Skip to main content

Roles for N- and O-Glycans in Early Mouse Development

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 705))

Abstract

Glycosylation is the most abundant posttranslational protein modification. Specific glycans covalently attached to glycoproteins contribute to their functions, ensuring appropriate folding, secretion, half-life, and receptor–ligand interactions [1]. Many different classes of glycans exist, but those discussed herein are the complex and hybrid N-glycans, core 1-derived O-glycans, and O-linked fucose glycans. The synthesis of each class of glycan is initiated by the addition of a single sugar, or group of sugars, to certain amino acids or amino acid sequons by specific glycosyltransferases via a particular linkage. The subsequent sugars are added individually in a carefully orchestrated pathway by specific glycosyltransferases that reside in the secretory compartments of the cell. Thus, the glycans ultimately synthesized by a cell depend on the cohort of glycosyltransferases, nucleotide sugar synthases, and transporters expressed by that cell, which will be influenced by metabolic state and stage of development. To determine roles for complex and hybrid N-glycans, core 1-derived O-glycans, and O-fucose glycans (Fig. 20.1) in oogenesis, fertilization, blastogenesis, implantation, and embryonic development, we used a maternal and zygotic gene-targeting approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview (in press)

    Google Scholar 

  2. Ioffe E, Stanley P (1994) Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci USA 91:728

    Article  PubMed  CAS  Google Scholar 

  3. Metzler M, Gertz A, Sarkar M, Schachter H, Schrader JW, Marth JD (1994) Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J 13:2056

    PubMed  CAS  Google Scholar 

  4. Ioffe E, Liu Y, Stanley P (1997) Complex N-glycans in Mgat1 null preimplantation embryos arise from maternal Mgat1 RNA. Glycobiology 7:913

    Article  PubMed  CAS  Google Scholar 

  5. Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89:6861

    Article  PubMed  CAS  Google Scholar 

  6. Bleil JD, Wassarman PM (1980) Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro. Proc Natl Acad Sci USA 77:1029

    Article  PubMed  CAS  Google Scholar 

  7. Philpott CC, Ringuette MJ, Dean J (1987) Oocyte-specific expression and developmental regulation of ZP3, the sperm receptor of the mouse zona pellucida. Dev Biol 121:568

    Article  PubMed  CAS  Google Scholar 

  8. Shi S, Williams SA, Seppo A, Kurniawan H, Chen W, Ye Z, Marth JD, Stanley P (2004) Inactivation of the Mgat1 gene in oocytes impairs oogenesis, but embryos lacking complex and hybrid N-glycans develop and implant. Mol Cell Biol 24:9920

    Article  PubMed  CAS  Google Scholar 

  9. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531

    Article  PubMed  CAS  Google Scholar 

  10. Pedersen T, Peters H (1968) Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil 17:555

    Article  PubMed  CAS  Google Scholar 

  11. Williams SA, Stanley P (2009) Oocyte-specific deletion of complex and hybrid N-glycans leads to defects in preovulatory follicle and cumulus mass development. Reproduction 137:321–331

    Article  PubMed  CAS  Google Scholar 

  12. Hoodbhoy T, Joshi S, Boja ES, Williams SA, Stanley P, Dean J (2005) Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins. J Biol Chem 280:12721

    Article  PubMed  CAS  Google Scholar 

  13. Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM (2002) Cloning and expression of human core 1 beta1, 3-galactosyltransferase. J Biol Chem 277:178

    Article  PubMed  CAS  Google Scholar 

  14. Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, Lupu F, Cummings RD, McEver RP (2004) Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 164:451

    Article  PubMed  CAS  Google Scholar 

  15. Williams SA, Xia L, McEver R, Cummings R, Stanley P (2007) Fertilization in mouse does not require terminal galactose or N-acetylglucosamine on the zona pellucida glycans. J Cell Sci 120:1341

    Article  PubMed  CAS  Google Scholar 

  16. Williams SA, Stanley P (2008) Mouse fertility is enhanced by oocyte-specific loss of core 1-derived O-glycans. FASEB J 22:2273

    Article  PubMed  CAS  Google Scholar 

  17. Wassarman PM (2005) Contribution of mouse egg zona pellucida glycoproteins to gamete recognition during fertilization. J Cell Physiol 204:388

    Article  PubMed  CAS  Google Scholar 

  18. Wassarman PM, Jovine L, Qi H, Williams Z, Darie C, Litscher ES (2005) Recent aspects of mammalian fertilization research. Mol Cell Endocrinol 234:95

    Article  PubMed  CAS  Google Scholar 

  19. Talbot P, Shur BD, Myles DG (2003) Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol Reprod 68:1

    Article  PubMed  CAS  Google Scholar 

  20. Clark GF, Dell A (2006) Molecular models for murine sperm-egg binding. J Biol Chem 281:13853

    Article  PubMed  CAS  Google Scholar 

  21. Dell A, Chalabi S, Easton RL, Haslam SM, Sutton-Smith M, Patankar MS, Lattanzio F, Panico M, Morris HR, Clark GF (2003) Murine and human zona pellucida 3 derived from mouse eggs express identical O-glycans. Proc Natl Acad Sci USA 100:15631

    Article  PubMed  CAS  Google Scholar 

  22. Fenderson BA, Eddy EM, Hakomori S (1990) Glycoconjugate expression during embryogenesis and its biological significance. Bioessays 12:173

    Article  PubMed  CAS  Google Scholar 

  23. Kimber SJ (1990) Glycoconjugates and cell surface interactions in pre- and peri-implantation mammalian embryonic development. Int Rev Cytol 120:53

    Article  PubMed  CAS  Google Scholar 

  24. Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB, Solter D (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2:2355

