Post-Translationally Modified Proteins: Glycosylation and Disulfide Bond Formation

Chapter

Abstract

Even though most medicines have historically been small molecules, many newly approved drugs over the last two decades have been derived from proteins. For the past few years, protein therapeutics have been enjoying the fastest growth within the global pharmaceutical industry.

Keywords

Fermentation Adduct Sarcoma Interferon Ketone 

Abbreviations

AEC

Anion-Exchange Chromatography

BEMAD

β-Elimination followed by Michael Addition with Dithiothreitol

CE

Capillary Electrophoresis

CHO

Chinese Hamster Ovary

CHO IL-4

CHO-derived Interleukin-4

CDG

Congenital Disorders of Glycosylation

CDT

Carbohydrate-Deficient Transferrin

CID

Collision-Induced Dissociation

ConA

Concanavalin A

CFG

Consortium for Functional Glycomics

CZE

Capillary Zone Electrophoresis

CREB

cAMP-responsive Element-Binding Factor

DHB

2,5-Dihydroxybenzoic acid

ECD

Electron-Capture Dissociation

ESI

Electrospray Ionization

ETD

Electron-Transfer Dissociation

FAB

Fast Atom Bombardment

FT ICR

Fourier Transform Ion Cyclotron Resonance

GCC

Graphitized Carbon Columns

HILIC

Hydrophilic Interaction Chromatography

HPA

3-hydroxypicolinic acid

HPLC

High-Performance Liquid Chromatography

HPV

Human Papillomavirus

HRP

Horseradish Peroxidase

IL-4

Interleukin-4

IL-4R

Interleukin-4 receptor

IL-5Rα

Interleukin-5 receptor α-subunit

IA

Immunoaffinity

IM

Ion Mobility

IT

Ion Trap

KEGG

Kyoto Encyclopedia of Genes and Genomes

LAC

Lectin Affinity Chromatography

LC

Liquid Chromatography

LC–MS

Liquid Chromatography–Mass Spectrometry

LSI

Liquid Secondary Ion

mAb

Monoclonal Antibodies

MALDI

Matrix-Assisted Laser Desorption/Ionization

M-LAC

Multi-Lectin Affinity Chromatography

Mr

Molecular Weight

MS

Mass Spectrometry

MS/MS

Tandem Mass Spectrometry

m/z

Mass-to-charge ratio

nESI

Nano-Electrospray Ionization

NMR

Nuclear Magnetic Resonance

oTOF

Orthogonal Time-of-Flight

PAS

Periodate-acid-Schiff

PD

Plasma Desorption

PGC

Porous Graphitized Carbon Chromatography

PSA

Pisum Sativum Agglutinin

PSD

Post-Source Decay

PTMs

Post-Translational Modifications

rHuEPO

Recombinant Human Erythropoietin

r-RhCG

Recombinant human Chorionic Gonadotrophin

rtPA

Recombinant Tissue Plasminogen Activator

QTOF

Quadrupole Time-of-Flight

sAPP

Secreted Amyloid Precursor Protein

sDHB

2,5-Dihydroxybenzoic acid (DHB) with a 10 % admixture of 2-hydroxy-5-methoxybenzoic acid (super DHB)

SEC

Size-Exclusion Chromatography

SIM

Selected Ion Monitoring

SLAC

Serial Affinity Chromatography

SPE

Solid-Phase Extraction

TAS

Tagging-via-Substrate

Tf

Human Transferrin Glycoprotein

TOF

Time-of-Flight

uPAR

Urokinase-type Plasminogen Activator Receptor

UPLC

Ultra-Performance Liquid Chromatography

WGA

Wheat Germ Agglutinin

Notes

Acknowledgments

We acknowledge the kind permission of the Schering-Plough Research Institute to reproduce previously reported, but unpublished data regarding the IL-5Rα.

