Skip to main content

Role of Gangliosides and Plasma Membrane-Associated Sialidase in the Process of Cell Membrane Organization

  • Conference paper
  • First Online:
The Molecular Immunology of Complex Carbohydrates-3

Abstract

Glycosphingolipids are amphiphilic membrane lipids characterized by the presence of a long-chain (C18 or C20) amino alcohol, which has the trivial name “sphingosine.” Glycosphingolipids are components of all eukaryotic cell membranes, and gangliosides (glycosphingolipids containing sialic acid residues in their oligosaccharide chains) are particularly abundant in the plasma membranes of neurons. As sphingolipids are concentrated at the subcellular level in the plasma membrane, where they reside asymmetrically in the extracellular leaflet, they are relatively abundant in this district. Keeping in mind that sphingolipids are not homogeneously distributed throughout the membrane plane but rather are concentrated in restricted membrane areas [1] due to their spontaneous segregation with respect to glycerophospholipids, it can be predicted that their local concentration in specific “lipid membrane domains” would be very high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sonnino S, Mauri L, Chigorno V, Prinetti A (2006) Gangliosides as components of lipid membrane domains. Glycobiology 17(1):1R–13R

    PubMed  Google Scholar 

  2. van Echten G, Sandhoff K (1993) Ganglioside metabolism. Enzymology, topology, and regulation. J Biol Chem 268(8):5341–5344

    PubMed  Google Scholar 

  3. Kolter T, Proia RL, Sandhoff K (2002) Combinatorial ganglioside biosynthesis. J Biol Chem 277(29):25859–25862

    PubMed  CAS  Google Scholar 

  4. Tettamanti G (2004) Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J 20(5):301–317

    PubMed  CAS  Google Scholar 

  5. Warnock DE, Lutz MS, Blackburn WA, Young WW Jr, Baenziger JU (1994) Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc Natl Acad Sci USA 91(7):2708–2712

    PubMed  CAS  Google Scholar 

  6. Veldman RJ, Klappe K, Hinrichs J, Hummel I, van der Schaaf G, Sietsma H, Kok JW (2002) Altered sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus. FASEB J 16(9):1111–1113

    PubMed  CAS  Google Scholar 

  7. Riboni L, Bassi R, Tettamanti G (1994) Effect of brefeldin A on ganglioside metabolism in cultured neurons: implications for the intracellular traffic of gangliosides. J Biochem 116(1):140–146

    PubMed  CAS  Google Scholar 

  8. Riboni L, Bassi R, Prinetti A, Tettamanti G (1996) Salvage of catabolic products in ganglioside metabolism: a study on rat cerebellar granule cells in culture. FEBS Lett 391(3):336–340

    PubMed  CAS  Google Scholar 

  9. Sonnino S, Ghidoni R, Marchesini S, Tettamanti G (1979) Cytosolic gangliosides: occurrence in calf brain as ganglioside–protein complexes. J Neurochem 33(1):117–121

    PubMed  CAS  Google Scholar 

  10. Sonnino S, Ghidoni R, Masserini M, Aporti F, Tettamanti G (1981) Changes in rabbit brain cytosolic and membrane-bound gangliosides during prenatal life. J Neurochem 36(1):227–232

    PubMed  CAS  Google Scholar 

  11. Sonnino S, Ghidoni R, Fiorilli A, Venerando B, Tettamanti G (1984) Cytosolic gangliosides of rat brain: their fractionation into protein-bound complexes of different ganglioside compositions. J Neurosci Res 12(2–3):193–204

    PubMed  CAS  Google Scholar 

  12. Chigorno V, Valsecchi M, Acquotti D, Sonnino S, Tettamanti G (1990) Formation of a ­cytosolic ganglioside-protein complex following administration of photoreactive ganglioside GM1 to human fibroblasts in culture. FEBS Lett 263(2):329–331

    PubMed  CAS  Google Scholar 

  13. Ichikawa S, Nakajo N, Sakiyama H, Hirabayashi Y (1994) A mouse B16 melanoma mutant deficient in glycolipids. Proc Natl Acad Sci USA 91(7):2703–2707

    PubMed  CAS  Google Scholar 

  14. Kolter T, Magin TM, Sandhoff K (2000) Biomolecule function: no reliable prediction from cell culture. Traffic 1(10):803–804

    PubMed  CAS  Google Scholar 

  15. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96(16):9142–9147

    PubMed  CAS  Google Scholar 

  16. Hakomori S (2003) Structure, organization, and function of glycosphingolipids in membrane. Curr Opin Hematol 10(1):16–24

