Skip to main content

Regulation of Lectin Production by the Human Pathogens Pseudomonas aeruginosa and Chromobacterium violaceum: Effects of Choline, Trehalose, and Ethanol

  • Conference paper
  • First Online:
The Molecular Immunology of Complex Carbohydrates-3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 705))

  • 2069 Accesses

Abstract

The worldwide-distributed Pseudomonas aeruginosa (PA) and the geographically restricted (confined to tropical and subtropical zones) Ralstonia solanacearum and Chromobacterium violaceum are Gram-negative proteobacteria that dwell in soil and water. They are essentially beneficial saprophytes that vigorously decompose plant and animal remnants and organic debris, contributing to world carbon and nitrogen cycling (Fig. 11.1). In accordance with their distinguished role in nature, these bacteria are endowed with very prosperous arsenals of cell-binding adhesins, toxicating proteinaceous and nonproteinaceous factors, and hydrolytic enzymes as virulence factors (VIFs), enabling them to home in on dead or damaged cells and molecules and attack them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ara:

d-Arabinose

CF:

Cystic fibrosis

Ch:

Choline

ChE:

Cholinesterase

C. violaceum :

Chromobacterium violaceum

CV-IIL (CV-lectin):

C. violaceum (fucose  >  mannose-binding) lectin

ERM:

Erythromycin

Et:

Ethanol

Fru:

d-Fructose

Fuc:

l-Fucose

Gal:

d-Galactose

Glc:

d-Glucose

HSLs:

N-acyl-l-homoserine lactones (autoinducers)

Man:

d-Mannose

PA:

Pseudomonas aeruginosa

PA lectins:

P. aeruginosa lectins

PA-IL:

P. aeruginosa first (LecA, galactophilic) lectin

PA-IIL:

P. aeruginosa second (LecB, fucose  >  mannose-binding) lectin

PLC-H:

Hemolytic Phospholipase C

PLP:

Purified lectin preparations

PQS:

2-Heptyl-3-hydroxyl-4 quinolone

QS:

Quorum sensing

RS:

Ralstonia solanacearum

RS lectins:

Ralstonia solanacearum lectins

RSL:

R. solanacearum first (fucose  >  mannose-binding) lectin

RS-IIL:

R. solanacearum second (mannose  >  fucose-binding) lectin

VIFs:

Virulence factors

References

  1. Stover CK, Pham XQ, Erwin AL et al (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    PubMed  CAS  Google Scholar 

  2. Salanoubat M, Genin S, Artiguenave F et al (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502

    PubMed  CAS  Google Scholar 

  3. Vasconcelos ATR et al and Brazilian National Genome Project Consortium (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci USA 100:11660–11665

    Google Scholar 

  4. Valls M, Genin S, Boucher C (2006) Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathog 2:e82

    PubMed  Google Scholar 

  5. Gilboa-Garber N (1972) Inhibition of broad spectrum hemagglutinin from Pseudomonas aeruginosa by D-galactose and its derivatives. FEBS Lett 20:242–244

    PubMed  CAS  Google Scholar 

  6. Gilboa-Garber N, Mizrahi L, Garber N (1977) Mannose-binding hemagglutinins in extracts of Pseudomonas aeruginosa. Can J Biochem 55:975–981

    PubMed  CAS  Google Scholar 

  7. Gilboa-Garber N (1982) Pseudomonas aeruginosa lectins. Methods Enzymol 83:378–385

    PubMed  CAS  Google Scholar 

  8. Gilboa-Garber N (1997) Multiple aspects of Pseudomonas aeruginosa lectins. Nova Acta Leopold 75:153–177

    CAS  Google Scholar 

  9. Garber N, Guempel U, Gilboa-Garber N, Doyle RJ (1987) Specificity of the fucose-binding lectin of Pseudomonas aeruginosa. FEMS Microbiol Lett 48:331–334

    CAS  Google Scholar 

  10. Garber N, Guempel U, Belz A, Gilboa-Garber N, Doyle RJ (1992) On the specificity of the D-galactose-binding lectin (PA-I) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D -galactose and thiogalactose. Biochim Biophys Acta 1116:331–333