References

  1. 1.
    Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24(7):769–776Google Scholar
  2. 2.
    Aggarwal S (2007) What’s fueling the biotech engine? Nat Biotechnol 25(10):1097–1104Google Scholar
  3. 3.
    Roach P, Woodworth JR (2002) Clinical pharmacokinetics and pharmacodynamics of insulin lispro mixtures. Clin Pharmacokinet 41:1043–1057Google Scholar
  4. 4.
    Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720Google Scholar
  5. 5.
    Collins MO, Yu L, Choudhary JS (2007) Analysis of protein phosphorylation on a proteome-scale. Proteomics 7:2751–2768Google Scholar
  6. 6.
    Wedemeyer WJ, Welker E, Narayan M et al (2000) Disulfide bonds and protein folding. Biochemistry 39:4207–4216Google Scholar
  7. 7.
    Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82:111–121Google Scholar
  8. 8.
    Hunter T (2000) Signaling-2000 and beyond. Cell 100:113–127Google Scholar
  9. 9.
    Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4:E127–E130Google Scholar
  10. 10.
    Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252Google Scholar
  11. 11.
    Li H, d’Anjou M (2009) Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol 20:678–684Google Scholar
  12. 12.
    CPMP/ICH harmonised tripartite guideline Q6B (1999) Specifications: test procedures and acceptance criteria for biotechnological/biological products. March 1999 and EMA guideline (2010) requirements for quality documentation concerning biological investigational medicinal products in clinical trials. February 2010Google Scholar
  13. 13.
    Whitehouse CM, Dreyer RN, Yamashita M et al (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679Google Scholar
  14. 14.
    Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71Google Scholar
  15. 15.
    Smith RD, Udseth H (1988) Capillary zone electrophoresis-MS. Nature 331:639–640Google Scholar
  16. 16.
    Kelly JF, Locke SJ, Ramaley L et al (1996) Development of electrophoretic conditions for the characterization of protein glycoforms by capillary electrophoresis-electrospray mass spectrometry. J Chromatogr A 720:409–427Google Scholar
  17. 17.
    Karas M, Bachmann D, Bahr U et al (1987) Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int J Mass Spectrom Ion Process 78:53–68Google Scholar
  18. 18.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301Google Scholar
  19. 19.
    Hancock WS, Wu SL, Shieh P (2002) The challenges of developing a sound proteomics strategy. Proteomics 2:352–359Google Scholar
  20. 20.
    Larsen MR, Trelle MB, Thingholm TE et al (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40:790–798Google Scholar
  21. 21.
    Covey T, Shushan B, Bonner R, Schröder W, Hucho F (1991) Methods in protein sequence analysis. In: Jörnvall H, Höög JO, Gustavsson AM (eds) LC/MS and LC/MS/MS screening of the sites of posttranslational modification in proteins. Birkhäuser Press, BaselGoogle Scholar
  22. 22.
    Dell A, Morris HR (2001) Glycoprotein structure determination by mass spectrometry. Science 291:2351–2356Google Scholar
  23. 23.
    Bateman RH, Carruthers R, Hoye JB et al (2002) A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom 13:792–803Google Scholar
  24. 24.
    Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266Google Scholar
  25. 25.
    Syka JE, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533Google Scholar
  26. 26.
    Wu SL, Jiang H, Lu Q et al (2009) Mass spectrometric determination of disulfide linkages in recombinant therapeutic proteins using online LC-MS with electron-transfer dissociation. Anal Chem 81:112–122Google Scholar
  27. 27.
    Wang D, Hincapie M, Rejtar T et al (2011) Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry. Anal Chem 83(6):2029–2037Google Scholar
  28. 28.
    Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8Google Scholar
  29. 29.
    Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptides bonds. Glycobiology 12:43R–56RGoogle Scholar
  30. 30.
    Schachter H (2001) The clinical relevance of glycobiology. J Clin Invest 108:1579–1582Google Scholar
  31. 31.
    Dwek MV, Brooks SA (2004) Harnessing changes in cellular glycosylation in new cancer treatment strategies. Curr Cancer Drug Targets 4:425–442Google Scholar
  32. 32.
    Wuhrer M (2007) Glycosylation profiling in clinical proteomics: heading for glycan biomarkers. Expert Rev Proteomics 4:135–136Google Scholar
  33. 33.
    Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488Google Scholar
  34. 34.
    Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542Google Scholar
  35. 35.
    An HJ, Kronewitter SR, de Leoz ML et al (2009) Glycomics and disease markers. Curr Opin Chem Biol 13:601–607Google Scholar
  36. 36.
