9-O-Acetyl GD3 in Lymphoid and Erythroid Cells

  • Kankana Mukherjee
  • Suchandra Chowdhury
  • Susmita Mondal
  • Chandan Mandal
  • Sarmila Chandra
  • Chitra Mandal
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 705)

Abstract

Sialic acids are electronegatively charged sugars that contribute to the enormous structural diversity of complex carbohydrates, which are major constituents of mostly proteins and lipids of cell membranes and secreted macromolecules. They are usually positioned at the outer end of these molecules and thus are well suited for interacting with other cells, pathogens, or molecules in the cell environment. Sialic acids are 9-carbon-containing monosaccharides, and the structural diversity of glycan chains is further increased by the various modifications of sialic acids [1]. Amongst 50 known derivatives of sialic acids, 7-, 8-, and 9-O-acetylated derivatives (O-AcSA) are important constituents of the cell membrane and are known to influence many physiological and pathological processes [1, 2], including cell–cell adhesion, signaling, differentiation, and metastasis [3–6]. However, as O-acetyl esters from positions C-7 and C-8 spontaneously migrate to C-9, even under physiologic conditions, O-acetylation at C-9 is considered the most common biologically occurring modification [7]. The appearance of O-acetylated sialic acids on glycoproteins or glycolipids is cell-type specific and developmentally regulated, their synthesis and turnover being a highly orchestrated phenomenon. O-acetylation can have a significant role in cell physiology and can alter the functional effects of important molecular determinants in various disease conditions. In this chapter, we deal with the O-acetylation of glycosphingolipids (GSLs), specifically GD3 in both erythroid and lymphoid cells.

Keywords

Apoptosis Childhood acute lymphoblastic leukemia Erythrocytes Erythropoiesis Lymphoblasts GD3 9-O-acetyl-GD3 9-O-acetylated sialoglycoprotein 

Notes

Acknowledgments

Ms. Kankana, Mr. Chandan Mandal, Ms. Suchandra Chowdhury, and Ms. Susmita Mondal are senior and junior research fellows of the Council of Scientific and Industrial Research (CSIR) and the University Grant Commission for the Government of India. This work received financial support from the Department of Science and Technology, Indian Council of Medical Research, and CSIR, New Delhi, Government of India. We are thankful to all previous coworkers for their contributions. Figures 15.3, 15.515.8) and Table 15.1 have been reprinted from Biochemical and Biophysical Research Communications 2007;362:651–657 with permission from Elsevier.