    PubMed  CAS  Google Scholar 

  11. Gilboa-Garber N (1983) The biological functions of Pseudomonas aeruginosa lectins. In: Bog-Hansen TC, Spengler GA (eds) Lectins: biology, biochemistry, clinical biochemistry. Walter de Gruyter, Berlin, pp 495–502

    Google Scholar 

  12. Gilboa-Garber N (1986) Lectins of Pseudomonas aeruginosa: properties, biological effects and applications. In: Mirelman D (ed) Microbial lectins and agglutinins: properties and biological activity. Wiley, New York, pp 255–269

    Google Scholar 

  13. Chen CP, Song SC, Gilboa-Garber N, Chang KSS, Wu AM (1998) Studies on the binding site of the galactose-specific agglutinin PA-IL from Pseudomonas aeruginosa. Glycobiology 8:7–16

    PubMed  CAS  Google Scholar 

  14. Cioci G, Mitchell EP, Gautier C, Wimmerova M, Sudakevitz D, Perez S, Gilboa-Garber N, Imberty A (2003) Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555:297–301

    PubMed  CAS  Google Scholar 

  15. Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Perez S, Wu AM, Gilboa-Garber N, Imberty A (2002) Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9:918–921

    PubMed  CAS  Google Scholar 

  16. Wu AM, Wu JH, Singh T, Liu JH, Tsai MS, Gilboa-Garber N (2006) Interactions of the fucose-specific Pseudomonas aeruginosa lectin, PA-IIL, with mammalian glycoconjugates bearing polyvalent Lewis(a) and ABH blood group glycotopes. Biochimie 88:1479–1492

    PubMed  CAS  Google Scholar 

  17. Glick J, Garber N (1983) The intracellular localization of Pseudomonas aeruginosa lectins. J Gen Microbiol 129:3085–3090

    PubMed  CAS  Google Scholar 

  18. Gilboa-Garber N, Garber N (1989) Microbial lectin cofunction with lytic activities as a model for a general basic lectin role. FEMS Microbiol Rev 63:211–221

    CAS  Google Scholar 

  19. Winzer K, Falconer C, Garber NC, Diggle SP, Camara M, Williams P (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411

    PubMed  CAS  Google Scholar 

  20. Diggle SP, Winzer K, Lazdunski A, Williams P, Camara M (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586

    PubMed  CAS  Google Scholar 

  21. Liu PV, Hsieh HC (1969) Inhibition of protease production of various bacteria by ammonium salts: its effect on toxin production and virulence. J Bacteriol 99:406–413

    PubMed  CAS  Google Scholar 

  22. Gilboa-Garber N, Avichezer D, Garber NC (1997) Bacterial lectins: properties, structure, effects, function and applications. In: Gabius HJ, Gabius S (eds) Glycosciences: status and perspectives. Chapman & Hall, Weinheim, pp 369–398

    Google Scholar 

  23. Gilboa-Garber N, Sudakevitz D, Sheffi M, Sela R, Levene C (1994) PA-I and PA-II lectin interactions with the ABO(H) and P blood group glycosphingolipid antigens may contribute to the broad spectrum adherence of Pseudomonas aeruginosa to human tissues in secondary infections. Glycoconj J 11:414–417

    PubMed  CAS  Google Scholar 

  24. Lanne B, Ciopraga J, Bergstrom J, Motas C, Karlsson KA (1994) Binding of the galactose-specific Pseudomonas aeruginosa lectin, PA-I, to glycosphingolipids and other glycoconjugates. Glycoconj J 11:292–298

    PubMed  CAS  Google Scholar 

  25. Sudakevitz D, Gilboa-Garber N (1982) Effect of Pseudomonas aeruginosa lectins on phagocytosis of Escherichia coli strains by human polymorphonuclear leucocytes. Microbios 34:159–166

    PubMed  CAS  Google Scholar 

  26. Gilboa-Garber N, Sharabi Y (1980) Increase of growth-rate and phagocytic activity of Tetrahymena induced by Pseudomonas lectins. J Protozool 27:209–211

