Skip to main content

Pathological Roles of Ganglioside Mimicry in Guillain–Barré Syndrome and Related Neuropathies

  • Conference paper
  • First Online:
The Molecular Immunology of Complex Carbohydrates-3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 705))

Abstract

Gangliosides, sialic acid-containing glycosphingolipids (GSLs), are a family of diverse, highly complex molecules localized primarily on the plasma membrane and particularly abundant in the nervous tissues of vertebrates. Research interest in gangliosides is not limited to their normal biological functions, such as neurotrophicity, cell–cell recognition and adhesion, cellular differentiation and growth, intercellular signaling, and trafficking and/or sorting [17, 19, 61, 62], or on the important constituents of cell surface microdomains or lipid rafts [18, 25, 44]. Research is also focused on the role of gangliosides in the pathogenic mechanisms of many immune-mediated neurological disorders, such as Guillain–Barré syndrome (GBS) [5, 57, 63]. For the putative pathogenic roles of gangliosides, accumulating evidence indicates that (a) gangliosides are localized in peripheral nerve system (PNS) myelin and axolemma, and degeneration of myelin and axons accounts for the loss of sensory and motor functions; (b) animal models of peripheral neuropathies can be established using certain pure gangliosides as the immunogens; and (c) the pathophysiological effects of the antibodies could be due to one or more of the following mechanisms: an antibody-mediated, complement-dependent process; a cell-mediated degenerating process; and a conduction block at the node of Ranvier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang CW, Jacobs BC, Laman JD (2004) The Guillain-Barre syndrome: acute cases of molecular mimicry. Trends Immunol 25:61–66

    Article  PubMed  CAS  Google Scholar 

  2. Apostolski S, Sadiq SA, Hays A, Corbo M, Suturkova-Milosevic L, Chaliff P, Stefansson K, LeBaron RG, Ruoslahti E, Hays AP (1994) Identification of Gal (beta 1-3) GalNAc bearing glycoproteins at the nodes of Ranvier in peripheral nerve. J Neurosci Res 38:134–141

    Article  PubMed  CAS  Google Scholar 

  3. Arasaki K, Kusunoki S, Kudo N, Kanazawa I (1993) Acute conduction block in vitro following exposure to antiganglioside sera. Muscle Nerve 16:587–593

    Article  PubMed  CAS  Google Scholar 

  4. Ariga T, Miyatake T, Yu RK (2001) Recent studies on the roles of anti-glycosphingolipids in the pathogenesis of neurological diseases. J Neurosci Res 65:363–370

    Article  PubMed  CAS  Google Scholar 

  5. Ariga T, Yu RK (2005) Antiganglioside antibodies in Guillain-Barré syndrome and related diseases: review of clinical features and antibody specificities. J Neurosci Res 80:1–17

    Article  PubMed  CAS  Google Scholar 

  6. Brinkmeier H, Wollinsky KH, Hülser PJ, Seewald MJ, Mehrkens HH, Komhuber HH, Rüdel R (1992) The acute paralysis in Güillain-Barrē syndrome is related to a Na+ channel blocking factor in the cerebrospinal fluid. Pflugers Arch 421:552–557

    Article  PubMed  CAS  Google Scholar 

  7. Chiba A, Kusunoki S, Shimizu T, Kanazawa I (1992) Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome. Ann Neurol 31:677–679

    Article  PubMed  CAS  Google Scholar 

  8. Corbo M, Quattrini A, Latov N, Hays AP (1993) Localization of GM1 and Gal(beta1–3)GalNAc antigenic determinants in peripheral nerve. Neurology 43:809–814

    PubMed  CAS  Google Scholar 

  9. Corbo M, Quattrini A, Lugaresi A, Santoro M, Latov N, Hays AP (1992) Patterns of reactivity of human anti-GM1 antibodies with spinal cord and motor neurons. Ann Neurol 32:487–493

    Article  PubMed  CAS  Google Scholar 

  10. Freddo L, Ariga T, Saito M, Macala LC, Yu RK, Latov N (1985) The neuropathy of plasma cell dyscrasia: binding of IgM M-proteins to peripheral nerve glycolipids. Neurology 35:1420–1424