    PubMed  CAS  Google Scholar 

  17. Prioni S, Loberto N, Prinetti A, Chigorno V, Guzzi F, Maggi R, Parenti M, Sonnino S (2002) Sphingolipid metabolism and caveolin expression in gonadotropin-releasing hormone-expressing GN11 and gonadotropin-releasing hormone-secreting GT1-7 neuronal cells. Neurochem Res 27(7–8):831–840

    PubMed  CAS  Google Scholar 

  18. Yavin Z, Yavin E (1978) Immunofluorescent patterns of dissociated rat embryo cerebral cells during development in surface culture: distinctive reactions with neurite and perikaryon cell membranes. Dev Neurosci 1(1):31–40

    PubMed  CAS  Google Scholar 

  19. Dreyfus H, Louis JC, Harth S, Mandel P (1980) Gangliosides in cultured neurons. Neuroscience 5(9):1647–1655

    PubMed  CAS  Google Scholar 

  20. Byrne MC, Ledeen RW, Roisen FJ, Yorke G, Sclafani JR (1983) Ganglioside-induced neuritogenesis: verification that gangliosides are the active agents, and comparison of molecular species. J Neurochem 41(5):1214–1222

    PubMed  CAS  Google Scholar 

  21. Tsuji S, Yamashita T, Tanaka M, Nagai Y (1988) Synthetic sialyl compounds as well as ­natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro2a). J Neurochem 50(2):414–423

    PubMed  CAS  Google Scholar 

  22. Kadowaki H, Evans JE, Rys-Sikora KE, Koff RS (1990) Effect of differentiation and cell density on glycosphingolipid class and molecular species composition of mouse neuroblastoma NB2a cells. J Neurochem 54(6):2125–2137

    PubMed  CAS  Google Scholar 

  23. Riboni L, Prinetti A, Pitto M, Tettamanti G (1990) Patterns of endogenous gangliosides and metabolic processing of exogenous gangliosides in cerebellar granule cells during differentiation in culture. Neurochem Res 15(12):1175–1183

    PubMed  CAS  Google Scholar 

  24. Rosenberg A, Sauer A, Noble EP, Gross HJ, Chang R, Brossmer R (1992) Developmental patterns of ganglioside sialosylation coincident with neuritogenesis in cultured embryonic chick brain neurons. J Biol Chem 267(15):10607–10612

    PubMed  CAS  Google Scholar 

  25. Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276(24):21136–21145

    PubMed  CAS  Google Scholar 

  26. Tettamanti G, Riboni L (1994) Gangliosides turnover and neural cells function: a new perspective. Prog Brain Res 101:77–100

    PubMed  CAS  Google Scholar 

  27. Riboni L, Viani P, Bassi R, Prinetti A, Tettamanti G (1997) The role of sphingolipids in the process of signal transduction. Prog Lipid Res 36(2–3):153–195

    PubMed  CAS  Google Scholar 

  28. Saqr HE, Pearl DK, Yates AJ (1993) A review and predictive models of ganglioside uptake by biological membranes. J Neurochem 61(2):395–411

    PubMed  CAS  Google Scholar 

  29. Radsak K, Schwarzmann G, Wiegandt H (1982) Studies on the cell association of exogenously added sialo-glycolipids. Hoppe Seylers Z Physiol Chem 363(3):263–272

    PubMed  CAS  Google Scholar 

  30. Facci L, Leon A, Toffano G, Sonnino S, Ghidoni R, Tettamanti G (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem 42(2):299–305

    PubMed  CAS  Google Scholar 

  31. Skaper SD, Facci L, Favaron M, Leon A (1988) Inhibition of DNA synthesis in C6 glioma cells following cellular incorporation of GM1 ganglioside and choleragenoid exposure. J Neurochem 51(3):688–697

    PubMed  CAS  Google Scholar 

  32. Chigorno V, Pitto M, Cardace G, Acquotti D, Kirschner GN, Sonnino S, Ghidoni R, Tettamanti G (1985) Association of gangliosides to fibroblasts in culture: a study performed with GM1 [14C]-labelled at the sialic acid acetyl group. Glycoconj J V2(3):279–291

    Google Scholar 

  33. Wu GS, Lu ZH, Ledeen RW (1991) Correlation of gangliotetraose gangliosides with neurite forming potential of neuroblastoma cells. Brain Res Dev Brain Res 61(2):217–228

