Skip to main content

Hydrogen/Deuterium Exchange Mass Spectrometry for Protein Higher-Order Structure Characterization

  • Chapter
  • First Online:

Abstract

As some of the most essential molecules of life, proteins fulfill a plethora of biochemical functions within every living organism. They are involved in virtually all cell functions, such as cell division, cell death, immune response, signal transduction, and ligand binding. In contrast to small molecules, proteins are significantly more complicated in structure. In biophysical conditions, proteins fold into unique three-dimensional structures in solution that are flexible and dynamic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96:9997–10002

    CAS  Google Scholar 

  2. Hvidt A, Linderstrom-Lang K (1954) Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions. Biochim Biophys Acta 14:574–575

    CAS  Google Scholar 

  3. Hvidt A, Linderstrom-Lang K (1955) The kinetics of the deuterium exchange of insulin with D2O; an amendment. Biochim Biophys Acta 16:168–169

    CAS  Google Scholar 

  4. Englander SW (1963) A hydrogen exchange method using tritium and sephadex: its application to ribonuclease. Biochemistry 2:798–807

    CAS  Google Scholar 

  5. Haris PI, Chapman D (1995) The conformational analysis of peptides using fourier transform IR spectroscopy. Biopolymers 37:251–263

    CAS  Google Scholar 

  6. Englander JJ, Calhoun DB, Englander SW (1979) Measurement and calibration of peptide group hydrogen-deuterium exchange by ultraviolet spectrophotometry. Anal Biochem 92:517–524

    CAS  Google Scholar 

  7. Bentley GA, Delepierre M, Dobson CM, Wedin RE, Mason SA, Poulsen FM (1983) Exchange of individual hydrogens for a protein in a crystal and in solution. J Mol Biol 170:243–247

    CAS  Google Scholar 

  8. Englander SW, Mayne L (1992) Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct 21:243–265

    CAS  Google Scholar 

  9. Jeng MF, Dyson HJ (1995) Comparison of the hydrogen-exchange behavior of reduced and oxidized Escherichia coli thioredoxin. Biochemistry 34:611–619

    CAS  Google Scholar 

  10. Dempsey CE (2001) Hydrogen exchange in peptides and proteins using NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 39:135–170

    CAS  Google Scholar 

  11. Paterson Y, Englander SW, Roder H (1990) An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science 249:755–759

    CAS  Google Scholar 

  12. Rosa JJ, Richards FM (1979) An experimental procedure for increasing the structural resolution of chemical hydrogen-exchange measurements on proteins: application to ribonuclease S peptide. J Mol Biol 133:399–416

    CAS  Google Scholar 

  13. Englander JJ, Rogero JR, Englander SW (1985) Protein hydrogen exchange studied by the fragment separation method. Anal Biochem 147:234–244

    CAS  Google Scholar 

  14. Katta V, Chait BT (1991) Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom 5:214–217

    CAS  Google Scholar 

  15. Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2:522–531

    CAS  Google Scholar 

  16. Johnson RS, Walsh KA (1994) Mass spectrometric measurement of protein amide hydrogen exchange rates of apo- and holo-myoglobin. Protein Sci 3:2411–2418

    CAS  Google Scholar 

  17. Pan J, Rintala-Dempsey AC, Li Y, Shaw GS, Konermann L (2006) Folding kinetics of the S100A11 protein dimer studied by time-resolved electrospray mass spectrometry and pulsed hydrogen-deuterium exchange. Biochemistry 45:3005–3013

    CAS  Google Scholar 

  18. Eyles SJ, Kaltashov IA (2004) Methods to study protein dynamics and folding by mass spectrometry. Methods 34:88–99

    CAS  Google Scholar 

  19. Miranker A, Robinson CV, Radford SE, Aplin RT, Dobson CM (1993) Detection of transient protein folding populations by mass spectrometry. Science 262:896–900

    CAS  Google Scholar 

  20. Zhu MM, Rempel DL, Zhao J, Giblin DE, Gross ML (2003) Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength. Biochemistry 42:15388–15397

    CAS  Google Scholar 

  21. Lanman J, Lam TT, Barnes S, Sakalian M, Emmett MR, Marshall AG, Prevelige PE Jr (2003) Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J Mol Biol 325:759–772