    PubMed  CAS  Google Scholar 

  11. Gilbert M, Brisson JR, Karwaski MF, Michniewicz J, Cunningham AM, Wu Y et al (2000) Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H and 13C NMR analysis. J Biol Chem 275:3896–3906

    Article  PubMed  CAS  Google Scholar 

  12. Gong Y, Lunn MP, Heffer-Lauc M, Li CY, Griffin JW, Schnaar RL et al (2001) Localization of major gangliosides in the PNS: implications for immune neuropathies. J Peripher Nerv Syst 6:142

    Google Scholar 

  13. Goodyear CS, O’Hanlon GM, Plomp JJ, Wagner ER, Morrison I, Veitch J et al (1999) Monoclonal antibodies raised against Guillain–Barré syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle–nerve ­preparations. J Clin Invest 104:697–708

    Article  PubMed  CAS  Google Scholar 

  14. Hadden RD, Karch H, Hartung HP, Zielasek J, Weissbrick B et al (2001) Preceding infections, immune factors, and outcome in Guillain-Barre syndrome. Neurology 56:758–765

    PubMed  CAS  Google Scholar 

  15. Hafer-Macko C, Hsieh ST, Li CY, Ho TW, Sheikh K, Cornblath DR, McKhann GM, Asbury AK, Griffin JW (1996) Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 40:635–644

    Article  PubMed  CAS  Google Scholar 

  16. Hahn AF (1998) Guillain-Barre syndrome. Lancet 352:635–641

    Article  PubMed  CAS  Google Scholar 

  17. Hakomori SI (1990) Bifunctional role of glycosphingolipids modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265:18713–18716

    PubMed  CAS  Google Scholar 

  18. Hakomori SI (2000) Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj J 17:143–151

    Article  PubMed  CAS  Google Scholar 

  19. Hakomori SI (2003) Structure, organization, and function of glycosphingolipids in membrane. Curr Opin Hematol 10:16–24

    Article  PubMed  CAS  Google Scholar 

  20. Halstead SK, Morrison I, O’Hanlon GM, Humphreys PD, Goodfellow JA, Plomp JJ, Willison HJ (2005) Anti-disialosyl antibodies mediate selective neuronal or Schwann cell injury at mouse neuromuscular junctions. Glia 52:177–189

    Article  PubMed  Google Scholar 

  21. Hartung HP, Pollard ID, Harver GK, Toyka KV (1995) Immunopathogenesis and treatment of the Guillain-Barré syndrome. Muscle Nerve 18:137–153

    Article  PubMed  CAS  Google Scholar 

  22. Ho TW, Willlison HJ, Nachamkin I, Li CY, Veitch J, Ung H, Wang GR, Liu RC, Asbury AK, Griffin JW, McKhann GM (1999) Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain-Barré syndrome. Ann Neurol 45:168–173

    Article  PubMed  CAS  Google Scholar 

  23. Hughes RA, Cornblath CR (2005) Guillain-Barré syndrome. Lancet 366:1663–1666

    Article  Google Scholar 

  24. Illa LN, Ortiz N, Gallard E, Juarrez C, Gru JM, Dalakas MC (1995) Acute axonal Guillain-Barré syndrome with IgG antibodies against motor axons following parenteral gangliosides. Ann Neurol 38:218–224

    Article  PubMed  CAS  Google Scholar 

  25. Iwabuchi K, Handa K, Hakomori SI (1998) Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J Biol Chem 273:33766–33773

    Article  PubMed  CAS  Google Scholar 

  26. Jacobs BC, Bullens RW, O’Hanlon GM, Ang CW, Willison HJ, Plomp JJ (2002) Detection and prevalence of alpha-latrotoxin-like effects of serum from patients with Guillain-Barré syndrome. Muscle Nerve 25:549–558

    Article  PubMed  CAS  Google Scholar 

  27. Kaida K, Kanzaki M, Morita D, Kamakura K, Motoyoshi K, Hirakawa M, Kusunoki S (2006) Anti-ganglioside complex antibodies in Miller Fisher syndrome. J Neurol Neurosurg Psychiatry 77:1043–1046