    Niwa T (2006) Mass spectrometry for the study of protein glycation in disease. Mass Spectrom Rev 25:713–723Google Scholar
  37. 37.
    Morelle W, Canis K, Chirat F et al (2006) The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 6:3993–4015Google Scholar
  38. 38.
    Bennett CS, Dean SM, Payne RJ et al (2008) Sugar-assisted glycopeptide ligation with complex oligosaccharides: scope and limitations. J Am Chem Soc 130:11945–11952Google Scholar
  39. 39.
    Novotny MV, Mechref Y (2005) New hyphenated methodologies in high sensitivity glycoprotein analysis. J Sep Sci 28:1956–1968Google Scholar
  40. 40.
    Wuhrer M, Deedler AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B 825:124–133Google Scholar
  41. 41.
    Geyer H, Geyer R (2006) Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 1764:1853–1869Google Scholar
  42. 42.
    Mariño K, Bones J, Kattla JJ et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol: 713–723Google Scholar
  43. 43.
    North SJ, Hitchen PG, Haslam SM et al (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 19:498–506Google Scholar
  44. 44.
    Axford J (2001) The impact of glycobiology on medicine. Trends Immunol 22:237–239Google Scholar
  45. 45.
    Mortz E, Sareneva T, Haebel S et al (1996) Mass spectrometric characterization of glycosylated interferon-gamma variants separated by gel electrophoresis. Electrophoresis 17:925–931Google Scholar
  46. 46.
    Nawarak J, Phutrakul S, Chen ST (2004) Analysis of lectin-bound glycoproteins in snake venom from the elapidae and viperidae families. J Proteom Res 3:383–392Google Scholar
  47. 47.
    Mechref Y, Novotny MV (2002) Structural investigations of glycoconjugates at high sensitivity. Chem Rev 102:321–369Google Scholar
  48. 48.
    Ramdani B, Nuyens V, Codden T et al (2003) Analyte comigrating with trisialotransferrin during capillary zone electrophoresis of sera from patients with cancer. Clin Chem 49:1854–1864Google Scholar
  49. 49.
    Smith RD, Loo JA, Edmonds CG et al (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 62:882–899Google Scholar
  50. 50.
    Tsarbopoulos A, Pramanik BN, Nagabhushan TL et al (1995) Structural analysis of the CHO-derived interleukin-4 by liquid-chromatography/electrospray ionization mass spectrometry. J Mass Spectrom 30:1752–1763Google Scholar
  51. 51.
    Tsarbopoulos A, Bahr U, Karas M, Pramanik BN (2002) Structural analysis of glycoproteins by electrospray ionization mass spectrometry. In: Pramanik BN, Ganguly AK, Gross ML (eds) Applied electrospray mass spectrometry. Marcel Dekker, New YorkGoogle Scholar
  52. 52.
    Duffin KL, Welply JK, Huang E et al (1992) Characterization of N-linked oligosaccharides by electrospray and tandem mass spectrometry. Anal Chem 64:1440–1448Google Scholar
  53. 53.
    Rajan N, Tsarbopoulos A, Kumarasamy R et al (1995) Characterization of recombinant human interleukin-4 receptor from CHO cells: Role of N-linked oligosaccharides. Biochem Biophys Res Commun 206:694–702Google Scholar
  54. 54.
    Rush RS, Derby PL, Smith DM et al (1995) Microheterogeneity of erythropoietin carbohydrate structure. Anal Chem 67:1442–1452Google Scholar
  55. 55.
    Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8Google Scholar
  56. 56.
    Verentchikov AN, Ens W, Standing KG (1994) Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction. Anal Chem 66:99–107Google Scholar
  57. 57.
    Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162Google Scholar
  58. 58.
    Olivova P, Chen W, Chakraborty AB et al (2008) Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:29–40Google Scholar
  59. 59.
    Benesch JLP, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Current Opin Struct Biol 16:245–251Google Scholar
  60. 60.
    Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32:577–592Google Scholar
  61. 61.
    Carter P, Presta L, Gorman CM et al (1992) Humanization of an Anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289Google Scholar
  62. 62.
    Damen CWN, Chen W, Chakraborty AB et al (2009) Electrospray ionization quadrupole ion-Mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-Glycosylation profile of the therapeutic monoclonal antibody Trastuzumab. J Amer Soc Mass Spectrom 20:2021–2033Google Scholar
  63. 63.
    Dube S, Fisher JW, Powell JS (1988) Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion and biological function. J Biol Chem 263:17516–17521Google Scholar
  64. 64.
    Delorme E, Lorenzini T, Giffin J et al (1992) Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31:9871–9876Google Scholar
  65. 65.
    Ploug M, Rahbek-Nielsen H, Nielsen PF et al (1998) Glycosylation profile of a recombinant urokinase-type plasminogen activator receptor expressed in Chinese hamster ovary cells. J Biol Chem 273(22):13933–13943Google Scholar
