTs) have also been demonstrated to be powerful carriers and to be useful in biological systems because of their high surface utilization efficiency and good size uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zharov VP, Kim JW, Curiel DT, Everts M (2005) Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1:326–345

    PubMed  CAS  Google Scholar 

  2. Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F, Halas N, Surrey S, Waldman SA (2007) Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 25:145–152

    Article  PubMed  CAS  Google Scholar 

  3. Wang J (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1:1036–1043

    Article  PubMed  CAS  Google Scholar 

  4. Vuu K, Xie J, McDonald MA, Bernardo M, Hunter F, Zhang Y, Li K, Bednarski M, Guccione S (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjugate Chem 16:995–999

    Article  CAS  Google Scholar 

  5. Berry CC (2005) Possible exploitation of magnetic nanoparticle–cell interaction for biomedical applications. J Mater Chem 15:543–547

    Article  CAS  Google Scholar 

  6. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  PubMed  CAS  Google Scholar 

  7. Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18:4–10

    Article  PubMed  CAS  Google Scholar 

  8. Chou PH, Chen SH, Liao HK, Lin PC, Her GR, Lai Alan CY, Chen JH, Lin CC, Chen YJ (2005) Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma. Anal Chem 77:5990–5997

    Article  PubMed  CAS  Google Scholar 

  9. Lin PC, Chou PH, Chen SH, Liao HK, Wang KY, ChenYJ LCC (2006) Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2:485–489

    Article  PubMed  CAS  Google Scholar 

  10. Chiu TC, Huang LS, Lin PC, Chen YC, Chen YJ, Lin CC, Chang HT (2007) Nanomaterial based affinity matrix-assisted laser desorption/ionization mass spectrometry for biomolecules and pathogenic bacteria. Recent patents on nanotechnology 1:99–111

    Article  PubMed  CAS  Google Scholar 

  11. Huang LS, Chien YY, Chen SH, Lin PC, Wang KY, Chou PH, Lin CC, Chen YJ (2007) Nanoprobe-based affinity mass spectrometry for cancer marker protein profiling. In: Challa SSR (ed) Nanomaterials for cancer diagnosis. Wiley-VCH, Weinheim

    Google Scholar 

  12. Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–538

    Article  PubMed  CAS  Google Scholar 

  13. de la Fuente JM, Barrientos AG, Rojas TC, Rojo J, Canada J, Fernandez A, Penades S (2001) Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions. Angew Chem Int Ed 40:2258–2260

    Google Scholar 

  14. Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  15. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 801–802

    Google Scholar 

  16. de la Fuente JM, Barrientos AG, Rojas TC, Rojo J, Canada J, Fernandez A, Penades S (2001) Gold Glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions. Angew Chem Int Ed 40:2258–2260

    Google Scholar 

  17. Hakomori SI (1989) Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 52:257–331

    Article  PubMed  CAS  Google Scholar 

  18. Svarovsky SA, Szekely Z, Barchi JJ Jr (2005) Synthesis of gold nanoparticles bearing the Thomsen–Friedenreich disaccharide: a new multivalent presentation of an important tumor antigen. Tetrahedron: Asymmetry 16:587–598

    Article  CAS  Google Scholar 

  19. de Paz JL, Ojeda R, Barrientos AG, Penades S, Martin-Lomas M (2005) Synthesis of a Ley neoglycoconjugate and Ley-functionalized gold glyconanoparticles. Tetrahedron: Asymmetry 16:149–158

    Article  Google Scholar 

  20. de Souza AC, Halkes KM, Meeldijk JD, Verkleij AJ, Vliegenthart JFG, Karmerling JP (2004) Synthesis of gold glyconanoparticles: possible probes for the exploration of carbohydrate-mediated self-recognition of marine sponge cells. Eur J Org Chem 4323–4339

    Google Scholar 

  21. Ojeda R, de Paz JL, Barrientos AG, Martin-Lomas M, Penades S (2007) Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines. Carbo Res 342:448–459

    Article  CAS  Google Scholar 

  22. Paulson JC, Blixt O, Collins BE (2006) Sweet spots in functional glycomics. Nat Chem Bio 2:238–248

    Article  CAS  Google Scholar 

  23. Spain SG, Albertin L, Cameron NR (2006) Facile in situ preparation of biologically active multivalent glyconanoparticles. Chem Commun 4198–4200

    Google Scholar 

  24. Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori SI (1998) GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J Biol Chem 273:9130–9138

    Article  PubMed  CAS  Google Scholar 

  25. Tromas C, Garcia R (2002) Host-guest chemistry. Mimetic approaches to study carbohydrate recognition. Topics Curr Chem 218:115–132