    PubMed  CAS  Google Scholar 

  34. Wu G, Lu ZH, Ledeen RW (1996) GM1 ganglioside modulates prostaglandin E1 stimulated adenylyl cyclase in neuro-2A cells. Glycoconj J 13(2):235–239

    PubMed  Google Scholar 

  35. Inokuchi J, Radin N (1987) Preparation of the active isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, inhibitor of murine glucocerebroside synthetase. J Lipid Res 28(5):565–571

    PubMed  CAS  Google Scholar 

  36. Desai K, Sullards MC, Allegood J, Wang E, Schmelz EM, Hartl M, Humpf HU, Liotta DC, Peng Q, Merrill AH Jr (2002) Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim Biophys Acta 1585(2–3):188–192

    PubMed  CAS  Google Scholar 

  37. Harel R, Futerman AH (1993) Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons. J Biol Chem 268(19):14476–14481

    PubMed  CAS  Google Scholar 

  38. Schwarz A, Rapaport E, Hirschberg K, Futerman AH (1995) A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching. J Biol Chem 270(18):10990–10998

    PubMed  CAS  Google Scholar 

  39. Usuki S, Hamanoue M, Kohsaka S, Inokuchi J (1996) Induction of ganglioside biosynthesis and neurite outgrowth of primary cultured neurons by L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol. J Neurochem 67(5):1821–1830

    PubMed  CAS  Google Scholar 

  40. Mutoh T, Rudkin BB, Koizumi S, Guroff G (1988) Nerve growth factor, a differentiating agent, and epidermal growth factor, a mitogen, increase the activities of different S6 kinases in PC12 cells. J Biol Chem 263(31):15853–15856

    PubMed  CAS  Google Scholar 

  41. Rosner H (1998) Significance of gangliosides in neuronal differentiation of neuroblastoma cells and neurite growth in tissue culture. Ann N Y Acad Sci 845:200–214

    PubMed  CAS  Google Scholar 

  42. Inokuchi J, Mizutani A, Jimbo M, Usuki S, Yamagishi K, Mochizuki H, Muramoto K, Kobayashi K, Kuroda Y, Iwasaki K, Ohgami Y, Fujiwara M (1997) Up-regulation of ganglioside biosynthesis, functional synapse formation, and memory retention by a synthetic ceramide analog (L-PDMP). Biochem Biophys Res Commun 237(3):595–600

    PubMed  CAS  Google Scholar 

  43. Kojima N, Kurosawa N, Nishi T, Hanai N, Tsuji S (1994) Induction of cholinergic differentiation with neurite sprouting by de novo biosynthesis and expression of GD3 and b-series gangliosides in Neuro2a cells. J Biol Chem 269(48):30451–30456

    PubMed  CAS  Google Scholar 

  44. Kanda T, Ariga T, Yamawaki M, Pal S, Katoh-Semba R, Yu RK (1995) Effect of nerve growth factor and forskolin on glycosyltransferase activities and expression of a globo-series glycosphingolipid in PC12D pheochromocytoma cells. J Neurochem 64(2):810–817

    PubMed  CAS  Google Scholar 

  45. Boldin SA, Futerman AH (2000) Up-regulation of glucosylceramide synthesis upon ­stimulation of axonal growth by basic fibroblast growth factor. Evidence for post-translational modification of glucosylceramide synthase. J Biol Chem 275(14):9905–9909

    PubMed  CAS  Google Scholar 

  46. Hakomori S (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265(31):18713–18716

    PubMed  CAS  Google Scholar 

  47. Hakomori S, Igarashi Y (1995) Functional role of glycosphingolipids in cell recognition and signaling. J Biochem (Tokyo) 118(6):1091–1103

    CAS  Google Scholar 

  48. Zhou Q, Hakomori S, Kitamura K, Igarashi Y (1994) GM3 directly inhibits tyrosine ­phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. J Biol Chem 269(3):1959–1965

    PubMed  CAS  Google Scholar 

  49. Tagami S, Inokuchi Ji J, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y, Sakaue S, Igarashi Y (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277(5):3085–3092

    PubMed  CAS  Google Scholar 

  50. Ferrari G, Fabris M, Gorio A (1983) Gangliosides enhance neurite outgrowth in PC12 cells. Brain Res 284(2–3):215–221

    PubMed  CAS  Google Scholar 

  51. Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci USA 92(11):5087–5091

    PubMed  CAS  Google Scholar 

  52. Mutoh T, Hamano T, Yano S, Koga H, Yamamoto H, Furukawa K, Ledeen RW (2002) Stable transfection of GM1 synthase gene into GM1-deficient NG108-15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF. Neurochem Res 27(7–8):801–806