    CAS  Google Scholar 

  22. Zhang Z, Post CB, Smith DL (1996) Amide hydrogen exchange determined by mass spectrometry: application to rabbit muscle aldolase. Biochemistry 35:779–791

    CAS  Google Scholar 

  23. Hoofnagle AN, Resing KA, Ahn NG (2003) Protein analysis by hydrogen exchange mass spectrometry. Annu Rev Biophys Biomol Struct 32:1–25

    CAS  Google Scholar 

  24. Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25:158–170

    CAS  Google Scholar 

  25. Powell KD, Fitzgerald MC (2001) Measurements of protein stability by H/D exchange and matrix-assisted laser desorption/ionization mass spectrometry using picomoles of material. Anal Chem 73:3300–3304

    CAS  Google Scholar 

  26. Englander SW, Kallenbach NR (1983) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16:521–655

    CAS  Google Scholar 

  27. Hamuro Y, Coales SJ, Southern MR, Nemeth-Cawley JF, Stranz DD, Griffin PR (2003) Rapid analysis of protein structure and dynamics by hydrogen/deuterium exchange mass spectrometry. J Biomol Tech 14:171–182

    Google Scholar 

  28. Garcia RA, Pantazatos D, Villarreal FJ (2004) Hydrogen/deuterium exchange mass spectrometry for investigating protein-ligand interactions. Assay Drug Dev Technol 2:81–91

    CAS  Google Scholar 

  29. Busenlehner LS, Armstrong RN (2005) Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch Biochem Biophys 433:34–46

    CAS  Google Scholar 

  30. Goshe MB, Anderson VE (1999) Hydroxyl radical-induced hydrogen/deuterium exchange in amino acid carbon-hydrogen bonds. Radiat Res 151:50–58

    CAS  Google Scholar 

  31. Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17:75–86

    CAS  Google Scholar 

  32. Molday RS, Englander SW, Kallen RG (1972) Primary structure effects on peptide group hydrogen exchange. Biochemistry 11:150–158

    CAS  Google Scholar 

  33. Fersht AR (1971) Acyl-transfer reactions of amides and esters with alcohols and thiols. A reference system for the serine and cysteine proteinases. Concerning the N protonation of amides and amide-imidate equilibria. J Am Chem Soc 93:3504–3515

    CAS  Google Scholar 

  34. Eriksson MA, Hard T, Nilsson L (1995) On the pH dependence of amide proton exchange rates in proteins. Biophys J 69:329–339

    CAS  Google Scholar 

  35. Brier S, Engen JR (2008) Hydrogen exchange mass spectrometry: principles and capabilities. In: Chance M (ed) Mass spectrometry analysis for protein–protein interactions and dynamics. Wiley, New Jersey

    Google Scholar 

  36. Berger A, Loewenstein A, Meiboom S (1959) Nuclear magnetic resonance and the proteolysis of N-methylacetamide. J Am Chem Soc 81(1):62–67

    CAS  Google Scholar 

  37. Dempsey CE (2001) Hydrogen exchange in peptides and proteins using NMR spectroscopy. Prog Nucl Magn Reson Spectro 39:135–170

    CAS  Google Scholar 

  38. Connelly GP, Bai Y, Jeng MF, Englander SW (1993) Isotope effects in peptide group hydrogen exchange. Proteins 17:87–92

    CAS  Google Scholar 

  39. Barksdale AD, Rosenberg A (1982) Acquisition and interpretation of hydrogen exchange data from peptides, polymers, and proteins. Methods Biochem Anal 28:1–113

    CAS  Google Scholar 

  40. Hvidt A, Nielsen SO (1966) Hydrogen exchange in proteins. Adv Protein Chem 21:287–386

    CAS  Google Scholar 

  41. Konermann L, Tong X, Pan Y (2008) Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches. J Mass Spectrom 43:1021–1036

    CAS  Google Scholar 

  42. Maier CS, Schimerlik MI, Deinzer ML (1999) Thermal denaturation of escherichia coli thioredoxin studied by hydrogen/deuterium exchange and electrospray ionization mass spectrometry: monitoring a two-state protein unfolding transition. Biochemistry 38:1136–1143