References

  1. 1.
    Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102(2):439–469PubMedCrossRefGoogle Scholar
  2. 2.
    Schauer R, Kamerling JP (1997) Chemistry, biochemistry and biology of sialic acids. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins II. Elsevier, Amsterdam, pp 243–402CrossRefGoogle Scholar
  3. 3.
    Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconjugate J 17:485–499Google Scholar
  4. 4.
    Schauer R (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology (Jena) 107(1):49–64Google Scholar
  5. 5.
    Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W, Horstkorte R (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci USA 99(8):5267–5270PubMedCrossRefGoogle Scholar
  6. 6.
    Malykh YN, Schauer R, Shaw L (2001) N-Glycolylneuraminic acid in human tumours. Biochimie 83(7):623–634PubMedCrossRefGoogle Scholar
  7. 7.
    Vandamme-Feldhaus V, Schauer R (1998) Characterization of the enzymatic 7-O-acetylation of sialic acids and evidence for enzymatic O-acetyl migration from C-7 to C-9 in bovine submandibular gland. J Biochem (Tokyo) 124(1):111–121Google Scholar
  8. 8.
    Dyatlovitskaya EV, Bergelson LD (1987) Glycosphingolipids and antitumor immunity. Biochim Biophys Acta 907(2):125–143PubMedGoogle Scholar
  9. 9.
    Merritt WD, Taylor BJ, Der-Minassian V, Reaman GH (1996) Coexpression of GD3 ganglioside with CD45RO in resting and activated human T lymphocytes. Cell Immunol 173(1):131–148PubMedCrossRefGoogle Scholar
  10. 10.
    Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50(6):1825–1829PubMedCrossRefGoogle Scholar
  11. 11.
    Furukawa K, Arita Y, Satomi N, Eisinger M, Lloyd KO (1990) Tumor necrosis factor enhances GD3 ganglioside expression in cultured human melanocytes. Arch Biochem Biophys 281(1):70–75PubMedCrossRefGoogle Scholar
  12. 12.
    Carubia JM, Yu RK, Macala LJ, Kirkwood JM, Varga JM (1984) Gangliosides of normal and neoplastic human melanocytes. Biochem Biophys Res Commun 120(2):500–504PubMedCrossRefGoogle Scholar
  13. 13.
    Ravindranath MH, Tsuchida T, Morton DL, Irie RF (1991) Ganglioside GM3:GD3 ratio as an index for the management of melanoma. Cancer 67(12):3029–3035PubMedCrossRefGoogle Scholar
  14. 14.
    Merzak A, Koochekpour S, Pilkington GJ (1994) Cell surface gangliosides are involved in the control of human glioma cell invasion in vitro. Neurosci Lett 177(1–2):44–46PubMedCrossRefGoogle Scholar
  15. 15.
    Cheresh DA, Reisfeld RA, Varki AP (1984) O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Science 225(4664):844–846PubMedCrossRefGoogle Scholar
  16. 16.
    Merritt WD, Casper JT, Lauer SJ, Reaman GH (1987) Expression of GD3 ganglioside in childhood T-cell lymphoblastic malignancies. Cancer Res 47(6):1724–1730PubMedGoogle Scholar
  17. 17.
    Fredman P (1994) Gangliosides associated with primary brain tumors and their expression in cell lines established from these tumors. Prog Brain Res 101:225–240PubMedCrossRefGoogle Scholar
  18. 18.
    Fredman P, von Holst H, Collins VP, Dellheden B, Svennerholm L (1993) Expression of gangliosides GD3 and 3′-isoLM1 in autopsy brains from patients with malignant tumors. J Neurochem 60(1):99–105PubMedCrossRefGoogle Scholar
  19. 19.
    Ando S, Toyoda Y, Nagai Y, Ikuta F (1984) Alterations in brain gangliosides and other lipids of patients with Creutzfeldt–Jakob disease and subacute sclerosing panencephalitis (SSPE). Jpn J Exp Med 54(6):229–234PubMedGoogle Scholar
  20. 20.
    Ohtani Y, Tamai Y, Ohnuki Y, Miura S (1996) Ganglioside alterations in the central and peripheral nervous systems of patients with Creutzfeldt–Jakob disease. Neurodegeneration 5(4):331–338PubMedCrossRefGoogle Scholar
  21. 21.
    De Maria R, Lenti L, Malisan F, d’Agostino F, Tomassini B, Zeuner A, Rippo MR, Testi R (1997) Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277(5332):1652–1655PubMedCrossRefGoogle Scholar