  66. 66.
    Tsarbopoulos A, Prongay A, Baldwin S et al (1996) Mass spectrometric analysis of the Sf9 cell-derived interleukin-5 Receptor. In: Proceedings of the 44th ASMS conference on mass spectrometry and allied topics, Portland: 12–16 MayGoogle Scholar
  67. 67.
    Karas M, Bahr U, Strupat K et al (1995) Matrix dependence of metastable fragmentation of glycoproteins in MALDI TOF mass spectrometry. Anal Chem 67:675–679Google Scholar
  68. 68.
    Giménez E, Benavente F, Barbosa J et al (2007) Towards a reliable molecular mass determination of intact glycoproteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21:2555–2563Google Scholar
  69. 69.
    Tsarbopoulos A, Pramanik BN, Karas M et al (1995) Factors affecting the choice of matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of glycoproteins. J Mass Spectrom: S207–S209Google Scholar
  70. 70.
    Liu CL, Bowers LD (1997) Mass spectrometric characterization of the β-subunit of human chorionic gonadotropin. J Mass Spectrom 32:33–42Google Scholar
  71. 71.
    Neusüb C, Demelbauer U, Pelzing M (2005) Glycoform characterization of intact erythropoietin by capillary electrophoresis-electrospray-time of flight-mass spectrometry. Electrophoresis 26:1442–1450Google Scholar
  72. 72.
    Demelbauer UM, Plematl A, Kremser L et al (2004) Characterization of glyco isoforms in plasma-derived human antithrombin by on-line capillary zone electrophoresis-electrospray ionization-quadrupole ion trap-mass spectrometry of the intact glycoproteins. Electrophoresis 25:2026–2032Google Scholar
  73. 73.
    Balaguer E, Demelbauer U, Pelzing M et al (2006) Glycoform characterization of erythropoietin combining glycan and intact protein analysis by capillary electrophoresis–electrospray–time-of-flight mass spectrometry. Electrophoresis 27:2638–2650Google Scholar
  74. 74.
    Balaguer E, Neususs C (2006) Glycoprotein characterization combining intact protein and glycan analysis by capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem 78:5384–5393Google Scholar
  75. 75.
    Thakur D, Rejtar T, Karger BL et al (2009) Profiling the glycoforms of the intact α subunit of recombinant human chorionic gonadotropin by high-resolution capillary electrophoresis-mass spectrometry. Anal Chem 81:8900–8907Google Scholar
  76. 76.
    Sanz-Nebot V, Balaguer E, Benavente F et al (2007) Characterization of transferrin glycoforms in human serum by CE-UV and CE-ESI-MS. Electrophoresis 28:1949–1957Google Scholar
  77. 77.
    Hang HC, Bertozzi CR (2005) The chemistry and biology of mucin-type Olinked glycosylation. Bioorg Med Chem 13:5021–5034Google Scholar
  78. 78.
    Wopereis S, Lefeber DJ, Morava E et al (2006) Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 52:574–600Google Scholar
  79. 79.
    Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664Google Scholar
  80. 80.
    Vance BA, Wu W, Ribaudo RK et al (1997) Multiple dimeric forms of human CD69 result from differential addition of Nglycans to typical (Asn–X–Ser/Thr) and atypical (Asn–X–Cys) glycosylation motifs. J Biol Chem 272:23117–23122Google Scholar
  81. 81.
    Kelleher NL, Lin H, Valaskovic G et al (1999) Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 121:806–812Google Scholar
  82. 82.
    Kelleher NL (2004) Top-down proteomics. Anal Chem 76:196A–203AGoogle Scholar
  83. 83.
    Reid GE, McLuckey SA (2002) ‘Top down’ protein characterization via tandem mass spectrometry. J Mass Spectrom 37:663–675Google Scholar
  84. 84.
    Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4:817–821Google Scholar
  85. 85.
    Ling V, Guzzetta AW, Canova-Davis E et al (1991) Characterization of the tryptic map of recombinant DNA derived tissue plasminogen activator by high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 63:2909–2915Google Scholar
  86. 86.
    Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884Google Scholar
  87. 87.
    Amon S, Alina D, Zamfir AD et al (2008) Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 29:2485–2507Google Scholar
  88. 88.
    Alving K, Körner R, Paulsen H et al (1998) Nanospray-ESI low-energy CID and MALDI post-source decay for determination of O-glycosylation sites in MUC4 peptides. J Mass Spectrom 33:1124–1133Google Scholar
  89. 89.
    Hunt DF, Shabanowitz J, Yates JR et al (1986) Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins. Proc Natl Acad Sci USA 83:6233–6237Google Scholar
  90. 90.
    Mechref Y, Madera M, Novotny MV (2009) Assigning glycosylation sites and microheterogeneities in glycoproteins by liquid chromatography/tandem mass spectrometry. Methods Mol Biol 492:161–180Google Scholar
  91. 91.
    Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044Google Scholar