    CAS  Google Scholar 

  43. Deng Y, Smith DL (1998) Identification of unfolding domains in large proteins by their unfolding rates. Biochemistry 37:6256–6262

    CAS  Google Scholar 

  44. Swint-Kruse L, Robertson AD (1996) Temperature and pH dependences of hydrogen exchange and global stability for ovomucoid third domain. Biochemistry 35:171–180

    CAS  Google Scholar 

  45. Clarke J, Itzhaki LS (1998) Hydrogen exchange and protein folding. Curr Opin Struct Biol 8:112–118

    CAS  Google Scholar 

  46. Chetty PS, Mayne L, Lund-Katz S, Stranz D, Englander SW, Phillips MC (2009) Helical structure and stability in human apolipoprotein A-I by hydrogen exchange and mass spectrometry. Proc Natl Acad Sci USA 106:19005–19010

    CAS  Google Scholar 

  47. Englander SW, Englander JJ (1972) Hydrogen-tritium exchange. Methods Enzymol, 26 PtC, 406–413

    Google Scholar 

  48. Maier CS, Deinzer ML (2005) Protein conformations, interactions, and H/D exchange. Methods Enzymol 402:312–360

    CAS  Google Scholar 

  49. Woodward CK, Ellis LM, Rosenberg A (1975) The solvent dependence of hydrogen exchange kinetics of folded proteins. J Biol Chem 250:440–444

    CAS  Google Scholar 

  50. Engen JR, Smithgall TE, Gmeiner WH, Smith DL (1997) Identification and localization of slow, natural, cooperative unfolding in the hematopoietic cell kinase SH3 domain by amide hydrogen exchange and mass spectrometry. Biochemistry 36:14384–14391

    CAS  Google Scholar 

  51. Houde D, Berkowitz SA, Engen JR (2011) The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 100(6):2071–2086

    CAS  Google Scholar 

  52. Zhou B, Zhang ZY (2007) Application of hydrogen/deuterium exchange mass spectrometry to study protein tyrosine phosphatase dynamics, ligand binding, and substrate specificity. Methods 42:227–233

    CAS  Google Scholar 

  53. Chalmers MJ, Busby SA, Pascal BD, He Y, Hendrickson CL, Marshall AG, Griffin PR (2006) Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal Chem 78:1005–1014

    CAS  Google Scholar 

  54. Keppel TR, Howard BA, Weis DD (2011) Mapping unstructured regions and synergistic folding in intrinsically disordered proteins with amide H/D exchange mass spectrometry. Biochemistry 50:8722–8732

    CAS  Google Scholar 

  55. Coales SJ, Tuske SJ, Tomasso JC, Hamuro Y (2009) Epitope mapping by amide hydrogen/deuterium exchange coupled with immobilization of antibody, on-line proteolysis, liquid chromatography and mass spectrometry. Rapid Commun Mass Spectrom 23:639–647

    CAS  Google Scholar 

  56. Deng Y, Zhang Z, Smith DL (1999) Comparison of continuous and pulsed labeling amide hydrogen exchange/mass spectrometry for studies of protein dynamics. J Am Soc Mass Spectrom 10:675–684

    CAS  Google Scholar 

  57. Konermann L, Simmons DA (2003) Protein-folding kinetics and mechanisms studied by pulse-labeling and mass spectrometry. Mass Spectrom Rev 22:1–26

    CAS  Google Scholar 

  58. Hossain BM, Konermann L (2006) Pulsed hydrogen/deuterium exchange MS/MS for studying the relationship between noncovalent protein complexes in solution and in the gas phase after electrospray ionization. Anal Chem 78:1613–1619

    CAS  Google Scholar 

  59. Yang H, Smith DL (1997) Kinetics of cytochrome c folding examined by hydrogen exchange and mass spectrometry. Biochemistry 36:14992–14999

    CAS  Google Scholar 

  60. Rogero JR, Englander JJ, Englander SW (1986) Individual breathing reactions measured by functional labeling and hydrogen exchange methods. Methods Enzymol 131:508–517