    CAS  Google Scholar 

  27. Gilboa-Garber N, Blonder E (1979) Augmented osmotic hemolysis of human erythrocytes exposed to the galactosephilic lectin of Pseudomonas aeruginosa. Isr J Med Sci 15:537–539

    PubMed  CAS  Google Scholar 

  28. Sharabi Y, Gilboa-Garber N (1979) Mitogenic stimulation of human lymphocytes by Pseudomonas aeruginosa galactophilic lectin. FEMS Microbiol Lett 5:273–276

    CAS  Google Scholar 

  29. Avichezer D, Gilboa-Garber N (1987) PA-II, the L-fucose- and D-mannose-binding lectin of Pseudomonas aeruginosa stimulates human peripheral lymphocytes and murine splenocytes. FEBS Lett 216:62–66

    PubMed  CAS  Google Scholar 

  30. Wentworth JS, Austin FE, Garber N, Gilboa-Garber N, Paterson CA, Doyle RJ (1991) Cytoplasmic lectins contribute to the adhesion of Pseudomonas aeruginosa. Biofouling 4:99–104

    CAS  Google Scholar 

  31. Bajolet-Laudinat O, Girod-de Bentzmann S, Tournier JM, Madoulet C, Plotkowski MC, Chippaux C, Puchelle E (1994) Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect Immun 62:4481–4487

    PubMed  CAS  Google Scholar 

  32. Adam EC, Schumacher DU, Schumacher U (1997) Cilia from a cystic fibrosis patient react to the ciliotoxic Pseudomonas aeruginosa II lectin in a similar manner to normal control cilia – a case report. J Laryngol Otol 111:760–762

    PubMed  CAS  Google Scholar 

  33. Grant G, Bardocz S, Ewen SWB, Brown DS, Duguid TJ, Pusztai A, Avichezer D, Sudakevitz D, Belz A, Garber NC, Gilboa-Garber N (1995) Purified Pseudomonas aeruginosa PA-I lectin induces gut growth when orally ingested by rats. FEMS Immunol Med Microbiol 11:191–195

    PubMed  CAS  Google Scholar 

  34. Laughlin RS, Musch MW, Hollbrook CJ, Rocha FM, Chang EB, Alverdy JC (2000) The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg 232:133–142

    PubMed  CAS  Google Scholar 

  35. Wu L, Holbrook C, Zaborina O, Ploplys E, Rocha F, Pelham D, Chang E, Musch M, Alverdy J (2003) Pseudomonas aeruginosa expresses a lethal virulence determinant, the PA-I lectin/adhesin, in the intestinal tract of a stressed host: the role of epithelia cell contact and molecules of the Quorum Sensing Signaling System. Ann Surg 238:754–764

    PubMed  Google Scholar 

  36. Wu L, Estrada O, Zaborina O, Bains M, Shen L, Kohler JE, Patel N, Musch MW, Chang EB, Fu YX, Jacobs MA, Nishimura MI, Hancock RE, Turner JR, Alverdy JC (2005) Recognition of host immune activation by Pseudomonas aeruginosa. Science 309:774–777

    PubMed  CAS  Google Scholar 

  37. Kirkeby S, Moe D (2005) Analyses of Pseudomonas aeruginosa lectin binding to alpha-galactosylated glycans. Curr Microbiol 50:309–313

    PubMed  CAS  Google Scholar 

  38. Kirkeby S, Wimmerova M, Moe D, Hansen AK (2007) The mink as an animal model for Pseudomonas aeruginosa adhesion: binding of the bacterial lectins (PA-IL and PA-IIL) to neoglycoproteins and to sections of pancreas and lung tissues from healthy mink. Microbes Infect 9:566–573

    PubMed  CAS  Google Scholar 

  39. Keicho N, Kudoh S (2002) Diffuse panbronchiolitis: role of macrolides in therapy. Am J Respir Med 1:119–131

    PubMed  CAS  Google Scholar 

  40. Gilboa-Garber N, Sudakevitz D (1982) The use of Pseudomonas aeruginosa lectin preparations as a vaccine. In: Levy E (ed) Advances in pathology. Pergamon, Oxford, pp 31–33