    PubMed  CAS  Google Scholar 

  53. Becher A, McIlhinney RA (2005) Consequences of lipid raft association on G-protein-coupled receptor function. Biochem Soc Symp 72:151–164

    PubMed  CAS  Google Scholar 

  54. Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118(Pt 6):1099–1102

    PubMed  CAS  Google Scholar 

  55. Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci 25(8):412–417

    PubMed  CAS  Google Scholar 

  56. McKerracher L (2002) Ganglioside rafts as MAG receptors that mediate blockade of axon growth. Proc Natl Acad Sci USA 99(12):7811–7813

    PubMed  CAS  Google Scholar 

  57. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746(3):234–251

    PubMed  CAS  Google Scholar 

  58. Prinetti A, Chigorno V, Tettamanti G, Sonnino S (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275(16):11658–11665

    PubMed  CAS  Google Scholar 

  59. Prinetti A, Marano N, Prioni S, Chigorno V, Mauri L, Casellato R, Tettamanti G, Sonnino S (2000) Association of Src-family protein tyrosine kinases with sphingolipids in rat cerebellar granule cells differentiated in culture. Glycoconj J 17(3–4):223–232

    PubMed  CAS  Google Scholar 

  60. Kasahara K, Watanabe Y, Yamamoto T, Sanai Y (1997) Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains. J Biol Chem 272(47):29947–29953

    PubMed  CAS  Google Scholar 

  61. Wu C, Butz S, Ying Y, Anderson RG (1997) Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem 272(6):3554–3559

    PubMed  CAS  Google Scholar 

  62. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32(2):325–338

    PubMed  CAS  Google Scholar 

  63. Prinetti A, Prioni S, Chigorno V, Karagogeos D, Tettamanti G, Sonnino S (2001) Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule TAG-1 by anti-GD3 ganglioside monoclonal antibody. J Neurochem 78(5):1162–1167

    PubMed  CAS  Google Scholar 

  64. Paratcha G, Ibanez CF (2002) Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variations on a theme. Curr Opin Neurobiol 12(5):542–549

    PubMed  CAS  Google Scholar 

  65. Nagappan G, Lu B (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 28(9):464–471

    PubMed  CAS  Google Scholar 

  66. Saarma M (2001) GDNF recruits the signaling crew into lipid rafts. Trends Neurosci 24(8):427–429

    PubMed  CAS  Google Scholar 

  67. Decker L, Baron W, Ffrench-Constant C (2004) Lipid rafts: microenvironments for integrin-growth factor interactions in neural development. Biochem Soc Trans 32(Pt 3):426–430

    PubMed  CAS  Google Scholar 

  68. Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169(2):341–354

    PubMed  CAS  Google Scholar 

  69. Tooze SA, Martens GJ, Huttner WB (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol 11(3):116–122

    PubMed  CAS  Google Scholar 

  70. Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99(12):8412–8417

    PubMed  CAS  Google Scholar 

  71. Boggs JM, Wang H, Gao W, Arvanitis DN, Gong Y, Min W (2004) A glycosynapse in myelin? Glycoconj J 21(3–4):97–110

    PubMed  CAS  Google Scholar 

  72. Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T, Sanai Y (2000) Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell ­adhesion molecule TAG-1 signaling in lipid rafts. J Biol Chem 275(44):34701–34709

    PubMed  CAS  Google Scholar 

  73. Loberto N, Prioni S, Prinetti A, Ottico E, Chigorno V, Karagogeos D, Sonnino S (2003) The adhesion protein TAG-1 has a ganglioside environment in the sphingolipid-enriched membrane domains of neuronal cells in culture. J Neurochem 85(1):224–233

    PubMed  CAS  Google Scholar 

  74. Prinetti A, Iwabuchi K, Hakomori S (1999) Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem 274(30):20916–20924

    PubMed  CAS  Google Scholar 

  75. Kasahara K, Watanabe K, Kozutsumi Y, Oohira A, Yamamoto T, Sanai Y (2002) Association of GPI-anchored protein TAG-1 with src-family kinase Lyn in lipid rafts of cerebellar ­granule cells. Neurochem Res 27(7–8):823–829

    PubMed  CAS  Google Scholar 

  76. Loberto N, Prioni S, Bettiga A, Chigorno V, Prinetti A, Sonnino S (2005) The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 95(3):771–783