    CAS  Google Scholar 

  61. Baerga-Ortiz A, Hughes CA, Mandell JG, Komives EA (2002) Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein. Protein Sci 11:1300–1308

    CAS  Google Scholar 

  62. Smith DL, Deng Y, Zhang Z (1997) Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J Mass Spectrom 32:135–146

    CAS  Google Scholar 

  63. Engen JR (2003) Analysis of protein complexes with hydrogen exchange and mass spectrometry. Analyst 128:623–628

    CAS  Google Scholar 

  64. Jr Woods VL, Hamuro Y (2001) High resolution, high-throughput amide deuterium exchange-mass spectrometry (DXMS) determination of protein binding site structure and dynamics: utility in pharmaceutical design. J Cell Biochem Suppl 37:89–98

    Google Scholar 

  65. Ghaemmaghami S, Fitzgerald MC, Oas TG (2000) A quantitative, high-throughput screen for protein stability. Proc Natl Acad Sci USA 97:8296–8301

    CAS  Google Scholar 

  66. Mandell JG, Falick AM, Komives EA (1998) Identification of protein–protein interfaces by decreased amide proton solvent accessibility. Proc Natl Acad Sci USA 95:14705–14710

    CAS  Google Scholar 

  67. Kipping M, Schierhorn A (2003) Improving hydrogen/deuterium exchange mass spectrometry by reduction of the back-exchange effect. J Mass Spectrom 38:271–276

    CAS  Google Scholar 

  68. Anderegg RJ, Wagner DS, Stevenson CL (1994) The mass spectrometry of helical unfolding in peptides. J Am Chem Soc 5:425–433

    CAS  Google Scholar 

  69. Demmers JA, Haverkamp J, Heck AJ, Koeppe RE 2nd, Killian JA (2000) Electrospray ionization mass spectrometry as a tool to analyze hydrogen/deuterium exchange kinetics of transmembrane peptides in lipid bilayers. Proc Natl Acad Sci USA 97:3189–3194

    CAS  Google Scholar 

  70. Jorgensen TJ, Gardsvoll H, Ploug M, Roepstorff P (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J Am Chem Soc 127:2785–2793

    CAS  Google Scholar 

  71. Kaltashov IA, Eyles SJ (2002) Crossing the phase boundary to study protein dynamics and function: combination of amide hydrogen exchange in solution and ion fragmentation in the gas phase. J Mass Spectrom 37:557–565

    CAS  Google Scholar 

  72. Ferguson PL, Pan J, Wilson DJ, Dempsey B, Lajoie G, Shilton B, Konermann L (2007) Hydrogen/deuterium scrambling during quadrupole time-of-flight MS/MS analysis of a zinc-binding protein domain. Anal Chem 79:153–160

    CAS  Google Scholar 

  73. Rand KD, Adams CM, Zubarev RA, Jorgensen TJ (2008) Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J Am Chem Soc 130:1341–1349

    CAS  Google Scholar 

  74. Zubarev RA (2003) Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom Rev 22:57–77

    CAS  Google Scholar 

  75. Horn DM, Breuker K, Frank AJ, McLafferty FW (2001) Kinetic intermediates in the folding of gaseous protein ions characterized by electron capture dissociation mass spectrometry. J Am Chem Soc 123:9792–9799

    CAS  Google Scholar 

  76. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533

    CAS  Google Scholar 

  77. Xia Y, Thomson BA, McLuckey SA (2007) Bidirectional ion transfer between quadrupole arrays: MSn ion/ion reaction experiments on a quadrupole/time-of-flight tandem mass spectrometer. Anal Chem 79:8199–8206

    CAS  Google Scholar 

  78. Zehl M, Rand KD, Jensen ON, Jorgensen TJ (2008) Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution. J Am Chem Soc 130:17453–17459

    CAS  Google Scholar 

  79. Rand KD, Zehl M, Jensen ON, Jorgensen TJ (2009) Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Anal Chem 81:5577–5584

    CAS  Google Scholar 

  80. Landgraf RR, Chalmers MJ, Griffin PR (2012) Automated hydrogen/deuterium exchange electron transfer dissociation high resolution mass spectrometry measured at single-amide resolution. J Am Soc Mass Spectrom 23:301–309

