Skip to main content

Non-carbohydrate-Mediated Interaction of Lectins with Plant Proteins

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 705))

Abstract

Glycosylation is the most common posttranslational modification of proteins and plays diverse roles in numerous biological processes, including fertilization, development, differentiation, inflammation, cancer metastasis, and host–pathogen/­parasite interactions. A number of glycosylated proteins are bioactive molecules of medical/therapeutic or other commercial interest and are currently produced by recombinantly transformed cells and organisms. Among non-animal expression systems, plant cells and transgenic plants are considered an attractive alternative system for recombinant human and animal glycoproteins. The advantages of using plants for the production of commercially important glycosylated proteins include lower manufacturing costs and a reduced risk of transmitting mammalian pathogens [11, 27]. However, a major roadblock in the use of plants for this purpose is the lack of available information on N- and O-linked glycans in plants and specifically those in the endogenous plant glycosylation pathways [9, 31]. Thus, gathering detailed structural information on plant-derived glycoproteins is of utmost importance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrest H, Sprenger N (2005) Glycoprofiling with microarrays of glycoconjugates and lectins. Glycobiology 15:31–41

    Article  PubMed  CAS  Google Scholar 

  2. Bolmer SD, Davidson EA (1981) Preparation and properties of a glycoprotein associated with malignancy. Biochemistry 20:1047–1053

    Article  PubMed  CAS  Google Scholar 

  3. Broekaert W, Nsimba-Lubaki M, Peeters B, Peumans WJ (1984) A lectin from elder (Sambucus nigra L.) bark. Biochem J 221:163–169

    PubMed  CAS  Google Scholar 

  4. Dabelsteen E (1996) Cell surface carbohydrates as prognostic indicators in human carcinomas. J Pathol 179:358–369

    Article  PubMed  CAS  Google Scholar 

  5. Dai Z, Kawade AN, Xiang Y, La Belle JT, Gerlach J, Bhavanandan VP, Joshi L, Wang J (2006) Nano-particle-based sensing of glycan-lectin interactions. J Am Chem Soc 128:10018–10019

    Article  PubMed  CAS  Google Scholar 

  6. Duk M, Lisowska E, Wu JH, Wu AM (1994) The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal Biochem 221:266–272

    Article  PubMed  CAS  Google Scholar 

  7. Durand G, Seta N (2000) Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clin Chem 46:795–805

    PubMed  CAS  Google Scholar 

  8. Goel M, Jain D, Kaur KJ, Kenoth R, Maiya BG, Swamy MJ, Salunke DM (2001) Functional equality in the absence of structural similarity: an added dimension to molecular mimicry. J Biol Chem 276:39277–39281

    Article  PubMed  CAS  Google Scholar 

  9. Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181

    Article  PubMed  CAS  Google Scholar 

  10. Jelinek R, Kolusheva S (2004) Carbohydrate sensors. Chem Rev 104:5987–6015

    Article  PubMed  CAS  Google Scholar 

  11. Joshi L, Lopez LC (2005) Bioprocessing in plants for engineered proteins. Curr Opin Plant Biol 8:223–226

    Article  PubMed  CAS  Google Scholar 

  12. Kilcoyne M, Shah M, Gerlach JQ, Bhavanandan V, Nagaraj V, Smith AD, Fujiyama K, Sommer U, Costello CE, Olszewski N, Joshi L (2009) O-glycosylation of protein subpopulations in alcohol-extracted rice proteins. J Plant Physiol 166:219–232

    Article  PubMed  CAS  Google Scholar 

  13. Komath S, Kavitha M, Swamy MJ (2006) Beyond carbohydrate binding: new directions in plant lectin research. Org Biomol Chem 4:973–988

    Article  PubMed  CAS  Google Scholar 

  14. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2:851–855

    Article  PubMed  CAS  Google Scholar 

  15. La Belle JT, Gerlach JQ, Svarovsky S, Joshi L (2007) Label-free impedimetric detection of glycan-lectin interactions. Anal Chem 79:6959–6964