    PubMed  CAS  Google Scholar 

  77. Inokuchi JI, Uemura S, Kabayama K, Igarashi Y (2000) Glycosphingolipid deficiency affects functional microdomain formation in Lewis lung carcinoma cells. Glycoconj J 17(3–4):239–245

    PubMed  CAS  Google Scholar 

  78. Nagafuku M, Kabayama K, Oka D, Kato A, Tani-ichi S, Shimada Y, Ohno-Iwashita Y, Yamasaki S, Saito T, Iwabuchi K, Hamaoka T, Inokuchi J, Kosugi A (2003) Reduction of glycosphingolipid levels in lipid rafts affects the expression state and function of glycosylphosphatidylinositol-anchored proteins but does not impair signal transduction via the T cell receptor. J Biol Chem 278(51):51920–51927

    PubMed  CAS  Google Scholar 

  79. Sato T, Zakaria AM, Uemura S, Ishii A, Ohno-Iwashita Y, Igarashi Y, Inokuchi J (2005) Role for up-regulated ganglioside biosynthesis and association of Src family kinases with microdomains in retinoic acid-induced differentiation of F9 embryonal carcinoma cells. Glycobiology 15(7):687–699

    PubMed  CAS  Google Scholar 

  80. Toledo MS, Suzuki E, Handa K, Hakomori S (2004) Cell growth regulation through GM3-enriched micro-domain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13. J Biol Chem 279(33):34655–34664

    PubMed  CAS  Google Scholar 

  81. Mitsuzuka K, Handa K, Satoh M, Arai Y, Hakomori S (2005) A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 280(42):35545–35553

    PubMed  CAS  Google Scholar 

  82. Yanagisawa M, Nakamura K, Taga T (2005) Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells. J Biochem 138(3):285–291

    PubMed  CAS  Google Scholar 

  83. Ledesma MD, Simons K, Dotti CG (1998) Neuronal polarity: essential role of protein-lipid complexes in axonal sorting. Proc Natl Acad Sci USA 95(7):3966–3971

    PubMed  CAS  Google Scholar 

  84. Naslavsky N, Shmeeda H, Friedlander G, Yanai A, Futerman AH, Barenholz Y, Taraboulos A (1999) Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J Biol Chem 274(30):20763–20771

    PubMed  CAS  Google Scholar 

  85. Lipardi C, Nitsch L, Zurzolo C (2000) Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol Biol Cell 11(2):531–542

    PubMed  CAS  Google Scholar 

  86. Schmidt K, Schrader M, Kern HF, Kleene R (2001) Regulated apical secretion of zymogens in rat pancreas. Involvement of the glycosylphosphatidylinositol-anchored glycoprotein GP-2, the lectin ZG16p, and cholesterol-glycosphingolipid-enriched microdomains. J Biol Chem 276(17):14315–14323

    PubMed  CAS  Google Scholar 

  87. Alfalah M, Jacob R, Naim HY (2002) Intestinal dipeptidyl peptidase IV is efficiently sorted to the apical membrane through the concerted action of N- and O-glycans as well as ­association with lipid microdomains. J Biol Chem 277(12):10683–10690

    PubMed  CAS  Google Scholar 

  88. Kilkus J, Goswami R, Testai FD, Dawson G (2003) Ceramide in rafts (detergent-insoluble fraction) mediates cell death in neurotumor cell lines. J Neurosci Res 72(1):65–75

    PubMed  CAS  Google Scholar 

  89. Decker L, Ffrench-Constant C (2004) Lipid rafts and integrin activation regulate oligodendrocyte survival. J Neurosci 24(15):3816–3825

    PubMed  CAS  Google Scholar 

  90. Chang MC, Wisco D, Ewers H, Norden C, Winckler B (2006) Inhibition of sphingolipid synthesis affects kinetics but not fidelity of L1/NgCAM transport along direct but not transcytotic axonal pathways. Mol Cell Neurosci 31(3):525–538

    PubMed  CAS  Google Scholar 

  91. Lam RS, Shaw AR, Duszyk M (2004) Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochim Biophys Acta 1667(2):241–248

    PubMed  CAS  Google Scholar 

  92. Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ­ceramide. J Biol Chem 269(5):3125–3128

    PubMed  CAS  Google Scholar 

  93. Levade T, Jaffrezou JP (1999) Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta 1438(1):1–17

    PubMed  CAS  Google Scholar 

  94. Goni FM, Alonso A (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531(1):38–46

    PubMed  CAS  Google Scholar 

  95. Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC (2004) Identification of a family of animal sphingomyelin synthases. EMBO J 23(1):33–44