  92. 92.
    Temporini C, Calleri E, Massolini G et al (2008) Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. Mass Spectrom Rev 27:207–236Google Scholar
  93. 93.
    Drake RR, Schwegler EE, Malik G et al (2006) Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 5:1957–1967Google Scholar
  94. 94.
    Alvarez-Manilla G, Atwood J III, Guo Y et al (2006) Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 5:701–708Google Scholar
  95. 95.
    Tajiri M, Yoshida S, Wada Y (2005) Differential analysis of site-specific glycans on plasma and cellular fibronectins: Application of a hydrophilic affinity method for glycopeptides enrichment. Glycobiology 15(12):1332–1340Google Scholar
  96. 96.
    Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76:6560–6565Google Scholar
  97. 97.
    Hägglund P, Bunkenborg J, Elortza F et al (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566Google Scholar
  98. 98.
    Liu X, Li X, Chan K et al (2007) One- pot methylation in glycomics application: esterification of sialic acids and permanent charge construction. Anal Chem 79:3894–3900Google Scholar
  99. 99.
    Larsen MR, Højrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4:107–119Google Scholar
  100. 100.
    Brittain SM, Ficarro SB, Brock A et al (2005) Enrichment analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat Biotechnol 23:463–468Google Scholar
  101. 101.
    Mirzaei H, Regnier F (2005) Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry. Anal Chem 77:2386–2392Google Scholar
  102. 102.
    Zhang W, Zhou G, Zhao Y et al (2003) Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis 24:2855–2863Google Scholar
  103. 103.
    Zhang H, Yi EC, Li XJ (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 4:144–155Google Scholar
  104. 104.
    Zhao Y, Zhang W, Kho Y et al (2004) Proteomic analysis of integral plasma membrane proteins. Anal Chem 76:1817–1823Google Scholar
  105. 105.
    Bailey MJ, Hooker AD, Adams CS et al (2005) A platform for high-throughput molecular characterization of recombinant monoclonal antibodies. J Chromatogr B 826:177–187Google Scholar
  106. 106.
    Bundy JL, Fenselau C (2001) Lectin and carbohydrate affinity surfaces for mass spectrometric analysis of microorganisms. Anal Chem 73:751–757Google Scholar
  107. 107.
    Xiong L, Andrews D, Regnier F (2003) Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J Proteome Res 2:618–625Google Scholar
  108. 108.
    Madera M, Mechref Y, Novotny MV (2005) Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem 77:4081–4090Google Scholar
  109. 109.
    Bedair M, El Rassi Z (2005) Affinity chromatography with monolithic capillary columns II. Polymethacrylate monoliths with immobilized lectins for the separation of glycoconjugates by nano-liquid affinity chromatography. J Chromatogr A 1079:236–245Google Scholar
  110. 110.
    Okanda FM, El Rassi Z (2006) Affinity chromatography with monolithic capillary columns for glycomics/proteomics: 1. polymethacrylate monoliths with immobilized lectins for glycoprotein separation by affinity capillary electrochromatography and affinity nano-liquid chromatography in either a single column or columns coupled in series. Electrophoresis 27:1020–1030Google Scholar
  111. 111.
    Mao X, Luo Y, Dai Z et al (2004) Integrated lectin affinity microfluidic chip for glycoform separation. Anal Chem 76:6941–6947Google Scholar
  112. 112.
    Budnik BA, Lee RS, Steen JA (2006) Review Global methods for protein glycosylation analysis by mass spectrometry. Biochim Biophys Acta 1764:1870–1880Google Scholar
  113. 113.
    Wang L, Li F, Sun W et al (2006) Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics 5:560–562Google Scholar
  114. 114.
    Kaji H, Saito H, Yamauchi Y et al (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21:667–672Google Scholar
  115. 115.
    Madera M, Mechref Y, Klouckova I et al (2007) High-sensitivity profiling of glycoproteins from human blood serum through multiple- lectin affinity chromatography and liquid chromatography/tandem mass spectrometry. J Chromatogr B 845:121–137Google Scholar
  116. 116.
    Cummings RD, Kornfeld S (1984) The distribution of repeating [Gal beta 1, 4GlcNAc beta 1, 3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. J Biol Chem 259:6253–6260Google Scholar
  117. 117.
    Yang Z, Hancock WS (2004) Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A 1053:79–88Google Scholar
  118. 118.
    Qiu R, Regnier FE (2005) Use of multidimensional lectin affinity chromatography in differential glycoroteomics. Anal Chem 77:2802–2809Google Scholar
  119. 119.
    Sumi S, Arai K, Kitahara S et al (1999) Serial lectin affinity chromatography demonstrates altered asparagine-linked sugar-chain structures of prostate-specific antigen in human prostate carcinoma. J Chromatogr B 727:9–14Google Scholar