    Article  PubMed  CAS  Google Scholar 

  28. Kaida K, Kusunoki S, Kamakura K, Motoyoshi K, Kanazawa I (2003) GalNAc-GD1a in human peripheral nerve: target sites of anti-ganglioside antibody. Neurology 61:465–470

    PubMed  CAS  Google Scholar 

  29. Kaida K, Morita D, Kanzaki M, Kamakura K, Motoyoshi K, Hirakawa M, Kusunoki S (2004) Ganglioside complexes as new target antigens in Guillain-Barré syndrome. Ann Neurol 56:567–571

    Article  PubMed  CAS  Google Scholar 

  30. Kaida K, Morita D, Kanzaki M, Kamakura K, Motoyoshi K, Hirakawa M, Kusunoki S (2007) Anti-ganglioside complex antibodies associated with severe disability in GBS. J Neuroimmunol 182:212–218

    Article  PubMed  CAS  Google Scholar 

  31. Kanzaki M, Kaida K, Ueda M, Morita D, Hirakawa M, Motoyoshi K, Kamakura K, Kusunoki S (2008) Ganglioside complexes containing GQ1b as targets in Miller Fisher and Guillain-Barré syndromes. J Neurol Neurosurg Psychiatry 79:1148–1152

    Article  PubMed  CAS  Google Scholar 

  32. Koga M, Yuki N, Ariga T, Morimatsu M, Hirata K (1998) Is IgG anti-GT1a antibody associated with pharyngeal-cervical-brachial weakness of oropharyngeal palsy in Guillain-Barré syndrome? J Neuroimmunol 86:74–79

    Article  PubMed  CAS  Google Scholar 

  33. Kuwabara S, Yuki N, Koga M, Hattori T, Matsura D, Miyake M, Noda M (1998) IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain-Barré syndrome. Ann Neurol 44:202–208

    Article  PubMed  CAS  Google Scholar 

  34. Meléndez-Vásquez C, Redford J, Choudhary PP, Gray IA, Maitland P, Gregson NA, Smith KJ, Hughes RA (1997) Immunological investigation of chronic inflammatory demyelinating poly-radiculoneuropathy. J Neuroimmunol 73:124–134

    Article  PubMed  Google Scholar 

  35. Moran AP, Annuk H, Prendergast MM (2005) Antibodies induced by ganglioside-mimicking Campylobacter jejuni lipopolysaccharides recognizes epitopes at the nodes of Ranvier. J Neuroimmunol 165:179–185

    Article  PubMed  CAS  Google Scholar 

  36. Moran AP, Prendergast MM (2001) Molecular mimicry in Campylobacter jejuni and Helicobacter pylori lipopolysaccharides: contribution of gastrointestinal infections to autoimmunity. J Autoimmun 16:241–265

    Article  PubMed  CAS  Google Scholar 

  37. Nakatani Y, Kawakami K, Nagaoka T, Utsunomiya I, Tanaka K, Yoshino H, Miyatake T, Taguchi K (2007) Ca2+ Channel currents inhibited by serum from select patients with Guillain-Barré syndrome. Eur Neurol 57:11–18

    Article  PubMed  CAS  Google Scholar 

  38. O’Hanlon GM, Plomp JJ, Chakrabati M, Morrison J, Wagner EA, Goodyear CS, Yin X, Trapp RD, Corner J, Molenear PC, Stevant S, Rowan FG, Willison HJ (2001) Anti-GQ1b ganglioside antibodies mediated complement-dependent destruction of the motor nerve terminal. Brain Res 124:893–906

    Google Scholar 

  39. Pestronk A, Adams RN, Clawson L, Cornblath D, Kuncl RW, Griffin D, Drachman DB (1988) Serum antibodies to GM1 ganglioside in amyotrophic lateral sclerosis. Neurology 38:1457–1461

    PubMed  CAS  Google Scholar 

  40. Santafe MM, Sabate MM, Garcia N, Ortiz N, Lamuza MA, Tomas J (2005) Changes in the neuromuscular synapse induced by an antibody against gangliosides. Ann Neurol 57:396–407

