Skip to main content

Human KDN (Deaminated Neuraminic Acid) and Its Elevated Expression in Cancer Cells: Mechanism and Significance

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 705))

Abstract

Sialic acids are a family of nine-carbon carboxylated sugars having a nonulosonate skeletal structure (Fig. 35.1). This structure is uniquely different from that of other sugar units of animal glycans. The most popular sialic acid is N-acetylneuraminic acid (Neu5Ac), which is universally found on cell surface glycocalyx and in secreted glycoproteins of vertebrates and some invertebrates. Sialic acids have low acid–base dissociation constants and give a negative charge on the cell surface under a wide range of physiological pH. In nature, more than 50 kinds of sialic acids are known. Nearly all of them are derived from Neu5Ac by a substitution on the hydroxyl groups (e.g., O-acetyl-Neu5Ac) and/or a hydroxylation of the N-acetyl group (e.g., N-glycolylneuraminic acid, Neu5Gc). Each modified sialic acid has properties different from those of Neu5Ac and is believed to contribute to specific physiological functions. In animal cells, sialic acids are most frequently the terminal sugars of cell surface glycolipids and glycoproteins, and any change that occurs on sialic acids can considerably influence the biological properties of a cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nadano D, Iwasaki M, Endo S, Kitajima K, Inoue S, Inoue Y (1986) A naturally occurring deaminated neuraminic acid, 3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN). Its unique occurrence at the nonreducing ends of oligosialyl chains in polysialoglycoprotein of rainbow trout eggs. J Biol Chem 261:11550–11557

    PubMed  CAS  Google Scholar 

  2. Inoue S, Kitajima K (2006) KDN (deaminated neuraminic acid): dreamful past and exciting future of the newest member of the sialic acid family. Glycoconj J 23:277–290

    Article  PubMed  CAS  Google Scholar 

  3. Higashi H, Naiki M, Matsuo S, Okouchi K (1977) Antigen of “serum sickness” type of heterophile antibodies in human sera: identification as gangliosides with N-glycolylneuraminic acid. Biochem Biophys Res Comm 79:388–305

    Article  PubMed  CAS  Google Scholar 

  4. Inoue S, Kitajima K, Inoue Y (1996) Identification of 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN, deamino-neuraminic acid) residues in mammalian tissues and human lung carcinoma cells. Chemical evidence of the occurrence of KDN glycoconjugates in mammals. J Biol Chem 271:24341–24344

    Article  PubMed  CAS  Google Scholar 

  5. Inoue S, Inoue Y (1999) New findings in KDN glycobiology: from lower vertebrates to human. In: Lee YC, Inoue Y, Troy FA (eds) Sialobiology and other novel forms of glycosylation. Gakushin, Osaka, pp 57–67

    Google Scholar 

  6. Inoue S, Lin SL, Chang T, Wu SH, Yao CW, Chu TY, Troy FA, Inoue Y (1998) Identification of free deaminated sialic acid (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) in human red blood cells and its elevated expression in fetal cord red blood cells and ovarian cancer cells. J Biol Chem 273:27199–27204

    Article  PubMed  CAS  Google Scholar 

  7. Schauer R, Corfield AP (1982) Metabolism of sialic acids. In: Schauer R (ed) Sialic acids: chemistry, metabolism and function, cell biology monographs, vol 10. Springer, Wien, pp 195–261

    Google Scholar 

  8. Muchmore EA, Milewski M, Varki A, Diaz S (1989) Biosynthesis of N-glycolylneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem 264:20216–20223

    PubMed  CAS  Google Scholar 

  9. Shaw L, Schauer R (1988) The biosynthesis of N-glycolylneurminic acid occurs by hydroxylation of the CMP-glycoside of N-acetylneuraminic acid. Biol Chem Hoppe-Seyler 369:477–486

    Article  PubMed  CAS  Google Scholar 

  10. Angata T, Nakata D, Matsuda T, Kitajima K, Troy FA II (1999) Biosynthesis of KDN (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid). Identification and characterization of a KDN-9-phosphate synthetase activity from trout testis. J Biol Chem 274:22949–22956