    Google Scholar 

  41. Avichezer D, Gilboa-Garber N, Mumcuoglu M, Slavin S (1989) Adoptive transfer of resistance to Pseudomonas aeruginosa infection by splenocytes and bone marrow cells from BALB/c mice immunized by Pseudomonas aeruginosa lectin preparations. Infection 17:407–410

    PubMed  CAS  Google Scholar 

  42. Avichezer D, Katcoff DJ, Garber NC, Gilboa-Garber N (1992) Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. J Biol Chem 267:23023–23027

    PubMed  CAS  Google Scholar 

  43. Avichezer D, Gilboa-Garber N, Garber NC, Katcoff DJ (1994) Pseudomonas aeruginosa PA-I lectin gene molecular analysis and expression in Escherichia coli. Biochim Biophys Acta 1218:11–20

    PubMed  CAS  Google Scholar 

  44. Gilboa-Garber N, Katcoff DJ, Garber NC (2000) Identification and characterization of Pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. FEMS Immunol Med Microbiol 29:53–57

    PubMed  CAS  Google Scholar 

  45. Sudakevitz D, Imberty A, Gilboa-Garber N (2002) Production, properties and specificity of a new bacterial L-fucose and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins. J Biochem 132:353–358

    PubMed  CAS  Google Scholar 

  46. Sudakevitz D, Kostlanova N, Blatman-Jan G, Mitchell EP, Lerrer B, Wimmerova M, Katcoff DJ, Imberty A, Gilboa-Garber N (2004) A new Ralstonia solanacearum high-affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL. Mol Microbiol 52:691–700

    PubMed  CAS  Google Scholar 

  47. Zinger-Yosovich K, Sudakevitz D, Imberty A, Garber NC, Gilboa-Garber N (2006) Production and properties of the native Chromobacterium violaceum fucose-binding lectin (CV-IIL) compared to homologous lectins of Pseudomonas aeruginosa (PA-IIL) and Ralstonia solanacearum (RS-IIL). Microbiology 152(Pt 2):457–463

    PubMed  CAS  Google Scholar 

  48. Pokorna M, Cioci G, Perret S, Rebuffet E, Kostlanova N, Adam J, Gilboa-Garber N, Mitchell EP, Imberty A, Wimmerova M (2006) Unusual entropy-driven affinity of Chromobacterium violaceum lectin CV-IIL toward fucose and mannose. Biochemistry 45:7501–7510

    PubMed  CAS  Google Scholar 

  49. Mitchell EP, Sabin C, Snajdrova L, Pokorna M, Perret S, Gautier C, Hofr C, Gilboa-Garber N, Koca J, Wimmerova M, Imberty A (2005) High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 Ǻ resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches. Proteins 58:735–746

    PubMed  CAS  Google Scholar 

  50. Rieger J, Stoffelbach F, Cui D, Imberty A, Lameignere E, Putaux JL, Jerome R, Jerome C, Auzely VR (2007) Mannosylated poly(ethylene oxide)-b-poly(epsilon-caprolactone) diblock copolymers: synthesis, characterization, and interaction with a bacterial lectin. Biomacromolecules 8:2717–2725

    PubMed  CAS  Google Scholar 

  51. Imberty A, Wimmerova M, Mitchell EP, Gilboa-Garber N (2004) Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. Microbes Infect 6:221–228

    PubMed  CAS  Google Scholar 

  52. Kostlanova N, Mitchell EP, Lortat-Jacob H, Oscarson S, Lahmann M, Gilboa-Garber N, Chambat G, Wimmerova M, Imberty A (2005) The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J Biol Chem 280:27839–27849

    PubMed  CAS  Google Scholar 

  53. Adam J, Pokorna M, Sabin C, Mitchell EP, Imberty A, Wimmerova M (2007) Engineering of PA-IIL lectin from Pseudomonas aeruginosa – unravelling the role of the specificity loop for sugar preference. BMC Struct Biol 7:36