  120. 120.
    Xiong L, Regnier FE (2002) Use of a lectin affinity selector in the search for unusual glycosylation in proteomics. J Chromatogr, B: Anal Technol Biomed Life Sci 782:405–418Google Scholar
  121. 121.
    Yang Z, Hancock WS (2005) Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. J Chromatogr A 1070:57–64Google Scholar
  122. 122.
    Wang Y, Wu S, Hancock WS (2006) Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap Fourier transform mass spectrometry. Glycobiology 16:514–523Google Scholar
  123. 123.
    Yue GE, Roper MG, Balchunas C et al (2006) Protein digestion and phosphopeptides enrichment on glass microchip. Anal Chim Acta 564:116–122Google Scholar
  124. 124.
    Madera M, Mechref Y, Klouckova I et al (2006) Semiautomated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry. J Proteome Res 5:2348–2363Google Scholar
  125. 125.
    Guzman NA, Phillips TM (2005) Immunoaffinity CE for proteomics studies. Anal Chem 77:60A–67AGoogle Scholar
  126. 126.
    Benavente F, Hernández E, Guzman NA et al (2007) Determination of human erythropoietin by on-line immunoaffinity capillary electrophoresis: a preliminary report. Anal Bioanal Chem 387:2633–2639Google Scholar
  127. 127.
    An HJ, Peavy TR, Hedrick JL et al (2003) Determination of N- glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 75:5628–5637Google Scholar
  128. 128.
    Temporini C, Perani E, Calleri E et al (2007) Pronase-immobilized enzyme reactor: an approach for automation in glycoprotein analysis by LC/LC-ESI/MSn. Anal Chem 79:355–363Google Scholar
  129. 129.
    Jebanathirajah J, Steen H, Roepstorff P (2003) Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J Am Soc Mass Spectrom 14:777–784Google Scholar
  130. 130.
    Zhang H, Li XJ, Martin DB et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666Google Scholar
  131. 131.
    Khidekel N, Arndt S, Lamarre-Vincent N et al (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125:16162–16163Google Scholar
  132. 132.
    Sprung R, Nandi A, Chen Y et al (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4:950–957Google Scholar
  133. 133.
    Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010Google Scholar
  134. 134.
    Khidekel N, Ficarro SB, Peters EC et al (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci USA 101:13132–13137Google Scholar
  135. 135.
    Lamarre-Vincent N, Hsieh-Wilson LC (2003) Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J Am Chem Soc 125:6612–6613Google Scholar
  136. 136.
    Zhang Y, Wolf-Yadlin A, Ross PL et al (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250Google Scholar
  137. 137.
    Vocadlo DJ, Hang HC, Kim EJ et al (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci USA 100:9116–9121Google Scholar
  138. 138.
    Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430:873–877Google Scholar
  139. 139.
    Kho Y, Kim SC, Jiang C et al (2004) A tagging-via- substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci USA 101:12479–12484Google Scholar
  140. 140.
    Wells L, Vosseller K, Cole RN et al (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804Google Scholar
  141. 141.
    Vosseller K, Hansen KC, Chalkley RJ et al (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5:388–398Google Scholar
  142. 142.
    Wuhrer M, Catalina MI, Deelder AM et al (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128Google Scholar
  143. 143.
    Carr SA, Hemling ME, Bean MF et al (1991) Integration of mass spectrometry in analytical biotechnology. Anal Chem 63:2802–2824Google Scholar
  144. 144.
    Burlingame AL (1996) Characterization of protein glycosylation by mass spectrometry. Curr Opin Biotechnol 7:4–10Google Scholar
  145. 145.
    Carr SA, Roberts GD (1986) Carbohydrate mapping by mass spectrometry: a novel method for identifying attachment sites of Asn-linked sugars in glycoproteins. Anal Biochem 157:396–406Google Scholar
  146. 146.
    Küster B, Mann M (1999) 18O-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal Chem 71:1431–1440Google Scholar
  147. 147.
    Leonard CK, Spellman MW, Riddle L et al (1990) Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265:10373–10382Google Scholar
  148. 148.
    Carr SA, Roberts GD, Jurewicz A et al (1998) Structural fingerprinting of Asn-linked carbohydrates from specific attachment sites in glycoproteins by mass spectrometry: application to tissue plasminogen activator. Biochimie 70:1445–1454Google Scholar
  149. 149.
    Guzzetta AW, Basa LJ, Hancock WS et al (1993) Identification of carbohydrate structures in glycoprotein peptide maps by the use of LC/MS with selected ion extraction with special reference to tissue plasminogen activator and a glycosylation variant produced by site directed mutagenesis. Anal Chem 65:2953–2962Google Scholar