    Article  PubMed  CAS  Google Scholar 

  11. Nakata D, Close BE, Colley KJ, Matsuda T, Kitajima K (2000) Molecular cloning and expression of the mouse N-acetylneuraminic acid 9-phosphate synthase which does not have deaminoneuraminic acid (KDN) 9-phosphate synthase activity. Biochem Biophys Res Comm 273:642–648

    Article  PubMed  CAS  Google Scholar 

  12. Kundig W, Ghosh S, Roseman S (1966) The sialic acids VII. N-acylmannosamine kinase from rat liver. J Biol Chem 241:5619–5626

    PubMed  CAS  Google Scholar 

  13. Lawrence SM, Huddleston KA, Pitts LR, Nguyen N, Lee YC, Vann WF, Coleman TA, Betenbaugh MJ (2000) Cloning and expression of the human N-acetylneuraminic acid phosphate synthase gene with 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid biosynthetic ability. J Biol Chem 275:17869–17877

    Article  PubMed  CAS  Google Scholar 

  14. Angata T, Nakata D, Matsuda T, Kitajima K (1999) Elevated expression of free deaminoneuraminic acid in mammalian cells cultured in mannose-rich media. Biochem Biophys Res Comm 261:326–331

    Article  PubMed  CAS  Google Scholar 

  15. Go S, Sato C, Furuhata K, Kitajima K (2006) Oral ingestion of mannose alters the expression level of deaminoneuraminic acid (KDN) in mouse organs. Glycoconj J 23:411–421

    Article  PubMed  CAS  Google Scholar 

  16. Inoue S, Poongodi GL, Suresh N, Chang T, Inoue Y (2006) Identification and partial characterization of soluble and membrane-bound KDN (deaminoneuraminic acid)-glycoproteins in human ovarian teratocarcinoma PA-1, and enhanced expression of free and bound KDN in cells cultured in mannose-rich media. Glycoconj J 23:401–410

    Article  PubMed  CAS  Google Scholar 

  17. Koike T, Kimura N, Miyazaki K, Yabuta T, Kumamoto K, Takenoshita S, Chen J, Kobayashi M, Hosooka M, Taniguchi A, Kojima T, Ishida N, Kawakita M, Yamamoto H, Takematsu H, Suzuki A, Kozutsumi Y, Kannagi R (2004) Hypoxia induces adhesion molecules on cancer cells: a missing link between warburg effect and induction of selectin-ligand carbohydrates. Proc Natl Acad Sci USA 101:8132–8137

    Article  PubMed  CAS  Google Scholar 

  18. Yin J, Hashimoto A, Izawa M, Miyazaki K, Chen G, Takematsu H, Kozutsumi Y, Suzuki A, Furuhata K, Cheng F, Lin C, Sato C, Kitajima K, Kannagi R (2006) Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res 66:2937–2945

    Article  PubMed  CAS  Google Scholar 

  19. Go S, Sato C, Yin J, Kannagi R, Kitajima K (2007) Hypoxia-enhanced expression of free deaminoneuraminic acid in human cancer cells. Biochem Biophys Res Comm 357:537–542

    Article  PubMed  CAS  Google Scholar 

  20. Gould GW, Thomas HM, Jess TJ, Bell GI (1991) Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 30:5139–5145

    Article  PubMed  CAS  Google Scholar 

  21. Panneerselvam K, Etchison JR, Freeze HH (1997) Human fibroblasts prefer mannose over glucose as a source of mannose for N-glycosylation. Evidence for the functional importance of transported mannose. J Biol Chem 272:23123–23129

    Article  PubMed  CAS  Google Scholar 

  22. Alton G, Hasilik M, Niehues R, Panneerselvam K, Etchison JR, Fana F, Freeze HH (1998) Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology 8:285–295

    Article  PubMed  CAS  Google Scholar 

  23. Terada T, Kitajima K, Inoue S, Ito F, Troy FA, Inoue Y (1993) Synthesis of CMP-deaminoneuraminic acid (CMP-KDN) using the CTP: CMP-3-deoxynonulosonate cytidylyltransferase from rainbow trout testis. Identification and characterization of a CMP-KDN synthetase. J Biol Chem 268:2640–2648