    PubMed  Google Scholar 

  54. Newburg DS, Ruiz-Palacios GM, Morrow AL (2005) Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 25:37–58

    PubMed  CAS  Google Scholar 

  55. Lesman-Movshovich E, Lerrer B, Gilboa-Garber N (2003) Blocking of Pseudomonas aeruginosa lectins by human milk glycans. Can J Microbiol 49:230–235

    PubMed  CAS  Google Scholar 

  56. Lesman-Movshovich E, Gilboa-Garber N (2003) Pseudomonas aeruginosa lectin PA-IIL as a powerful probe for human and bovine milk analysis. J Dairy Sci 86:2276–2282

    PubMed  CAS  Google Scholar 

  57. Johnson JR, Berggren T (1994) Pigeon and dove eggwhite protect mice against renal infection due to P fimbriated Escherichia coli. Am J Med Sci 307:335–339

    PubMed  CAS  Google Scholar 

  58. Suzuki N, Khoo KH, Chen HC, Johnson JR, Lee YC (2001) Isolation and characterization of major glycoproteins of pigeon egg white: ubiquitous presence of unique N-glycans containing Galα1-4Gal. J Biol Chem 276:23221–23229

    PubMed  CAS  Google Scholar 

  59. Lerrer B, Gilboa-Garber N (2001) Interaction of Pseudomonas aeruginosa galactophilic lectin PA-IL with pigeon egg white glycoproteins. FEMS Immun Med Microbiol 32:33–36

    CAS  Google Scholar 

  60. Lerrer B, Gilboa-Garber N (2001) Interactions of Pseudomonas aeruginosa PA-IIL lectin with quail egg white glycoproteins. Can J Microbiol 47:1095–1100

    PubMed  CAS  Google Scholar 

  61. Lerrer B, Zinger-Yosovich KD, Avrahami B, Gilboa-Garber N (2007) Honey and royal jelly, like human milk, abrogate lectin-dependent infection-preceding Pseudomonas aeruginosa adhesion. ISME J 1:149–155

    PubMed  CAS  Google Scholar 

  62. Perret S, Sabin C, Dumon C, Pokorna M, Gautier C, Galanina O, Ilia S, Bovin N, Nicaise M, Desmadril M, Gilboa-Garber N, Wimmerova M, Mitchell EP, Imberty A (2005) Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem J 389:325–332

    PubMed  CAS  Google Scholar 

  63. Deguise I, Lagnoux D, Roy R (2007) Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to PA-IL and PA-IIL lectins from Pseudomonas aeruginosa. New J Chem 31:1321–1331

    CAS  Google Scholar 

  64. Johansson EMV, Kolomiets E, Rosenau F, Jaeger KE, Darbre T, Reymond JL (2007) Combinatorial variation of branching length and multivalency in a large (390 625 member) glycopeptide dendrimer library: ligands for fucose-specific lectins. New J Chem 31:1291–1299

    CAS  Google Scholar 

  65. Marotte K, Preville C, Sabin C, Moume-Pymbock M, Imberty A, Roy R (2007) Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. Org Biomol Chem 5:2953–2961

    PubMed  CAS  Google Scholar 

  66. Gilboa-Garber N, Zakut V, Mizrahi L (1973) Production of cholinesterase by Pseudomonas aeruginosa, its regulation by glucose and cyclic AMP and inhibition by antiserum. Biochim Biophys Acta 297:120–124

    PubMed  CAS  Google Scholar 

  67. Wagner VE, Frelinger JG, Barth RK, Iglewski BH (2006) Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol 14:55–58

    PubMed  CAS  Google Scholar 

  68. Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81

    PubMed  CAS  Google Scholar 

  69. Brint JM, Ohman DE (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RHLR-RHLI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LUXR-LUXI family. J Bacteriol 177:7155–7163