    PubMed  CAS  Google Scholar 

  96. Slife CW, Wang E, Hunter R, Wang S, Burgess C, Liotta DC, Merrill AH Jr (1989) Free sphingosine formation from endogenous substrates by a liver plasma membrane system with a divalent cation dependence and a neutral pH optimum. J Biol Chem 264(18):10371–10377

    PubMed  CAS  Google Scholar 

  97. Tani M, Iida H, Ito M (2003) O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J Biol Chem 278(12):10523–10530

    PubMed  CAS  Google Scholar 

  98. Tani M, Sano T, Ito M, Igarashi Y (2005) Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res 46(11):2458–2467

    PubMed  CAS  Google Scholar 

  99. Schengrund CL, Rosenberg A (1970) Intracellular location and properties of bovine brain sialidase. J Biol Chem 245(22):6196–6200

    PubMed  CAS  Google Scholar 

  100. Tettamanti G, Morgan IG, Gombos G, Vincendon G, Mandel P (1972) Sub-synaptosomal localization of brain particulate neuraminidose. Brain Res 47(2):515–518

    PubMed  CAS  Google Scholar 

  101. Tettamanti G, Preti A, Lombardo A, Suman T, Zambotti V (1975) Membrane-bound neuraminidase in the brain of different animals: behaviour of the enzyme on endogenous sialo derivatives and rationale for its assay. J Neurochem 25(4):451–456

    PubMed  CAS  Google Scholar 

  102. Tettamanti G, Preti A, Lombardo A, Bonali F, Zambotti V (1973) Parallelism of subcellular location of major particulate neuraminidase and gangliosides in rabbit brain cortex. Biochim Biophys Acta 306(3):466–477

    PubMed  CAS  Google Scholar 

  103. Preti A, Fiorilli A, Lombardo A, Caimi L, Tettamanti G (1980) Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex. J Neurochem 35(2):281–296

    PubMed  CAS  Google Scholar 

  104. Landa CA, Defilpo SS, Maccioni HJ, Caputto R (1981) Disposition of gangliosides and sialosylgly-coproteins in neuronal membranes. J Neurochem 37(4):813–823

    PubMed  CAS  Google Scholar 

  105. Pitto M, Giglioni A, Tettamanti G (1992) Dual subcellular localization of sialidase in cultured granule cells differentiated in culture. Neurochem Int 21(3):367–374

    PubMed  CAS  Google Scholar 

  106. Miyagi T, Sagawa J, Konno K, Handa S, Tsuiki S (1990) Biochemical and immunological studies on two distinct ganglioside-hydrolyzing sialidases from the particulate fraction of rat brain. J Biochem 107(5):787–793

    PubMed  CAS  Google Scholar 

  107. Miyagi T, Sagawa J, Konno K, Tsuiki S (1990) Immunological discrimination of intralysosomal, cytosolic, and two membrane sialidases present in rat tissues. J Biochem 107(5):794–798

    PubMed  CAS  Google Scholar 

  108. Schneider-Jakob HR, Cantz M (1991) Lysosomal and plasma membrane ganglioside GM3 sialidases of cultured human fibroblasts. Differentiation by detergents and inhibitors. Biol Chem Hoppe Seyler 372(6):443–450

    PubMed  CAS  Google Scholar 

  109. Kopitz J, von Reitzenstein C, Muhl C, Cantz M (1994) Role of plasma membrane ganglioside sialidase of human neuroblastoma cells in growth control and differentiation. Biochem Biophys Res Commun 199(3):1188–1193

    PubMed  CAS  Google Scholar 

  110. Riboni L, Prinetti A, Bassi R, Tettamanti G (1991) Cerebellar granule cells in culture exhibit a ganglioside-sialidase presumably linked to the plasma membrane. FEBS Lett 287(1–2):42–46

    PubMed  CAS  Google Scholar 

  111. Kopitz J, Muhl C, Ehemann V, Lehmann C, Cantz M (1997) Effects of cell surface ganglioside sialidase inhibition on growth control and differentiation of human neuroblastoma cells. Eur J Cell Biol 73(1):1–9

    PubMed  CAS  Google Scholar 

  112. Kopitz J, von Reitzenstein C, Sinz K, Cantz M (1996) Selective ganglioside desialylation in the plasma membrane of human neuroblastoma cells. Glycobiology 6(3):367–376

    PubMed  CAS  Google Scholar 

  113. Kopitz J, Sinz K, Brossmer R, Cantz M (1997) Partial characterization and enrichment of a membrane-bound sialidase specific for gangliosides from human brain tissue. Eur J Biochem 248(2):527–534