    Article  PubMed  Google Scholar 

  16. Lee KB, Loganathan D, Merchant ZM, Linhardt RJ (1990) Carbohydrate analysis of glycoproteins: a review. Appl Biochem Biotechnol 23:53–80

    Article  PubMed  Google Scholar 

  17. Leriche V, Sibille P, Carpentier B (2000) Use of an enzyme-linked lectinsorbent assay to monitor the shift in polysaccharide composition in bacterial biofilms. Appl Environ Microbiol 66:1851–1856

    Article  PubMed  CAS  Google Scholar 

  18. Montalto MC, Collard CD, Buras JA, Reenstra WR, McClaine R, Gies DR, Rother RP, Stahl GL (2001) A keratin peptide inhibits mannose-binding lectin. J Immunol 15:4148–4153

    Google Scholar 

  19. Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6:1–4

    Article  Google Scholar 

  20. Puri KD, Gopalkrishnan B, Surolia A (1992) Carbohydrate binding specificity of the Tn antigen binding lectin from Vicia villosa seeds. FEBS Lett 312:208–212

    Article  PubMed  CAS  Google Scholar 

  21. Raman R, Venkataraman M, Ramakrishnan S, Lang W, Ragurm S, Sasisekharan R (2006) Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 16:82R–90R

    Article  PubMed  CAS  Google Scholar 

  22. Rudiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613

    Article  PubMed  CAS  Google Scholar 

  23. Sharon N (2007) Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem 282:2753–2764

    Article  PubMed  CAS  Google Scholar 

  24. Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62R

    Article  PubMed  CAS  Google Scholar 

  25. Shibuya N, Goldstein IJ, Broekaert WF, Nismba-Lubaki M, Peeters B, Peumans WJ (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the NeuNAc(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 262:1596–1601

    PubMed  CAS  Google Scholar 

  26. Shin I, Park S, Lee M (2005) Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chem Eur J 11:2894–2901

    Article  CAS  Google Scholar 

  27. Tekoah Y, Ko K, Koprowski H, Harvey DJ, Wormald MR, Dwek RA, Rudd PM (2004) Controlled glycosylation of therapeutic antibodies in plants. Arch Biochem Biophys 426:266–278

    Article  PubMed  CAS  Google Scholar 

  28. Tollefsen S, Kornfeld S (1983) The B4 lectin from Vicia villosa seeds interacts with N-acetylgalactosamine residues alpha-linked to serine or threonine residues in cell surface glycoproteins. J Biol Chem 258:5165–5171

    PubMed  CAS  Google Scholar 

  29. Turnbull JE, Field RA (2007) Emerging glycomics technologies. Nat Chem Biol 3:74–77

    Article  PubMed  CAS  Google Scholar 

  30. Umemoto J, Bhavanandan VP, Davidson EA (1977) Purification and properties of an endo-alpha-N-acetyl-d-galactosaminidase from Diplococcus pneumoniae. J Biol Chem 252:8609–8614

    PubMed  CAS  Google Scholar 

  31. Wilson IBH (2002) Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol 12:569–577

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto K, Ito S, Yasukawa F, Konami Y, Matsumoto N (2004) Measurement of the carbohydrate-binding specificity of lectins by a multiplexed bead-based flow cytometric assay. Anal Biochem 336:28–38

    Article  Google Scholar 

Download references

Acknowledgements

Lokesh Joshi and Jared Q. Gerlach would like to thank Professors Hans-Joachim Gabius and Harold Rudiger for their helpful discussions. The authors would like to acknowledge the Wallace Research Foundation and the Biodesign Institute at Arizona State University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Q. Gerlach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Gerlach, J.Q., Kilcoyne, M., Eaton, S., Bhavanandan, V., Joshi, L. (2011). Non-carbohydrate-Mediated Interaction of Lectins with Plant Proteins. In: Wu, A. (eds) The Molecular Immunology of Complex Carbohydrates-3. Advances in Experimental Medicine and Biology, vol 705. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7877-6_12

Download citation

Publish with us

Policies and ethics