  150. 150.
    Jiang H, Wu SL, Karger BL et al (2010) Characterization of the glycosylation occupancy and the active site in the follow-on protein therapeutic: TNK-tissue plasminogen activator. Anal Chem 82:6154–6162Google Scholar
  151. 151.
    Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409Google Scholar
  152. 152.
    Carr SA, Huddleston MJ, Bean MF (1993) Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 2:183–196Google Scholar
  153. 153.
    Harvey DJ, Bateman RH, Bordoli RS et al (2000) Ionization and fragmentation of complex glycans with a quadrupole time-of-flight mass spectrometer fitted with a matrix-assisted laser desorption/ionization ion source. Rapid Commun Mass Spectrom 14:2135–2142Google Scholar
  154. 154.
    Borisov OV, Field M, Ling VT et al (2009) Characterization of Oligosaccharides in recombinant tissue plasminogen activator produced in Chinese hamster ovary cells: Two decades of analytical technology development. Anal Chem 81:9744–9754Google Scholar
  155. 155.
    Demelbauer UM, Zehl M, Plematl A et al (2004) Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun Mass Spectrom 18(14):1575–1582Google Scholar
  156. 156.
    Bones J, McLoughlin N, Hilliard M et al (2011) 2D-LC Analysis of BRP 3 Erythropoietin N-Glycosylation using anion exchange fractionation and hydrophilic interaction UPLC reveals long Poly-N-Acetyl lactosamine extensions. Anal Chem 83:4154–4162Google Scholar
  157. 157.
    Harazono A, Kawasaki N, Itoh S et al (2006) Site-speciWc N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Biochem 348:259–268Google Scholar
  158. 158.
    Schmitt S, Glebe D, Alving K et al (1999) Analysis of the Pre-S2 N- and O-Linked Glycans of the M surface protein from human hepatitis B virus. J Biol Chem 274:11945–11957Google Scholar
  159. 159.
    Zubarev RA, Horn DM, Fridriksson EK et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573Google Scholar
  160. 160.
    Kjeldsen F, Haselmann KF, Budnik BA et al (2002) Dissociative capture of hot (3–13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chem Phys Lett 356:201–206Google Scholar
  161. 161.
    Kjeldsen F, Haselmann KF, Budnik BA et al (2003) Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. Anal Chem 75(10):2355–2361Google Scholar
  162. 162.
    Mikesh LM, Ueberheide B, Chi A et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764(12):1811–1822Google Scholar
  163. 163.
    Schroeder MJ, Webb DJ, Shabanowitz J et al (2005) Methods for the detection of paxillin post-translational modifications and interacting proteins by mass spectrometry. J Proteome Res 4(5):1832–1841Google Scholar
  164. 164.
    Hogan JM, Pitteri SJ, Chrisman PA et al (2005) Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 4(2):628–632Google Scholar
  165. 165.
    Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier Transform mass spectrometer. Anal Chem 71:4431–4436Google Scholar
  166. 166.
    Perdivara I, Petrovich R, Allinquant B et al (2009) Elucidation of O-Glycosylation structures of the β-Amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision-induced dissociation. J Proteom Res 8:631–642Google Scholar
  167. 167.
    Wu SL, Huhmer AF, Hao Z et al (2007) On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with posttranslational modifications. J Proteome Res 6(11):4230–4244Google Scholar
  168. 168.
    Tsarbopoulos A, Bahr U, Pramanik BN et al (1997) Glycoprotein Analysis by Delayed extraction and post-source decay MALDI TOF MS. Int J Mass Spectrom Ion Process 169(170):251–261Google Scholar
  169. 169.
    Wuhrer M, Hokke CH, Deelder AM (2004) Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation. Rapid Commun Mass Spectrom 18:1741–1748Google Scholar
  170. 170.
    Bykova NV, Rampitsch C, Krokhin O et al (2006) Determination and characterization of site-specific N-Glycosylation using MALDI-Qq-TOF tandem mass spectrometry: case study with a plant protease. Anal Chem 78:1093–1103Google Scholar
  171. 171.
    Kurogochi M, Matsushita T, Nishimura SI (2004) Post-translational modifications on proteins: facile and efficient procedure for the identification of O-Glycosylation sites by MALDI-LIFT-TOF/TOF mass spectrometry. Angew Chem Int Ed Engl 43:4071–4075Google Scholar
  172. 172.
    Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–451Google Scholar
  173. 173.
    Zaia J (2010) Mass spectrometry and glycomics. OMICS 14(4):401–418Google Scholar
  174. 174.
    Wormald MR, Petrescu AJ, Pao Y-L et al (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386Google Scholar
  175. 175.