    PubMed  CAS  Google Scholar 

  114. Hata K, Wada T, Hasegawa A, Kiso M, Miyagi T (1998) Purification and characterization of a membrane-associated ganglioside sialidase from bovine brain. J Biochem 123(5):899–905

    PubMed  CAS  Google Scholar 

  115. Oehler C, Kopitz J, Cantz M (2002) Substrate specificity and inhibitor studies of a ­membrane-bound ganglioside sialidase isolated from human brain tissue. Biol Chem 383(11):1735–1742

    PubMed  CAS  Google Scholar 

  116. Wada T, Yoshikawa Y, Tokuyama S, Kuwabara M, Akita H, Miyagi T (1999) Cloning, expression, and chromosomal mapping of a human ganglioside sialidase. Biochem Biophys Res Commun 261(1):21–27

    PubMed  CAS  Google Scholar 

  117. Miyagi T, Wada T, Iwamatsu A, Hata K, Yoshikawa Y, Tokuyama S, Sawada M (1999) Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem 274(8):5004–5011

    PubMed  CAS  Google Scholar 

  118. Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T (2000) Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation. J Biol Chem 275(19):14778

    PubMed  CAS  Google Scholar 

  119. Monti E, Bassi MT, Papini N, Riboni M, Manzoni M, Venerando B, Croci G, Preti A, Ballabio A, Tettamanti G, Borsani G (2000) Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J 349(Pt 1):343–351

    PubMed  CAS  Google Scholar 

  120. Proshin S, Yamaguchi K, Wada T, Miyagi T (2002) Modulation of neuritogenesis by ganglioside-specific sialidase (Neu 3) in human neuroblastoma NB-1 cells. Neurochem Res 27(7–8):841–846

    PubMed  CAS  Google Scholar 

  121. von Reitzenstein C, Kopitz J, Schuhmann V, Cantz M (2001) Differential functional relevance of a plasma membrane ganglioside sialidase in cholinergic and adrenergic neuroblastoma cell lines. Eur J Biochem 268(2):326–333

    Google Scholar 

  122. Rodriguez JA, Piddini E, Hasegawa T, Miyagi T, Dotti CG (2001) Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci 21(21):8387–8395

    PubMed  CAS  Google Scholar 

  123. Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J (2005) Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 8(5):606–615

    PubMed  Google Scholar 

  124. Kakugawa Y, Wada T, Yamaguchi K, Yamanami H, Ouchi K, Sato I, Miyagi T (2002) Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci USA 99(16):10718–10723

    PubMed  CAS  Google Scholar 

  125. Ueno S, Saito S, Wada T, Yamaguchi K, Satoh M, Arai Y, Miyagi T (2006) Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J Biol Chem 281(12):7756–7764

    PubMed  CAS  Google Scholar 

  126. Kalka D, von Reitzenstein C, Kopitz J, Cantz M (2001) The plasma membrane ganglioside sialidase cofractionates with markers of lipid rafts. Biochem Biophys Res Commun 283(4):989–993

    PubMed  CAS  Google Scholar 

  127. Wang Y, Yamaguchi K, Wada T, Hata K, Zhao X, Fujimoto T, Miyagi T (2002) A close association of the ganglioside-specific sialidase Neu3 with caveolin in membrane microdomains. J Biol Chem 277(29):26252–26259

    PubMed  CAS  Google Scholar 

  128. Papini N, Anastasia L, Tringali C, Croci G, Bresciani R, Yamaguchi K, Miyagi T, Preti A, Prinetti A, Prioni S, Sonnino S, Tettamanti G, Venerando B, Monti E (2004) The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J Biol Chem 279(17):16989–16995

    PubMed  CAS  Google Scholar 

  129. Valaperta R, Chigorno V, Basso L, Prinetti A, Bresciani R, Preti A, Miyagi T, Sonnino S (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20(8):1227–1229

    PubMed  CAS  Google Scholar 

  130. Mencarelli S, Cavalieri C, Magini A, Tancini B, Basso L, Lemansky P, Hasilik A, Li YT, Chigorno V, Orlacchio A, Emiliani C, Sonnino S (2005) Identification of plasma membrane associated mature beta-hexo-saminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579(25):5501–5506

    PubMed  CAS  Google Scholar 

  131. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106(2):157–169

    PubMed  CAS  Google Scholar 

  132. Matsui Y, Lombard D, Massarelli R, Mandel P, Dreyfus H (1986) Surface glycosyltransferase activities during development of neuronal cell cultures. J Neurochem 46(1):144–150