    Article  CAS  Google Scholar 

  26. Tromas C, Rojo J, de la Fuente JM, Barrientos AG, Garcia R, Penades S (2001) Adhesion forces between LewisX determinant antigens as measured by atomic force microscopy. Angew Chem Int Ed 40:3052–3055

    Article  CAS  Google Scholar 

  27. de la Fuente JM, Eaton P, Barrientos AG, Menendez M, Penadez S (2005) Thermodynamic evidence for Ca2+-mediated self-aggregation of Lewisx gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction. J Am Chem Soc 127:6192–6197

    Article  PubMed  Google Scholar 

  28. de Souza AC, Halkes KM, Meeldijk JD, Verkleij KM, Vliegenthart JFG, Karmerling JP (2005) Gold glyconanoparticles as probes to explore the carbohydrate-mediated self-recognition of marine sponge cells. ChemBioChem 6:823–831

    Google Scholar 

  29. Rojas TC, de la Fuente JM, Barrientos AG, Penades S, Pansonnet L, Fernandez A (2002) Gold glyconanoparticles as building blocks for nanomaterials design. Adv Mater 14:585–588

    Article  CAS  Google Scholar 

  30. Reynolds AJ, Haines AH, Russell DA (2006) Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions. Langmuir 22:1156–1163

    Article  PubMed  CAS  Google Scholar 

  31. Matsuura K, Kitakuoji H, Sawada N, Ishida H, Kiso M, Kita-Jima K, Kobajashi KJ (2000) Am Chem Soc 122:7406–7407

    Article  CAS  Google Scholar 

  32. Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG (2001) Proc Natl Acad Sci USA 96:9419–9424

    Article  Google Scholar 

  33. Hernaiz MJ, de la Fuente JM, Barrientos AG, Garcia R, Penades S (2002) A model system mimicking glycosphingolipid clusters to quantify carbohydrate self-interactions by surface plasmon resonance. Angew Chem Int Ed 41:1554–1557

    Article  CAS  Google Scholar 

  34. Aslan K, Lakowicz JR, Geddes CD (2004) Nanogold-plasmon-resonance-based glucose sensing. Anal Biochem 330:145–155

    Article  PubMed  CAS  Google Scholar 

  35. Lin CC, Yeh YC, Yang CY, Chen GF, Chen YC, Wu YC, Chen CC (2003) Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A. Chem Commun 2920–2921

    Google Scholar 

  36. Guo C, Boullanger P, Jiang L, Liu T (2007) Highly sensitive gold nanoparticles biosensor chips modified with a self-assembled bilayer for detection of Con A. Biosens Bioelectron 22:1830–1834

    Article  PubMed  CAS  Google Scholar 

  37. Tsai CS, Yu TB, Chen CT (2005) Gold nanoparticle-based competitive colorimetric assay for detection of protein–protein interactions. Chem Commun 4273–4275

    Google Scholar 

  38. Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K (2001) Quantitative and reversible lectin-induced association of gold nanoparticles modified with R-lactosyl-ö-mercapto-poly(ethylene glycol). J Am Chem Soc 123:8226–8230

    Article  PubMed  CAS  Google Scholar 

  39. Takae S, Akiyama Y, Otsuka H, Nakamura T, Nagasaki Y, Kataoka K (2005) Ligand density effect on biorecognition by PEGylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules 6:818–824

    Article  PubMed  CAS  Google Scholar 

  40. McReynold KD, Gervay-Hague J (2007) Chemotherapeutic interventions targeting HIV interactions with host-associated carbohydrates. Chem Rev 107:1533–1552

    Article  Google Scholar 

  41. Lund N, Branch DR, Mylvaganam M, Chark D, Ma XZ, Sakac D, Binnington B, Fantini J, Puri A, Blumenthal R, Lingwood CA (2006) A novel soluble mimic of the glycolipid, globotriaosyl ceramide inhibits HIV infection. AIDS 20:333–343

    Article  PubMed  CAS  Google Scholar 

  42. McReynolds KD, Hadd MJ, Gervay-Hague J (1999) Synthesis of biotinylated glycoconjugates and their use in a novel ELISA for direct comparison of HIV-1 Gp120 recognition of GalCer and related carbohydrate analogues. Bioconjugate Chem 10:1021–1031

    Article  CAS  Google Scholar 

  43. Nolting B, Yu JJ, Liu GY, Cho SJ, Kauzlarich S, Gervay-Hague J (2003) Synthesis of gold glyconanoparticles and biological evaluation of recombinant Gp120 interactions. Langmuir 19:6465–6473

    Article  CAS  Google Scholar 

  44. Lin CC, Yeh YC, Yang CY, Chen CL, Chen GF, Chen CC, Wu YC (2002) Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J Am Chem Soc 124:3508–3509