    PubMed  CAS  Google Scholar 

  25. Kimber SJ, Brown DG, Pahlsson P, Nilsson B (1993) Carbohydrate antigen expression in murine embryonic stem cells and embryos. II. Sialylated antigens and glycolipid analysis. Histochem J 25:628

    Article  PubMed  CAS  Google Scholar 

  26. Solter D, Knowles BB (1978) Monoclonal antibody defining a stage specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 75:5565

    Article  PubMed  CAS  Google Scholar 

  27. Fenderson BA, O’Brien DA, Millette CF, Eddy E (1984) Stage-specific expression of three cell surface carbohydrate antigens during murine spermatogenesis detected with monoclonal antibodies. Dev Biol 103:117

    Article  PubMed  CAS  Google Scholar 

  28. Brown DG, Warren VN, Pahlsson P, Kimber SJ (1993) Carbohydrate antigen expression in murine embryonic stem cells and embryos. I. Lacto and neo-lacto determinants. Histochem J 25:452

    Article  PubMed  CAS  Google Scholar 

  29. Bird JM, Kimber SJ (1984) Oligosaccharides containing fucose linked alpha(1-3) and alpha(1-4) to N-acetylglucosamine cause decompaction of mouse morulae. Dev Biol 104:449

    Article  PubMed  CAS  Google Scholar 

  30. Fenderson BA, Zehavi U, Hakomori S (1984) A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J Exp Med 160:1591

    Article  PubMed  CAS  Google Scholar 

  31. Zhu ZM, Kojima N, Stroud MR, Hakomori SI, Fenderson BA (1995) Monoclonal antibody directed to LeY oligosaccharide inhibits implantation in the mouse. Biol Reprod 52:903

    Article  PubMed  CAS  Google Scholar 

  32. Wang XQ, Zhu ZM, Fenderson BA, Zeng GQ, Cao YJ, Jiang GT (1998) Effects of monoclonal antibody directed to LeY on implantation in the mouse. Mol Hum Reprod 4:295

    Article  PubMed  CAS  Google Scholar 

  33. Williams SA, Stanley P (2008) Complex N-glycans or core 1-derived O-glycans are not required for the expression of stage-specific antigens SSEA-1, SSEA-3, SSEA-4, or LeY in the preimplantation mouse embryo. Glycoconj J 26:335–347

    Article  PubMed  Google Scholar 

  34. Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131:965

    Article  PubMed  CAS  Google Scholar 

  35. Schweisguth F (2004) Notch signaling activity. Curr Biol 14:R129

    PubMed  CAS  Google Scholar 

  36. Panin VM, Shao L, Lei L, Moloney DJ, Irvine KD, Haltiwanger RS (2002) Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem 277:29945

    Article  PubMed  CAS  Google Scholar 

  37. Moloney DJ, Shair LH, Lu FM, Xia J, Locke R, Matta KL, Haltiwanger RS (2000) Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J Biol Chem 275:9604

    Article  PubMed  CAS  Google Scholar 

  38. Shi S, Stanley P (2003) Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci USA 100:5234

    Article  PubMed  CAS  Google Scholar 

  39. Evrard YA, Lun Y, Aulehla A, Gan L, Johnson RL (1998) Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394:377

    Article  PubMed  CAS  Google Scholar 

  40. Zhang N, Gridley T (1998) Defects in somite formation in lunatic fringe-deficient mice. Nature 394:374

    Article  PubMed  CAS  Google Scholar 

  41. Hahn KL, Johnson J, Beres BJ, Howard S, Wilson-Rawls J (2005) Lunatic fringe null female mice are infertile due to defects in meiotic maturation. Development 132:817

    Article  PubMed  CAS  Google Scholar 

  42. Chen J, Moloney DJ, Stanley P (2001) Fringe modulation of Jagged1-induced Notch signaling requires the action of beta 4galactosyltransferase-1. Proc Natl Acad Sci USA 98:13716

    Article  PubMed  CAS  Google Scholar 

  43. Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, Iwakura Y (1997) Growth retardation and early death of beta-1, 4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J 16:1850

    Article  PubMed  CAS  Google Scholar 

  44. Lu Q, Hasty P, Shur BD (1997) Targeted mutation in beta1,4-galactosyltransferase leads to pituitary insufficiency and neonatal lethality. Dev Biol 181:257

    Article  PubMed  CAS  Google Scholar 

  45. Chen J, Lu L, Shi S, Stanley P (2006) Expression of Notch signaling pathway genes in mouse embryos lacking b4galactosyltransferase-1. Gene Expr Patterns 6:376

    Article  PubMed  CAS  Google Scholar 

  46. Cormier S, Vandormael-Pournin S, Babinet C, Cohen-Tannoudji M (2004) Developmental expression of the Notch signaling pathway genes during mouse preimplantation development. Gene Expr Patterns 4:713

    Article  PubMed  CAS  Google Scholar 

  47. Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6:133

    Article  PubMed  CAS  Google Scholar 

  48. Shi S, Stahl M, Lu L, Stanley P (2005) Canonical notch signaling is dispensable for early cell fate specifications in mammals. Mol Cell Biol 25:9503

    Article  PubMed  CAS  Google Scholar 

  49. Zhao M, Dean J (2002) The zona pellucida in folliculogenesis, fertilization and early development. Rev Endocr Metab Disord 3:19

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Stanley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Williams, S.A., Stanley, P. (2011). Roles for N- and O-Glycans in Early Mouse Development. In: Wu, A. (eds) The Molecular Immunology of Complex Carbohydrates-3. Advances in Experimental Medicine and Biology, vol 705. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7877-6_20

Download citation

Publish with us

Policies and ethics