  22. 22.
    De Maria R, Rippo MR, Schuchman EH, Testi R (1998) Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med 187(6):897–902PubMedCrossRefGoogle Scholar
  23. 23.
    Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, Santoni A, Testi R (1994) Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 180(4):1547–1552PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia-Ruiz C, Colell A, Morales A, Calvo M, Enrich C, Fernandez-Checa JC (2002) Trafficking of GD3 to mitochondria by tumor necrosis factor-α. J Biol Chem 277(39):36443–36448PubMedCrossRefGoogle Scholar
  25. 25.
    Colell A, Morales A, Fernandez-Checa JC, Garcia-Ruiz C (2002) Ceramide generated by acidic sphingomyelinase contributes to tumor necrosis factor-mediated apoptosis in HT-29 cells through glycosphingolipid generation. Possible role of ganglioside GD3. FEBS Lett 526(1–3):135–141PubMedCrossRefGoogle Scholar
  26. 26.
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446PubMedCrossRefGoogle Scholar
  27. 27.
    Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249PubMedCrossRefGoogle Scholar
  28. 28.
    Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274(25):17941–17945PubMedCrossRefGoogle Scholar
  29. 29.
    Ferri KF, Kroemer G (2000) Control of apoptotic DNA degradation. Nat Cell Biol 2(4):E63–E64PubMedCrossRefGoogle Scholar
  30. 30.
    Levine JM, Beasley L, Stallcup W (1984) The D1.1 antigen: a cell surface marker for germinal cells of the central nervous system. J Neurosci 4(3):820–831PubMedGoogle Scholar
  31. 31.
    Drazba J, Pierce M, Lemmon V (1991) Studies of the developing chick retina using monoclonal antibody 8A2 that recognizes a novel set of gangliosides. Dev Biol 145(1):154–163PubMedCrossRefGoogle Scholar
  32. 32.
    Cheresh DA, Varki AP, Varki NM, Stallcup WB, Levine J, Reisfeld RA (1984) A monoclonal antibody recognizes an O-acylated sialic acid in a human melanoma-associated ganglioside. J Biol Chem 259(12):7453–7459PubMedGoogle Scholar
  33. 33.
    Marquina G, Waki H, Fernandez LE (1996) Gangliosides expressed in human breast cancer. Cancer Res 56(22):5165–5171PubMedGoogle Scholar
  34. 34.
    Gocht A, Rutter G, Kniep B (1998) Changed expression of 9-O-acetyl GD3 (CDw60) in benign and atypical proliferative lesions and carcinomas of the human breast. Histochem Cell Biol 110(3):217–229PubMedCrossRefGoogle Scholar
  35. 35.
    Fox DA, Kan L, Lawrence SC, Baadsgaard O, Coper K, Kozarsky K (1989) Activation of a human T-cell subset through a newly identified surface structure termed UM-4D4. In: Knapp W (ed) Leucocyte typing IV. Oxford University Press, London, pp 364–366Google Scholar
  36. 36.
    Kawashima I, Ozawa H, Kotani M, Suzuki M, Kawano T, Gomibuchi M, Tai T (1993) Characterization of ganglioside expression in human melanoma cells: immunological and biochemical analysis. J Biochem (Tokyo) 114:186–193Google Scholar
  37. 37.
    Gocht A, Gadatsch A, Rutter G, Kniep B (2000) CDw60: an antigen expressed in many normal tissues and in some tumours. Histochem J 32(7):447–456PubMedCrossRefGoogle Scholar
  38. 38.
    Constantine-Paton M, Blum AS, Mendez-Otero R, Barnstable CJ (1986) A cell surface molecule distributed in a dorsoventral gradient in the perinatal rat retina. Nature 324(6096):459–462PubMedCrossRefGoogle Scholar
  39. 39.
    Fox DA, He X, Abe A, Hollander T, Li LL, Kan L, Friedman AW, Shimizu Y, Shayman JA, Kozarsky K (2001) The T lymphocyte structure CD60 contains a sialylated carbohydrate epitope that is expressed on both gangliosides and glycoproteins. Immunol Invest 30(2):67–85PubMedCrossRefGoogle Scholar
  40. 40.
    Malisan F, Franchi L, Tomassini B, Ventura N, Condo I, Rippo MR, Rufini A, Liberati L, Nachtigall C, Kniep B, Testi R (2002) Acetylation suppresses the proapoptotic activity of GD3 ganglioside. J Exp Med 196(12):1535–1541PubMedCrossRefGoogle Scholar