    Article  PubMed  CAS  Google Scholar 

  45. Chen YJ, Chen SH, Chieh YY, Chang YW, Liao HK, Chang CY, Jan MD, Wang KT, Lin CC (2005) Carbohydrate-encapsulated gold nanoparticles for rapid target-protein identification and binding-epitope mapping. ChemBioChem 6:1169–1173

    Article  PubMed  CAS  Google Scholar 

  46. Rojo J, Diaz V, de la Fuente JM, Segura I, Barrientos AG, Riese HH, Bernad A, Penades S (2004) Gold glyconanoparticles as new tools in antiadhesive therapy. ChemBioChem 5:291–297

    Article  PubMed  CAS  Google Scholar 

  47. Shimizu H, Sakamoto M, Nagahori N, Nishimura SI (2007) A new glycosylation method. Part 2: study of carbohydrate elongation onto the gold nanoparticles in a colloidal phase. Tetrahedron 63:2418–2425

    Article  CAS  Google Scholar 

  48. Nagahori N, Nishimura SI (2006) Direct and efficient monitoring of glycosyltransferase reactions on gold colloidal nanoparticles by using mass spectrometry. Chem Eur J 12:6478–6485

    Article  CAS  Google Scholar 

  49. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  CAS  Google Scholar 

  50. Dubertret B, Skourides B, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  PubMed  CAS  Google Scholar 

  51. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  PubMed  CAS  Google Scholar 

  52. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–1092

    Article  CAS  Google Scholar 

  53. Hao E, Zhang H, Yang B, Ren H, Shen J (2001) Preparation of luminescent polyelectrolyte/Cu-Doped ZnSe nanoparticle multilayer composite films. J Colloid Interface Sci 238:285–290

    Article  PubMed  CAS  Google Scholar 

  54. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Gros MAL, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:15–27

    Article  Google Scholar 

  55. Niikura K, Nishio T, Akita H, Matsuo Y, Kamitani R, Kogure K, Harashima H, Ijiro K (2007) Accumulation of O-GlcNAc-displaying CdTe quantum dots in cells in the presence of ATP. ChemBiochem 8:379–384

    Article  PubMed  CAS  Google Scholar 

  56. Chen Y, Ji T, Rosenzweig Z (2003) Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots. Nano Lett 3:581–584

    Article  CAS  Google Scholar 

  57. de la Fuente JM, Penades S (2005) Glyco-quantum dots: a new luminescent system with multivalent carbohydrate display. Tetrahedron: Asymmetry 16:387–391

    Article  Google Scholar 

  58. Niikura K, Nishio T, Akita H, Matsuo Y, Kamitani R, Kogure K, Harashima H, Ijiro K (2007) Accumulation of O-GlcNAc-displaying CdTe quantum dots in cells in the presence of ATP. ChemBiochem 8:379–384

    Article  PubMed  CAS  Google Scholar 

  59. Zachara NE, Hart GW (2002) The emerging significance of O-GlcNAc in cellular regulation. Chem Rev 102:431–438

    Article  PubMed  CAS  Google Scholar 

  60. Wells L, Vosseler GW, Hart HW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378

    Article  PubMed  CAS  Google Scholar 

  61. Robinson A, Fang JM, Chou PT, Liao KW, Chu RM, Lee SJ (2005) Probing lectin and sperm with carbohydrate-modified quantum dots. ChemBioChem 6:1899–1905

    Article  PubMed  CAS  Google Scholar 

  62. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521

    Article  PubMed  CAS  Google Scholar 

  63. Dai Z, Kawde AN, Xiang Y, Belle JT, La Gerlach J, Bhavanandan VP, Joshi L, Wang J (2006) Nanoparticle-based sensing of glycan-lectin interactions. J Am Chem Soc 128:10018–10019

    Article  PubMed  CAS  Google Scholar 

  64. Babu P, Sinha S, Surolia A (2007) Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjugate Chem 18:146–151

    Article  CAS  Google Scholar 

  65. Reiss G, Hütten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4:725–726

    Article  PubMed  CAS  Google Scholar 

  66. Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 941–949

    Google Scholar 

  67. Lin YS, Tsai PJ, Weng MF, Chen YC (2005) Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal Chem 77:1753–1760

    Article  PubMed  CAS  Google Scholar 

  68. Sun XL, Cui W, Haller C, Chaikof EL (2004) Site-specific multivalent carbohydrate labeling of quantum dots and magnetic beads. ChemBioChem 5:1593–1596

    Article  PubMed  CAS  Google Scholar 

  69. de la Fuente JM, Alcantara D, Eaton P, Crespo P, Rojas TC, Fernandez A, Hernando A, Penades S (2006) Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties. J Phys Chem B 110:13021–13028

    Article  PubMed  Google Scholar 

  70. Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Pientka Z, Pollert E, Hájek M, Syková E (2002) D-Mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem 18:635–644