    CAS  Google Scholar 

  81. Villanueva J, Hoshino M, Katou H, Kardos J, Hasegawa K, Naiki H, Goto Y (2004) Increase in the conformational flexibility of beta 2-microglobulin upon copper binding: a possible role for copper in dialysis-related amyloidosis. Protein Sci 13:797–809

    CAS  Google Scholar 

  82. Pan J, Han J, Borchers CH, Konermann L (2008) Electron capture dissociation of electrosprayed protein ions for spatially resolved hydrogen exchange measurements. J Am Chem Soc 130:11574–11575

    CAS  Google Scholar 

  83. Abzalimov RR, Kaplan DA, Easterling ML, Kaltashov IA (2009) Protein conformations can be probed in top-down HDX MS experiments utilizing electron transfer dissociation of protein ions without hydrogen scrambling. J Am Soc Mass Spectrom 20:1514–1517

    CAS  Google Scholar 

  84. Kaltashov IA, Bobst CE, Abzalimov RR (2009) H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: is there a need for a top–down approach? Anal Chem 81:7892–7899

    CAS  Google Scholar 

  85. Wang L, Pan H, Smith DL (2002) Hydrogen exchange-mass spectrometry: optimization of digestion conditions. Mol Cell Proteomics 1:132–138

    CAS  Google Scholar 

  86. Resing KA, Hoofnagle AN, Ahn NG (1999) Modeling deuterium exchange behavior of ERK2 using pepsin mapping to probe secondary structure. J Am Soc Mass Spectrom 10:685–702

    CAS  Google Scholar 

  87. Hoofnagle AN, Resing KA, Ahn NG (2004) Practical methods for deuterium exchange/mass spectrometry. Methods Mol Biol 250:283–298

    CAS  Google Scholar 

  88. Feng L, Orlando R, Prestegard JH (2006) Amide proton back-exchange in deuterated peptides: applications to MS and NMR analyses. Anal Chem 78:6885–6892

    CAS  Google Scholar 

  89. Weis DD, Wales TE, Engen JR, Hotchko M, Ten Eyck LF (2006) Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J Am Soc Mass Spectrom 17:1498–1509

    CAS  Google Scholar 

  90. Houde D, Arndt J, Domeier W, Berkowitz S, Engen JR (2009) Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal Chem 81:5966

    CAS  Google Scholar 

  91. Wei H, Ahn J, Yu YQ, Tymiak A, Engen JR, Chen G (2012) Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation. J Am Soc Mass Spectrom 23:498–504

    CAS  Google Scholar 

  92. Emmett MR, Kazazic S, Marshall AG, Chen W, Shi SD, Bolanos B, Greig MJ (2006) Supercritical fluid chromatography reduction of hydrogen/deuterium back exchange in solution-phase hydrogen/deuterium exchange with mass spectrometric analysis. Anal Chem 78:7058–7060

    CAS  Google Scholar 

  93. Zhang Z (1997) Enhancement of the effective resolution of mass spectra of high-mass biomolecules by maximum entropy-based deconvolution to eliminate the isotopic natural abundance distribution. J Am Chem Soc 8:659–670

    CAS  Google Scholar 

  94. Hotchko M, Anand GS, Komives EA, Ten Eyck LF (2006) Automated extraction of backbone deuteration levels from amide H/2H mass spectrometry experiments. Protein Sci 15:583–601

    CAS  Google Scholar 

  95. Weis DD, Engen JR, Kass IJ (2006) Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. J Am Soc Mass Spectrom 17:1700–1703

    CAS  Google Scholar 

  96. Buijs J, Hakansson K, Hagman C, Hakansson P, Oscarsson S (2000) A new method for the accurate determination of the isotopic state of single amide hydrogens within peptides using Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 14:1751–1756

    CAS  Google Scholar 

  97. Pascal BD, Chalmers MJ, Busby SA, Mader CC, Southern MR, Tsinoremas NF, Griffin PR (2007) The Deuterator: software for the determination of backbone amide deuterium levels from H/D exchange MS data. BMC Bioinformatics 8:156

    CAS  Google Scholar 

  98. Kazazic S, Zhang HM, Schaub TM, Emmett MR, Hendrickson CL, Blakney GT, Marshall AG (2010) Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 21:550–558