  41. 41.
    Kniep B, Kniep E, Ozkucur N, Barz S, Bachmann M, Malisan F, Testi R, Rieber EP (2006) 9-O-acetyl GD3 protects tumor cells from apoptosis. Int J Cancer 119(1):67–73PubMedCrossRefGoogle Scholar
  42. 42.
    Hoelzer D, Gokbuget N, Ottmann O, Pui CH, Relling MV, Appelbaum FR, van Dongen JJ, Szczepanski T (2002) Acute lymphoblastic leukaemia. Hematol (Am Soc Hematol Educ Program) 2002:162–192Google Scholar
  43. 43.
    Sinha D, Mandal C, Bhattacharya DK (1999) Identification of 9-O-acetyl sialoglycoconjugates (9-OAcSGs) as biomarkers in childhood acute lymphoblastic leukemia using a lectin, AchatininH, as a probe. Leukemia 13(1):119–125PubMedCrossRefGoogle Scholar
  44. 44.
    Pal S, Ghosh S, Bandyopadhyay S, Mandal C, Bandhyopadhyay S, Bhattacharya D, Mandal C (2004) Differential expression of 9-O-acetylated sialoglycoconjugates on leukemic blasts: a potential tool for long-term monitoring of children with acute lymphoblastic leukemia. Int J Cancer 111(2):270–277PubMedCrossRefGoogle Scholar
  45. 45.
    Pal S, Ghosh S, Mandal C, Kohla G, Brossmer R, Isecke R, Merling A, Schauer R, Schwartz-Albiez R, Bhattacharya DK, Mandal C (2004) Purification and characterisation of 9-O-acetylated sialoglycoproteins from leukemic cells and their potential as immunological tool for monitoring childhood acute lymphoblastic leukaemia. Glycobiology 14(10):859–870PubMedCrossRefGoogle Scholar
  46. 46.
    Ghosh S, Bandyopadhyay S, Pal S, Das B, Bhattacharya DK, Mandal C (2005) Increased interferon gamma production by peripheral blood mononuclear cells in response to stimulation of overexpressed disease-specific 9-O-acetylated sialoglycoconjugates in children suffering from acute lymphoblastic leukaemia. Br J Haematol 128(1):35–41PubMedCrossRefGoogle Scholar
  47. 47.
    Ghosh S, Bandyopadhyay S, Mallick A, Pal S, Vlasak R, Bhattacharya DK, Mandal C (2005) Interferon gamma promotes survival of lymphoblasts overexpressing 9-O-acetylated sialoglycoconjugates in childhood acute lymphoblasticleukaemia (ALL). J Cell Biochem 95(1):206–216PubMedCrossRefGoogle Scholar
  48. 48.
    Bandyopadhyay S, Bhattacharyya A, Mallick A, Sen AK, Tripathi G, Das T, Sa G, Bhattacharya DK, Mandal C (2005) Over-expressed IgG2 antibodies against O-acetylated sialoglycoconjugates incapable of proper effector functioning in childhood acute lymphoblastic leukemia. Int Immunol 17(2):177–191PubMedCrossRefGoogle Scholar
  49. 49.
    Bandyopadhyay S, Mukherjee K, Chatterjee M, Bhattacharya DK, Mandal C (2005) Detection of immune-complexed 9-O-acetylated sialoglycoconjugates in the sera of patients with pediatric acute lymphoblastic leukemia. J Immunol Methods 297(1–2):13–26PubMedCrossRefGoogle Scholar
  50. 50.
    Sinha D, Mandal C, Bhattacharya DK (1999) Development of a simple, blood based lymphoproliferation assay to assess the clinical status of patients with acute lymphoblastic leukemia. Leuk Res 23(5):433–439PubMedCrossRefGoogle Scholar
  51. 51.
    Pal S, Bandyopadhyay S, Chatterjee M, Bhattacharya DK, Minto L, Hall AG, Mandal C (2004) Antibodies against 9-O-acetylated sialoglycans: a potent marker to monitor clinical status in childhood acute lymphoblastic leukemia. Clin Biochem 37(5):395–403PubMedCrossRefGoogle Scholar
  52. 52.
    Loken MR, Shah VO, Dattilio KL, Civin CI (1978) Flow cytometric analysis of human bone marrow: I. Normal erythroid development. Blood 69:255–263Google Scholar
  53. 53.
    Abou-Seif MA, Rabia A, Nasr M (2000) Antioxidant status, erythrocyte membrane lipid peroxidation and osmotic fragility in malignant lymphoma patients. Clin Chem Lab Med 38:737–742PubMedCrossRefGoogle Scholar
  54. 54.
    Ray MR, Chowdhury JR (1984) The life span and osmotic fragility of erythrocytes in mice bearing benzo(a)pyrine-induced fibrosarcoma. Z Naturforsch [C] 39(1–2):198–200Google Scholar