    PubMed  CAS  Google Scholar 

  70. Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343

    PubMed  CAS  Google Scholar 

  71. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146

    PubMed  CAS  Google Scholar 

  72. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43

    PubMed  CAS  Google Scholar 

  73. Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    PubMed  CAS  Google Scholar 

  74. Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Camara M, Williams P, Haas D (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Baceriol 186:2936–2945

    CAS  Google Scholar 

  75. Ledgham F, Soscia C, Chakrabarty A, Lazdunski A, Foglino M (2003) Global regulation in Pseudomonas aeruginosa: the regulatory protein AlgR2 (AlgQ) acts as a modulator of quorum sensing. Res Microbiol 154:207–213

    PubMed  CAS  Google Scholar 

  76. Lisa TA, Garrido MN, Domenech CE (1983) Induction of acid phosphatase and cholinesterase activities in Ps. aeruginosa and their in-vitro control by choline, acetylcholine and betaine. Mol Cell Biochem 50:149–155

    PubMed  CAS  Google Scholar 

  77. Sage AE, Vasil ML (1997) Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1. J Bacteriol 179:4874–4881

    PubMed  CAS  Google Scholar 

  78. Stock JB, Rauch B, Roseman S (1977) Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252:7850–7861

    PubMed  CAS  Google Scholar 

  79. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    PubMed  CAS  Google Scholar 

  80. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    PubMed  CAS  Google Scholar 

  81. Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    PubMed  Google Scholar 

  82. Lucht JM, Bremer E (1994) Adaptation of Escherichia coli to high osmolarity environments: osmo-regulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol Rev 14:3–20

    PubMed  CAS  Google Scholar 

  83. Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, van der Heide T, Smith LT (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130:437–460

    PubMed  CAS  Google Scholar 

  84. Nagasawa T, Kawabata Y, Tani Y, Ogata K (1976) Purification and characterization of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa A-16. Agric Biol Chem 40:1743–1749

    CAS  Google Scholar 

  85. Boch J, Kempf B, Schmid R, Bremer E (1996) Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol 178:5121–5129

    PubMed  CAS  Google Scholar 

  86. Kappes RM, Kempf B, Kneip S, Boch J, Gade J, Meier-Wagner J, Bremer E (1999) Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 32:203–216

    PubMed  CAS  Google Scholar 

  87. Landfald B, Strom AR (1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165:849–855

    PubMed  CAS  Google Scholar 

  88. Govan JR, Harris GS (1986) Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. Microbiol Sci 3:302–308

    PubMed  CAS  Google Scholar 

  89. Govan JR, Nelson JW (1992) Microbiology of lung infection in cystic fibrosis. Br Med Bull 48:912–930

    PubMed  CAS  Google Scholar 

  90. Chen AH, Innis SM, Davidson AG, James SJ (2005) Phosphatidylcholine and lysophosphatidylcholine excretion is increased in children with cystic fibrosis and is associated with plasma homo-cysteine, S-adenosylhomocysteine, and S-adenosylmethionine. Am J Clin Nutr 81:686–691

    PubMed  CAS  Google Scholar 

  91. Antonio RV, Creczynski-Pasa TB (2004) Genetic analysis of violacein biosynthesis by Chromobacterium violaceum. Genet Mol Res 3:85–91

    PubMed  CAS  Google Scholar 

  92. Katri N, Gilboa-Garber N (2007) Ethanol effects on Pseudomonas aeruginosa lectin, protease, hemolysin, pyocyanin, autoinducer and phosphatase levels depending on medium composition and choline presence. Curr Microbiol 54:296–301

    PubMed  CAS  Google Scholar 

  93. Matsufuji M, Nakata K, Yoshimoto A (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol Lett 19:1213–1215

    CAS  Google Scholar 

  94. DeVault JD, Kimbara K, Chakrabarty AM (1990) Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa. Mol Microbiol 4:737–745

    PubMed  CAS  Google Scholar 

  95. de Roux A, Cavalcanti M, Marcos MA, Garcia E, Ewig S, Mensa J, Torres A (2006) Impact of alcohol abuse in the etiology and severity of community-acquired pneumonia. Chest 129:1219–1225