    CAS  Google Scholar 

  99. Nikamanon P, Pun E, Chou W, Koter MD, Gershon PD (2008) TOF2H: a precision toolbox for rapid, high density/high coverage hydrogen-deuterium exchange mass spectrometry via an LC-MALDI approach, covering the data pipeline from spectral acquisition to HDX rate analysis. BMC Bioinformatics 9:387

    Google Scholar 

  100. Pascal BD, Chalmers MJ, Busby SA, Griffin PR (2009) HD desktop: an integrated platform for the analysis and visualization of H/D exchange data. J Am Soc Mass Spectrom 20:601–610

    CAS  Google Scholar 

  101. Slysz GW, Baker CA, Bozsa BM, Dang A, Percy AJ, Bennett M, Schriemer DC (2009) Hydra: software for tailored processing of H/D exchange data from MS or tandem MS analyses. BMC Bioinformatics 10:162

    Google Scholar 

  102. Kan ZY, Mayne L, Chetty PS, Englander SW (2011) ExMS: data analysis for HX-MS experiments. J Am Soc Mass Spectrom 22:1906–1915

    CAS  Google Scholar 

  103. Tsui V, Garcia C, Cavagnero S, Siuzdak G, Dyson HJ, Wright PE (1999) Quench-flow experiments combined with mass spectrometry show apomyoglobin folds through and obligatory intermediate. Protein Sci 8:45–49

    CAS  Google Scholar 

  104. Wales TE, Fadgen KE, Gerhardt GC, Engen JR (2008) High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal Chem 80:6815–6820

    CAS  Google Scholar 

  105. Hoofnagle AN, Resing KA, Goldsmith EJ, Ahn NG (2001) Changes in protein conformational mobility upon activation of extracellular regulated protein kinase-2 as detected by hydrogen exchange. Proc Natl Acad Sci USA 98:956–961

    CAS  Google Scholar 

  106. Robbins DJ, Zhen E, Owaki H, Vanderbilt CA, Ebert D, Geppert TD, Cobb MH (1993) Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J Biol Chem 268:5097–5106

    CAS  Google Scholar 

  107. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ (1997) Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90:859–869

    CAS  Google Scholar 

  108. Zhang F, Strand A, Robbins D, Cobb MH, Goldsmith EJ (1994) Atomic structure of the MAP kinase ERK2 at 2.3 a resolution. Nature 367:704–711

    CAS  Google Scholar 

  109. Pan H, Raza AS, Smith DL (2004) Equilibrium and kinetic folding of rabbit muscle triosephosphate isomerase by hydrogen exchange mass spectrometry. J Mol Biol 336:1251–1263

    CAS  Google Scholar 

  110. Dong A, Matsuura J, Allison SD, Chrisman E, Manning MC, Carpenter JF (1996) Infrared and circular dichroism spectroscopic characterization of structural differences between beta-lactoglobulin A and B. Biochemistry 35:1450–1457

    CAS  Google Scholar 

  111. Sugeta H (1991) Study on conformation of biomolecules by infrared circular dichroism. Tanpakushitsu Kakusan Koso 36:1849–1858

    CAS  Google Scholar 

  112. Susi H, Byler DM (1986) Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol 130:290–311

    CAS  Google Scholar 

  113. Nguyen LT, Wiencek JM, Kirsch LE (2003) Characterization methods for the physical stability of biopharmaceuticals. PDA J Pharm Sci Technol 57:429–445

    CAS  Google Scholar 

  114. Martin SR, Schilstra MJ (2008) Circular dichroism and its application to the study of biomolecules. Methods Cell Biol 84:263–293

    CAS  Google Scholar 

  115. Kaltashov IA, Bobst CE, Abzalimov RR, Berkowitz SA, Houde D (2010) Conformation and dynamics of biopharmaceuticals: transition of mass spectrometry-based tools from academe to industry. J Am Soc Mass Spectrom 21:323–337

    CAS  Google Scholar 

  116. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582–3586

    CAS  Google Scholar 

  117. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55:217–250

    CAS  Google Scholar 

  118. Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54:531–545

    CAS  Google Scholar 

  119. Reddy KR (2000) Controlled-release, PEGylation, liposomal formulations: new mechanisms in the delivery of injectable drugs. Ann Pharmacother 34:915–923