  55. 55.
    Horii K, Adachi Y, Ohba Y, Yamamoto T (1981) Erythrocyte osmotic fragility in various liver diseases – application of coil planet centrifuge system. Gastroenterol Jpn 16(2):161–167PubMedGoogle Scholar
  56. 56.
    Romero PJ, Romero EA (1999) Effect of cell ageing on Ca2+ influx into human red cells. Cell Calcium 26(3–4):131–137PubMedCrossRefGoogle Scholar
  57. 57.
    Romero PJ, Romero EA (1999) The role of calcium metabolism in human red blood cell ageing: a proposal. Blood Cells Mol Dis 25(1):9–19PubMedCrossRefGoogle Scholar
  58. 58.
    Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285(6):C1553–C1560PubMedGoogle Scholar
  59. 59.
    Kundu SK, Samuelsson BE, Pascher I, Marcus DM (1983) New gangliosides from human erythrocytes. J Biol Chem 258(22):13857–13866PubMedGoogle Scholar
  60. 60.
    Horikawa K, Nakakuma H, Nagakura S, Kawaklta M, Kagmoto T, Enamors M, Nagal Y, Abe T, Takatsuki K (1991) Hemolysis of human erythrocytes is a new bioactivity of gangliosides. J Exp Med 174(6):1385–1391PubMedCrossRefGoogle Scholar
  61. 61.
    Clark MR (1988) Senescence of red blood cells: progress and problems. Physiol Rev 68(2):503–554PubMedGoogle Scholar
  62. 62.
    Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci USA 95(6):3077–3081PubMedCrossRefGoogle Scholar
  63. 63.
    Bratosin D, Mazurier J, Tissier J, Estaquier J, Huart JJ, Ameisen JC, Aminoff D, Montreuil J (1998) Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. Biochimie 80(2):173–195PubMedCrossRefGoogle Scholar
  64. 64.
    Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, Slomianny C, Sartiaux C, Alonso C, Huart JJ, Montreuil J, Ameisen JC (2001) Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 8(12):1143–1156PubMedCrossRefGoogle Scholar
  65. 65.
    Mandal D, Mazumder A, Das P, Kundu M, Basu J (2005) Fas-, caspase 8- and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem 280(47):39460–39467PubMedCrossRefGoogle Scholar
  66. 66.
    Foller M, Kasinathan RS, Koka S, Huber SM, Schuler B, Vogel J, Gassmann M, Lang F (2007) Enhanced susceptibility to suicidal death of erythrocytes from transgenic mice overexpressing erythropoietin. Am J Physiol Regul Integr Comp Physiol 293(3):R1127–R1134PubMedCrossRefGoogle Scholar
  67. 67.
    Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407(6805):784–788PubMedCrossRefGoogle Scholar
  68. 68.
    Zwaal RFA, Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89:1211Google Scholar
  69. 69.
    Mukherjee K, Chowdhury S, Mondal S, Mandal C, Chandra S, Bhadra R, Mandal C (2007) 9-O-Acetylated GD3 triggers programmed cell death in mature erythrocytes. Biochem Biophys Res Commun 362(3):651–657PubMedCrossRefGoogle Scholar
  70. 70.
    Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10(9):369–377PubMedCrossRefGoogle Scholar
  71. 71.
    Martinou JC, Green D (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2(1):63–67PubMedCrossRefGoogle Scholar
  72. 72.
    Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2(1):67–71PubMedCrossRefGoogle Scholar
  73. 73.
    Green DR (2000) Apoptotic pathways: paper wraps stone blunt scissors. Cell 102(1):1–4PubMedCrossRefGoogle Scholar
  74. 74.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316PubMedCrossRefGoogle Scholar
  75. 75.
    Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates and functions during apoptosis. Annu Rev Biochem 68:383–424PubMedCrossRefGoogle Scholar
  76. 76.
    Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407(6805):796–801PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kankana Mukherjee
  • Suchandra Chowdhury
  • Susmita Mondal
  • Chandan Mandal
  • Sarmila Chandra
  • Chitra Mandal
    • 1
  1. 1.Infectious Disease and Immunology DivisionIndian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research (CSIR)KolkataIndia

Personalised recommendations