    Article  PubMed  CAS  Google Scholar 

  41. Schluep M, Steck AJ (1988) Immunostaining of motor nerve terminals by IgM M protein with activity against ganglioside GM1 and GD1b from a patient with motor neuron disease. Neurology 38:1890–1892

    PubMed  CAS  Google Scholar 

  42. Schwerer B (2002) Antibodies against gangliosides: a link between preceding infection and immuno-pathogenesis of Guillain-Barré syndrome. Microbes Infect 4:373–384

    Article  PubMed  CAS  Google Scholar 

  43. Sheikh KA, Deerinck TJ, Ellisman MH, Griffin JW (1999) The distribution of ganglioside-like moieties in peripheral nerves. Brain 122:449–460

    Article  PubMed  Google Scholar 

  44. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  45. Taguchi K, Ren J, Utsunomiya I, Aoyagi H, Fujita N, Ariga T, Miyatake T, Yoshino H (2004) Neurophysiological and immunohistochemical studies on Guillain-Barré syndrome with IgG anti-GalNAc-GD1a antibodies – effects on neuromuscular transmission. J Neurol Sci 225:91–98

    Article  PubMed  CAS  Google Scholar 

  46. Taguchi K, Utsunomiya I, Ren J, Yoshida N, Aoyagi H, Nakatani Y, Ariga T, Usuki S, Yu RK, Miyatake T (2004) Effect of rabbit anti-asialo-GM1 (GA1) polyclonal antibodies on neuromuscular transmission and acetylcholine-induced action potentials: neurophysiological and immunohistochemical studies. Neurochem Res 29:953–960

    Article  PubMed  CAS  Google Scholar 

  47. Takigawa T, Yasuda H, Kikkawa R, Shigeta Y, Saida T, Kitasato H (1995) Antibodies against GM1 ganglioside affect K+ and Na+ currents in isolated rat myelinated nerve fibers. Ann Neurol 37:436–442

    Article  PubMed  CAS  Google Scholar 

  48. Thomas FP, Trojaborg W, Nagy C, Santoro M, Sadiq SA, Latov N, Hays AP (1991) Experimental autoimmune neuropathy with anti-GM1 antibodies and immunoglobulin deposits at the nodes of Ranvier. Acta Neuropathol 82:378–382

    Article  PubMed  CAS  Google Scholar 

  49. Trojaborg W (1998) Acute and chronic neuropathies: new aspects of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy, an overview and an update. Electroencephalogr Clin Neurophysiol 107:303–316

    Article  PubMed  CAS  Google Scholar 

  50. Usuki S, Nakatani Y, Taguchi K, Fujita T, Tanabe S, Utsunomi I, Gu YH, Cawthraw S, Newell D, Pajaniappan M, Thompson S, Ariga T, Yu RK (2008) Topology and patch-clamp analysis of the sodium channel in relationship to the anti-lipid A antibody in campylobacteriosis. J Neurosci Res 86:3359–3374

    Article  PubMed  CAS  Google Scholar 

  51. Usuki S, Sanchez J, Ariga T, Utsunomiya I, Taguchi K, Rivner MH, Yu RK (2005) AIDP and CIDP having specific antibodies in carbohydrate (-NeuAcα2-8NeuAcα2-3Galβ1-4Glc-) of gangliosides. J Neurol Sci 232:37–44

    Article  PubMed  CAS  Google Scholar 

  52. Usuki S, Thompson SA, Rivner MH, Taguchi K, Shibata K, Ariga T, Yu RK (2006) Molecular mimicry: sensitization of Lewis rats with Camplyobacter jejuni lipopolysaccharides induces formation of antibody toward GD3 ganglioside. J Neurosci Res 83:274–284

    Article  PubMed  CAS  Google Scholar 

  53. Weber F, Rudel R, Aulkemeyer P, Brinkmeier H (2000) Anti-GM1 antibodies can block neuronal voltage-gated sodium channels. Muscle Nerve 23:1414–1420