    CAS  Google Scholar 

  120. Tamada T, Honjo E, Maeda Y, Okamoto T, Ishibashi M, Tokunaga M, Kuroki R (2006) Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex. Proc Natl Acad Sci USA 103:3135–3140

    CAS  Google Scholar 

  121. Morgan CR, Miglionico BV, Engen JR (2011) Effects of HIV-1 Nef on human N-myristoyltransferase 1. Biochemistry 50:3394–3403

    CAS  Google Scholar 

  122. Piedmonte DM, Treuheit MJ (2008) Formulation of Neulasta (pegfilgrastim). Adv Drug Deliv Rev 60:50–58

    CAS  Google Scholar 

  123. Bobst CE, Abzalimov RR, Houde D, Kloczewiak M, Mhatre R, Berkowitz SA, Kaltashov IA (2008) Detection and characterization of altered conformations of protein pharmaceuticals using complementary mass spectrometry-based approaches. Anal Chem 80:7473–7481

    CAS  Google Scholar 

  124. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084

    CAS  Google Scholar 

  125. Konermann L, Pan J, Liu YH (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40:1224–1234

    CAS  Google Scholar 

  126. Yamada N, Suzuki E, Hirayama K (2002) Identification of the interface of a large protein–protein complex using H/D exchange and Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 16:293–299

    CAS  Google Scholar 

  127. Lisal J, Kainov DE, Lam TT, Emmett MR, Wei H, Gottlieb P, Marshall AG, Tuma R (2006) Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage. Virology 351:73–79

    CAS  Google Scholar 

  128. Derunes C, Burgess R, Iraheta E, Kellerer R, Becherer K, Gessner CR, Li S, Hewitt K, Vuori K, Pasquale EB, Woods VL Jr, Ely KR (2006) Molecular determinants for interaction of SHEP1 with Cas localize to a highly solvent-protected region in the complex. FEBS Lett 580:175–178

    CAS  Google Scholar 

  129. Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo GR, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS (2010) Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463:501–506

    CAS  Google Scholar 

  130. Zhang Q, Willison LN, Tripathi P, Sathe SK, Roux KH, Emmett MR, Blakney GT, Zhang HM, Marshall AG (2011) Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 83:7129–7136

    CAS  Google Scholar 

  131. Garcia RA, Pantazatos DP, Gessner CR, Go KV, Woods VL Jr, Villarreal FJ (2005) Molecular interactions between matrilysin and the matrix metalloproteinase inhibitor doxycycline investigated by deuterium exchange mass spectrometry. Mol Pharmacol 67:1128–1136

    CAS  Google Scholar 

  132. Ehring H (1999) Hydrogen exchange/electrospray ionization mass spectrometry studies of structural features of proteins and protein/protein interactions. Anal Biochem 267:252–259

    CAS  Google Scholar 

  133. Zhu MM, Rempel DL, Du Z, Gross ML (2003) Quantification of protein-ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX. J Am Chem Soc 125:5252–5253

    CAS  Google Scholar 

  134. Zhu MM, Rempel DL, Gross ML (2004) Modeling data from titration, amide H/D exchange, and mass spectrometry to obtain protein-ligand binding constants. J Am Soc Mass Spectrom 15:388–397

    CAS  Google Scholar 

  135. Sperry JB, Shi X, Rempel DL, Nishimura Y, Akashi S, Gross ML (2008) A mass spectrometric approach to the study of DNA-binding proteins: interaction of human TRF2 with telomeric DNA. Biochemistry 47:1797–1807

    CAS  Google Scholar 

  136. Powell KD, Wales TE, Fitzgerald MC (2002) Thermodynamic stability measurements on multimeric proteins using a new H/D exchange- and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry-based method. Protein Sci 11:841–851

    CAS  Google Scholar 

  137. Huang YJ, Montelione GT (2005) Structural biology: proteins flex to function. Nature 438:36–37

    CAS  Google Scholar 

  138. Tang L, Hopper ED, Tong Y, Sadowsky JD, Peterson KJ, Gellman SH, Fitzgerald MC (2007) H/D exchange- and mass spectrometry-based strategy for the thermodynamic analysis of protein-ligand binding. Anal Chem 79:5869–5877