    PubMed  CAS  Google Scholar 

  133. Durrie R, Saito M, Rosenberg A (1988) Endogenous glycosphingolipid acceptor specificity of sialosyl-transferase systems in intact Golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain. Biochemistry 27(10):3759–3764

    PubMed  CAS  Google Scholar 

  134. Durrie R, Rosenberg A (1989) Anabolic sialosylation of gangliosides in situ in rat brain cortical slices. J Lipid Res 30(8):1259–1266

    PubMed  CAS  Google Scholar 

  135. Iwamori M, Iwamori Y (2005) Changes in the glycolipid composition and characteristic activation of GM3 synthase in the thymus of mouse after administration of dexamethasone. Glycoconj J 22(3):119–126

    PubMed  CAS  Google Scholar 

  136. Sonnino S, Ghidoni R, Chigorno V, Masserini M, Tettamanti G (1983) Recognition by two-dimensional thin-layer chromatography and densitometric quantification of alkali-labile gangliosides from the brain of different animals. Anal Biochem 128(1):104–114

    PubMed  CAS  Google Scholar 

  137. Riboni L, Sonnino S, Acquotti D, Malesci A, Ghidoni R, Egge H, Mingrino S, Tettamanti G (1986) Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. J Biol Chem 261(18):8514–8519

    PubMed  CAS  Google Scholar 

  138. Bassi R, Riboni L, Sonnino S, Tettamanti G (1989) Lactonization of GD1b ganglioside under acidic conditions. Carbohydr Res 193:141–146

    PubMed  CAS  Google Scholar 

  139. Acquotti D, Fronza G, Riboni L, Sonnino S, Tettamanti G (1987) Ganglioside lactones: 1H-NMR determination of the inner ester position of GD1b-ganglioside lactone naturally occurring in human brain or produced by chemical synthesis. Glycoconj J V4(2):119–127

    Google Scholar 

  140. Bassi R, Chigorno V, Fiorilli A, Sonnino S, Tettamanti G (1991) Exogenous gangliosides GD1b and GD1b-lactone, stably associated to rat brain P2 subcellular fraction, modulate differently the process of protein phosphorylation. J Neurochem 57(4):1207–1211

    PubMed  CAS  Google Scholar 

  141. Sonnino S, Chigorno V, Valsecchi M, Bassi R, Acquotti D, Cantu L, Corti M, Tettamanti G (1990) Relationship between the regulation of membrane enzyme activities by gangliosides and a possible ganglioside segregation in membrane microdomains. Indian J Biochem Biophys 27(6):353–358

    PubMed  CAS  Google Scholar 

  142. Kong Y, Li R, Ladisch S (1998) Natural forms of shed tumor gangliosides. Biochim Biophys Acta 1394(1):43–56

    PubMed  CAS  Google Scholar 

  143. Deng W, Li R, Ladisch S (2000) Influence of cellular ganglioside depletion on tumor ­formation. J Natl Cancer Inst 92(11):912–917

    PubMed  CAS  Google Scholar 

  144. Chigorno V, Giannotta C, Ottico E, Sciannamblo M, Mikulak J, Prinetti A, Sonnino S (2005) Sphingolipid uptake by cultured cells: complex aggregates of cell sphingolipids with serum proteins and lipoproteins are rapidly catabolized. J Biol Chem 280(4):2668–2675

    PubMed  CAS  Google Scholar 

  145. Dolo V, Li R, Dillinger M, Flati S, Manela J, Taylor BJ, Pavan A, Ladisch S (2000) Enrichment and localization of ganglioside G(D3) and caveolin-1 in shed tumor cell membrane vesicles. Biochim Biophys Acta 1486(2–3):265–274

    PubMed  CAS  Google Scholar 

  146. McKallip R, Li R, Ladisch S (1999) Tumor gangliosides inhibit the tumor-specific immune response. J Immunol 163(7):3718–3726

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mitzutani Foundation for Glycoscience Grant 070002, which was given to Alessandro Prinetti, and by the CARIPLO Foundation Grant 2006, which was given to Sandro Sonnino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sonnino, S. et al. (2011). Role of Gangliosides and Plasma Membrane-Associated Sialidase in the Process of Cell Membrane Organization. In: Wu, A. (eds) The Molecular Immunology of Complex Carbohydrates-3. Advances in Experimental Medicine and Biology, vol 705. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7877-6_14

Download citation

Publish with us

Policies and ethics