    Article  PubMed  CAS  Google Scholar 

  54. Willison HJ (2005) The immunology in Guillain-Barré syndrome. J Peripher Nerv Syst 10:94–112

    Article  PubMed  CAS  Google Scholar 

  55. Willison HJ (2005) Ganglioside complexes: new autoantibody targets in Guillan-Barré syndromes. Nat Clin Pract Neurol 1:2–3

    Article  PubMed  CAS  Google Scholar 

  56. Willison HJ, O’Hanlon GM, Paterson G, Veitch J, Wilson G, Roberts M et al (1996) A somatically mutated human antiganglioside IgM antibody that induces experimental neuropathy in mice is encoded by the variable region heavy chain gene, V1-18. J Clin Invest 97:1155–1164

    Article  PubMed  CAS  Google Scholar 

  57. Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125:2591–2625

    Article  PubMed  Google Scholar 

  58. Wutrz A, Brinkmeier H, Wollinsky KH, Mehrkens HH, Kornhuber HH, Rudel R (1995) Cerebrospinal fluid and serum from patients with polyradiculoneuropathy have opposite effects on sodium channels. Muscle Nerve 18:772–781

    Article  Google Scholar 

  59. Yoshino H, Harukawa H, Asano A (2000) IgG antiganglioside antibodies in Guillain-Barré syndrome with bulbar palsy. J Neuroimmunol 105:195–201

    Article  PubMed  CAS  Google Scholar 

  60. Yoshino H, Utsunomiya I, Taguchi K, Ariga T, Nagaoka T, Aoyagi H, Asano A, Yamada M, Miyatake T (2005) GalNAc-GD1a is localized specifically in ventral spinal roots, but not in dorsal roots. Brain Res 1057:177–180

    Article  PubMed  CAS  Google Scholar 

  61. Yu RK (1994) Developmental regulation of ganglioside metabolism. Prog Brain Res 101:31–44

    Article  PubMed  CAS  Google Scholar 

  62. Yu RK, Ariga T, Yanagisawa M, Zeng G (2008) Biosynthesis and degradation of gangliosides in the nervous system. In: Fraser-Reid B, Tatsuka K, Thiem J (eds) Glycoscience. Springer, Berlin, pp 1671–1695

    Chapter  Google Scholar 

  63. Yu RK, Usuki S, Ariga T (2006) Ganglioside molecular mimicry and its pathological roles in Guillain-Barré syndrome and related diseases. Infect Immun 74:6517–6527

    Article  PubMed  CAS  Google Scholar 

  64. Yuki N (2007) Ganglioside mimicry and peripheral nerve disease. Muscle Nerve 35:691–711

    Article  PubMed  CAS  Google Scholar 

  65. Yuki N, Ho TW, Tagawa Y, Koga M, Li CY, Hirata K, Griffin JW (1999) Autoantibodies to GM1b and GalNAc-GD1a: relationship to Campylobacter jejuni infection and acute motor axonal neuropathy in China. J Neurol Sci 164:134–138

    Article  PubMed  CAS  Google Scholar 

  66. Yuki N, Taki T, Inagaki F, Kasama T, Takahashi M, Saito K, Tai T, Handa S, Miyatake T (1993) A bacterium lipopolysaccharide that elicits Guillain-Barré syndrome has a GM1 ganglioside-like structure. J Exp Med 178:1771–1775

    Article  PubMed  CAS  Google Scholar 

  67. Yuki N, Taki T, Takahashi M, Saito K, Tai T, Miyatake T, Handa S (1994) Penner’s serotype 4 of Campylobacter jejuni has a lipopolysaccharide that bears a GM1 ganglioside epitope as well as one that bears a GD1a epitope. Infect Immun 62:2101–2103

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institutes of Health grants to Robert K. Yu. We thank Ms. Diana Westbrook for her skillful editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Yu, R.K., Ariga, T., Usuki, S., Kaida, Ki. (2011). Pathological Roles of Ganglioside Mimicry in Guillain–Barré Syndrome and Related Neuropathies. In: Wu, A. (eds) The Molecular Immunology of Complex Carbohydrates-3. Advances in Experimental Medicine and Biology, vol 705. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7877-6_17

Download citation

Publish with us

Policies and ethics