    CAS  Google Scholar 

  139. Roulhac PL, Weaver KD, Adhikari P, Anderson DS, DeArmond PD, Mietzner TA, Crumbliss AL, Fitzgerald MC (2008) Ex vivo analysis of synergistic anion binding to FbpA in gram-negative bacteria. Biochemistry 47:4298–4305

    CAS  Google Scholar 

  140. Hopper ED, Roulhac PL, Campa MJ, Patz EF Jr, Fitzgerald MC (2008) Throughput and efficiency of a mass spectrometry-based screening assay for protein-ligand binding detection. J Am Soc Mass Spectrom 19:1303–1311

    CAS  Google Scholar 

  141. Dearmond PD, West GM, Anbalagan V, Campa MJ, Patz EF Jr, Fitzgerald MC (2010) Discovery of novel cyclophilin A ligands using an H/D exchange- and mass spectrometry-based strategy. J Biomol Screen 15:1051–1062

    CAS  Google Scholar 

  142. Powell KD, Fitzgerald MC (2004) High-throughput screening assay for the tunable selection of protein ligands. J Comb Chem 6:262–269

    CAS  Google Scholar 

  143. Hopper ED, Pittman AM, Tucker CL, Campa MJ, Patz EF Jr, Fitzgerald MC (2009) Hydrogen/deuterium exchange- and protease digestion-based screening assay for protein-ligand binding detection. Anal Chem 81:6860–6867

    CAS  Google Scholar 

  144. Anand GS, Hughes CA, Jones JM, Taylor SS, Komives EA (2002) Amide H/2H exchange reveals communication between the cAMP and catalytic subunit-binding sites in the R(I)alpha subunit of protein kinase A. J Mol Biol 323:377–386

    CAS  Google Scholar 

  145. Akashi S, Takio K (2000) Characterization of the interface structure of enzyme-inhibitor complex by using hydrogen-deuterium exchange and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Protein Sci 9:2497–2505

    CAS  Google Scholar 

  146. Lee T, Hoofnagle AN, Kabuyama Y, Stroud J, Min X, Goldsmith EJ, Chen L, Resing KA, Ahn NG (2004) Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol Cell 14:43–55

    CAS  Google Scholar 

  147. Chik JK, Schriemer DC (2003) Hydrogen/deuterium exchange mass spectrometry of actin in various biochemical contexts. J Mol Biol 334:373–385

    CAS  Google Scholar 

  148. Brier S, Lemaire D, DeBonis S, Kozielski F, Forest E (2006) Use of hydrogen/deuterium exchange mass spectrometry and mutagenesis as a tool to identify the binding region of inhibitors targeting the human mitotic kinesin Eg5. Rapid Commun Mass Spectrom 20:456–462

    CAS  Google Scholar 

  149. Mandell JG, Baerga-Ortiz A, Akashi S, Takio K, Komives EA (2001) Solvent accessibility of the thrombin-thrombomodulin interface. J Mol Biol 306:575–589

    CAS  Google Scholar 

  150. Bailey-Kellogg C, Kelley JJ 3rd, Stein C, Donald BR (2001) Reducing mass degeneracy in SAR by MS by stable isotopic labeling. J Comput Biol 8:19–36

    CAS  Google Scholar 

  151. Bennett MJ, Barakat K, Huzil JT, Tuszynski J, Schriemer DC (2010) Discovery and characterization of the laulimalide-microtubule binding mode by mass shift perturbation mapping. Chem Biol 17:725–734

    CAS  Google Scholar 

  152. Demarest SJ, Martinez-Yamout M, Chung J, Chen H, Xu W, Dyson HJ, Evans RM, Wright PE (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415:549–553

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wei, H., Tymiak, A.A., Chen, G. (2013). Hydrogen/Deuterium Exchange Mass Spectrometry for Protein Higher-Order Structure Characterization. In: Chen, G. (eds) Characterization of Protein Therapeutics using Mass Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7862-2_8

Download citation

Publish with us

Policies and ethics