    PubMed  Google Scholar 

  96. Greenberg SS, Zhao X, Hua L, Wang JF, Nelson S, Ouyang J (1999) Ethanol inhibits lung clearance of Pseudomonas aeruginosa by a neutrophil and nitric oxide-dependent mechanism, in vivo. Alcohol Clin Exp Res 23:735–744

    PubMed  CAS  Google Scholar 

  97. Jerrells TR (1991) Immunodeficiency associated with ethanol abuse. Adv Exp Med Biol 288:229–236

    PubMed  CAS  Google Scholar 

  98. Kita E, Sawaki M, Oku D, Hamuro A, Mikasa K, Konishi M, Emoto M, Takeuchi S, Narita N, Kashiba S (1991) Suppression of virulence factors of Pseudomonas aeruginosa by erythromycin. J Antimicrob Chemother 27:273–284

    PubMed  CAS  Google Scholar 

  99. Fujii T, Kadota J, Kawakami K, Iida K, Shirai R, Kaseda M, Kawamoto S, Kohno S (1995) Long term effect of erythromycin therapy in patients with chronic Pseudomonas aeruginosa infection. Thorax 50:1246–1252

    PubMed  CAS  Google Scholar 

  100. Jaffe A, Francis J, Rosenthal M, Bush A (1998) Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet 351:420

    PubMed  CAS  Google Scholar 

  101. Carr RR, Nahata MC (2004) Azithromycin for improving pulmonary function in cystic fibrosis. Ann Pharmacother 38:1520–1524

    PubMed  CAS  Google Scholar 

  102. Hirakata Y, Kaku M, Mizukane R, Ishida K, Furuya N, Matsumoto T, Tateda K, Yamaguchi K (1992) Potential effects of erythromycin on host defense systems and virulence of Pseudomonas aeruginosa. Antimicrob Agents Chemother 36:1922–1927

    PubMed  CAS  Google Scholar 

  103. Majtan V, Hybenova D (1996) Inhibition of Pseudomonas aeruginosa alginate expression by subinhibitory concentrations of antibiotics. Folia Microbiol (Praha) 41:61–64

    CAS  Google Scholar 

  104. Sofer D, Gilboa-Garber N, Belz A, Garber NC (1999) ‘Subinhibitory’ erythromycin represses production of Pseudomonas aeruginosa lectins, autoinducer and virulence factors. Chemotherapy 45:335–341

    PubMed  CAS  Google Scholar 

  105. Favre-Bonte S, Kohler T, Van Delden C (2003) Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother 52:598–604

    PubMed  CAS  Google Scholar 

  106. Nalca Y, Jansch L, Bredenbruch F, Geffers R, Buer J, Hussler S (2006) Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 50:1680–1688

    PubMed  CAS  Google Scholar 

  107. Katri N, Garber NC, Kilfin G, Gilboa-Garber N (2008) Abrogation of the resistance of choline-induced Pseudomonas aeruginosa virulence to sub-MIC erythromycin by ethanol. ISME J 2:1243–1246

    PubMed  CAS  Google Scholar 

  108. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711

    PubMed  CAS  Google Scholar 

  109. Sage AE, Vasil AI, Vasil ML (1997) Molecular characterization of mutants affected in the osmo-protectant-dependent induction of phospholipase C in Pseudomonas aeruginosa PAO1. Mol Microbiol 23:43–56

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Sharon Victor and Ms. Ela Gindy for their skillful help in editing the manuscript, preparing it for publication, and assisting in the graphical presentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nachman C. Garber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Garber, N.C., Zinger-Yosovich, K.D., Sudakevitz, D., Axelrad, I., Gilboa-Garber, N. (2011). Regulation of Lectin Production by the Human Pathogens Pseudomonas aeruginosa and Chromobacterium violaceum: Effects of Choline, Trehalose, and Ethanol. In: Wu, A. (eds) The Molecular Immunology of Complex Carbohydrates-3. Advances in Experimental Medicine and Biology, vol 705. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7877-6_11

Download citation

Publish with us

Policies and ethics