    Article  Google Scholar 

  71. Res AC (2002) Special issue on carbon nanotubes. Acc Chem Res 35:997

    Article  Google Scholar 

  72. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon naotubes. Chem Rev 106:1105–1136

    Article  PubMed  CAS  Google Scholar 

  73. Hirsch A (2002) Functionalization of single-walled carbon naotubes. Angew Chem Int Ed 41:1853–1859

    Article  CAS  Google Scholar 

  74. Banerjee S, Kahn MGC, Wong SS (2003) Rational chemical strategies for carbon nanotube functionalization. Chem Eur J 9:1898–1908

    Article  CAS  Google Scholar 

  75. Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, Gu L, Zhou B, Sun YP (2004) Advances toward bioapplications of carbon naotubes. J Mater Chem 14:527–541

    Article  CAS  Google Scholar 

  76. Tasis D, Tagmatarchis N, Bianco A, Prato M (2003) Soluble carbon nanotubes. Chem Eur J 9:4000–4008

    Article  CAS  Google Scholar 

  77. Lin T, Bajpai V, Ji T, Dai L (2003) Chemistry of carbon nanotubes. Aust J Chem 56:635–651

    Article  CAS  Google Scholar 

  78. Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools forbiological applications? Adv Mater 15:1765–1768

    Article  CAS  Google Scholar 

  79. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullarene pipes. Science 280:1253

    Article  PubMed  CAS  Google Scholar 

  80. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    Article  PubMed  CAS  Google Scholar 

  81. Dodziuk H, Ejchart A, Anczewski W, Ueda H, Krinichnaya E, Dolgonos G, Kutner W (2003) Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with η-cyclodextrin. Chem Commun 986–987

    Google Scholar 

  82. Matsuura K, Hayashi K, Kimizuka N (2003) Lectin-mediated supramolecular junctions of galactose-derivatized single-walled carbon nanotubes. Chem Lett 32:212–213

    Article  CAS  Google Scholar 

  83. Pompeo F, Resasco DE (2002) Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett 2:369–373

    Article  CAS  Google Scholar 

  84. Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew Chem Int Ed 41:2508–2512

    Article  CAS  Google Scholar 

  85. Kim OK, Je J, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ (2003) Solubilization of single-wall carbon naotubes by supramolecular encapsulation of helical amylase. J Am Chem Soc 125:4426–4427

    Article  PubMed  CAS  Google Scholar 

  86. Numata M, Asai M, Kaneko K, Hasegawa T, Fujita N, Kitada Y, Sakurai K, Shinkai S (2004) Curdlum and schizophyllan (β-1, 3-glucans) can entrap single-wall carbon nanotubes in their helical superstructures. Chem Lett 33:232–233

    Article  CAS  Google Scholar 

  87. Bianco A (2004) Carbon nanotubes for the delivery of therapeutic molecules. Exp Opin Drug Deliv 1:57–65

    Article  CAS  Google Scholar 

  88. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalized carbon nanotubes. Chem Commun 571–577

    Google Scholar 

  89. Hasegawa T, Fujisawa T, Numata M, Umeda M, Matsumoto T, Kimura T, Okumura S, Sakurai K, Shinkai S (2004) Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan. Chem Commun 2150–2151

    Google Scholar 

  90. Chen X, Lee GS, Zettl A, Bertozzi CR (2004) Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. Angew Chem Int Ed 43:6112–6116

    Google Scholar 

  91. Chen X, Tam UC, Czlapinski JL, Lee GS, Rabuka D, Zettl A, Bertozzi CR (2006) Interfacing carbon nanotubes with living cells. J Am Chem Soc 128:6292–6293

    Article  PubMed  CAS  Google Scholar 

  92. Gu L, Elkin T, Jiang X, Li H, Lin Y, Qu L, Tzeng TRJ, Joseph R, Sun YP (2005) Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chem Commun 874–876

    Google Scholar 

  93. Wang H, Gu L, Lin Y, Lu F, Meziani MJ, Luo P, Wang W, Cao L, Sun YP (2006) Unique aggregation of anthrax (Bascillus anthracis) spores by sugar-coated single-walled carbon nanotubes. J Am Chem Soc 128:13364–13365

    Article  PubMed  CAS  Google Scholar 

  94. Dohi H, Kikuchi S, Kuwahara S, Sugai T, Shinohara H (2006) Synthesis and spectroscopic characterization of single-wall carbon nanotubes wrapped by glycoconjugate polymer with bioactive sugars. Chem Phys Lett 428:98–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Cheng Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Lin, PC., Adak, A.K., Lin, CC. (2011). Fabrication and Applications of Glyconanomaterials. In: Wu, A. (eds) The Molecular Immunology of Complex Carbohydrates-3. Advances in Experimental Medicine and Biology, vol 705. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7877-6_38

Download citation

Publish with us

Policies and ethics