    PubMed  CAS  Google Scholar 

  24. Nakata D, Munster A, Gerardy-Schahn R, Aoki N, Matsuda T, Kitajima K (2001) Molecular cloning of a unique CMP-sialic acid synthetase that effectively utilizes both deaminoneuraminic acid (KDN) and N-acetylneuraminic acid (Neu5Ac) as substrates. Glycobiology 11:685–692

    Article  PubMed  CAS  Google Scholar 

  25. Hinderlich S, Stäsche R, Zeitler R, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver: purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272:24313–24318

    Article  PubMed  CAS  Google Scholar 

  26. Kornfeld S, Kornfeld R, Neufeld EF, O’Brien PJ (1964) The feedback control of sugar nucleotide biosynthesis in liver. Proc Natl Acad Sci USA 52:371–379

    Article  PubMed  CAS  Google Scholar 

  27. Hanai N, Dohi T, Nores GA, Hakomori S (1988) A novel ganglioside, de-N-acetyl-GM3(II3Neu NH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth. J Biol Chem 263:6296–6301

    PubMed  CAS  Google Scholar 

  28. Manji AE, Sjoberg ER, Diaz S, Varki A (1990) Biosynthesis and turnover of O-acetyl groups in the gangliosides of human melanoma cells. J Biol Chem 265:13091–13103

    Google Scholar 

  29. Sjoberg ER, Chammas R, Ozawa H, Kawashima I, Khoo K, Morris HR, Dell A, Tai T, Varki A (1995) Expression of de-N-acetyl-gangliosides in human melanoma cells is induced by genistein or nocodazole. J Biol Chem 270:2921–2930

    Article  PubMed  CAS  Google Scholar 

  30. Kanamori A, Inoue S, Xulei Z, Zuber C, Roth J, Kitajima K, Ye J, Troy FA Jr, Inoue Y (1994) Monoclonal antibody specific for α2→8-linked oligo deaminated neuraminic acid (KDN) sequences in glycoproteins, preparation and characterization of a monoclonal antibody and its application in immunohistochemistry. Histochemistry 101:333–340

    Article  PubMed  CAS  Google Scholar 

  31. Yu S, Kitajima K, Inoue Y (1993) Monoclonal antibody specific to α2→3-linked deaminated neuraminyl β-galactosyl sequence. Glycobiology 3:31–36

    Article  Google Scholar 

  32. Kitajima K, Kuroyanagi H, Terada T, Inoue S, Ye J, Troy FA Jr, Inoue Y (1994) Discovery of a new type of sialidase, “KDNase” which specifically hydrolyzes deaminoneuraminyl (3-deoxy-D-glycero -D-galacto-2-nonurosonic acid) but not N-acetylneuraminyl linkages. J Biol Chem 269:21415–21419

    PubMed  CAS  Google Scholar 

  33. Davis JA, Wu X, Wang L, DeRossi C, Westphal V, Wu R, Alton G, Srikrishna G, Freeze HH (2002) Molecular cloning, gene organization and expression of mouse Mpi encoding phosphomannose isomerase. Glycobiology 12:435–442

    Article  PubMed  CAS  Google Scholar 

  34. Inoue S, Inoue Y (2003) Ultrasensitive analysis of sialic aids and oligo/polysialic acids by fluorometric high-performance liquid chromatography. Methods Enzymol 362:543–560

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KDN was first discovered in Tokyo in 1986, and early studies on KDN (1986–1996) were carried out by Sadako Inoue at Showa University in collaboration with the late Professor Yasuo Inoue at the University of Tokyo. Studies on human KDN were initiated in Academia Sinica, Taiwan, as a collaborative work between Yasuo Inoue and Sadako Inoue. The studies reported by Angata et al., Nakata et al., and Go et al. (1999–2007) were performed at Nagoya University under the supervision of Ken Kitajima. The authors thank all colleagues and collaborators who joined us and helped with these studies. Finally, the authors thank Professor Albert Wu for giving us a chance to publish this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadako Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Inoue, S., Kitajima, K., Sato, C., Go, S. (2011). Human KDN (Deaminated Neuraminic Acid) and Its Elevated Expression in Cancer Cells: Mechanism and Significance. In: Wu, A. (eds) The Molecular Immunology of Complex Carbohydrates-3. Advances in Experimental Medicine and Biology, vol 705. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7877-6_35

Download citation

Publish with us

Policies and ethics