    Koerner TA, Yu RK, Scarsdale JN et al (1988) Analysis of complex carbohydrate primary and secondary structure via two-dimensional proton nuclear magnetic resonance spectroscopy. Adv Exp Med Biol 228:759–784Google Scholar
  176. 176.
    Perez S, Mulloy B (2005) Prospects for glycoinformatics. Curr Opin Struct Biol 15:517–524Google Scholar
  177. 177.
    Aoki-Kinoshita KF (2008) An introduction to bioinformatics for glycomics research. PLoS Comput Biol. doi: 10.1371/journal.pcbi.1000075 Google Scholar
  178. 178.
    von der Lieth CW, Lütteke T, Frank M (2006) The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochim Biophys Acta 1760:568–577Google Scholar
  179. 179.
    Cooper CA, Gasteiger E, Packer NH (2001) GlycoMod-a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1:340–349Google Scholar
  180. 180.
    Go EP, Rebecchi KR, Dalpathado DS et al (2007) GlycoPep DB: a tool for glycopeptide analysis using a “smart search”. Anal Chem 79:1708–1713Google Scholar
  181. 181.
    Goldberg D, Sutton-Smith M, Paulson J et al (2005) Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. Proteomics 5:865–875Google Scholar
  182. 182.
    Goldberg D, Bern M, Parry S et al (2007) Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res 6:3995–4005Google Scholar
  183. 183.
    Ozohanics O, Krenyacz J, Ludanyi K et al (2008) GlycoMiner: a new software tool to elucidate glycopeptide composition. Rapid Commun Mass Spectrom 22:3245–3254Google Scholar
  184. 184.
    An HJ, Tillinghast JS, Woodruff DL et al (2006) A new computer program (GlycoX) to determine simultaneously the glycosylation sites and oligosaccharide heterogeneity of glycoproteins. J Proteome Res 5:2800–2808Google Scholar
  185. 185.
    Ren JM, Rejtar T, Li L et al (2007) N-Glycan structure annotation of glycopeptides using a linearized glycan structure database (GlyDB). J Proteome Res 6:3162–3173Google Scholar
  186. 186.
    Irungu J, Go EP, Dalpathado DS et al (2007) Simplification of mass spectral analysis of acidic glycopeptides using GlycoPep ID. Anal Chem 79:3065–3074Google Scholar
  187. 187.
    Hizukuri Y, Yamanishi Y, Nakamura O et al (2005) Extraction of leukemia specific glycan motifs in humans by computational glycomics. Carbohydr Res 340:2270–2278Google Scholar
  188. 188.
    Aoki K, Yamaguchi A, Ueda N et al (2004) KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Res 32:W267–W272Google Scholar
  189. 189.
    Aoki K, Mamitsuka H, Akutsu T et al (2005) A score matrix to reveal the hidden links in glycans. Bioinformatics 21:1457–1463Google Scholar
  190. 190.
    Hashimoto K, Goto S, Kawano S et al (2006) KEGG as a glycome informatics resource. Glycobiology 6:63R–70RGoogle Scholar
  191. 191.
    Creighton TE (1984) Disulfide bond formation in proteins. In: Wold F, Moldave K (eds) Methods in enzymology, vol 107. Academic Press, San Diego, p 305Google Scholar
  192. 192.
    Dranoff G (2009) Targets of protective tumor immunity. Ann NY Acad Sci 1174:74–80Google Scholar
  193. 193.
    Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468Google Scholar
  194. 194.
    Wess J, Han SJ, Kim SK et al (2008) Conformational changes involved in G-protein-coupled-receptor activation. Trends Pharmacol Sci 29:616–625Google Scholar
  195. 195.
    Thornton JM (1981) Disulphide bridges in globular proteins. J Mol Biol 151:261–287Google Scholar
  196. 196.
    Welker E, Raymond LD, Scheraga HA et al (2002) Intramolecular versus intermolecular disulfide bonds in prion proteins. J Biol Chem 277:33477–33481Google Scholar
  197. 197.
    Tsarbopoulos A, Pramanik B, Labdon J et al (1993) Isolation and characterization of a resistant core peptide of recombinant human Granulocyte-Macrophage colony-stimulating factor (GM-CSF); confirmation of the GM-CSF amino acid sequence by mass spectrometry. Protein Sci 2:1948–1958Google Scholar
  198. 198.
    Gorman JJ, Wallis TP, Pitt JJ (2002) Protein disulfide bond determination by mass spectrometry. Mass Spectrom Rev 21:183–216Google Scholar
  199. 199.
    Barber M, Bordoli RS, Sedgwick RD et al (1981) Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry. J Chem Soc, Chem Commun 7:325–327Google Scholar
  200. 200.
    Morris HR, Pucci P (1985) A new method for rapid assignment of S-S bridges in proteins. Biochem Biophys Res Commun 126:1122–1128Google Scholar
  201. 201.
    Smith DL, Zhou Z (1990) Strategies for locating disulfide bonds in proteins. In: McCloskey JA (ed) Methods in enzymology, vol 193. Academic Press, New York, p 374Google Scholar
  202. 202.
    Sundqvist B, Roepstorff P, Fohlman J et al (1984) Molecular weight determination of proteins by californium plasma desorption mass spectrometry. Science 226:696–698Google Scholar
  203. 203.
    Tsarbopoulos A, Becker GW, Occolowitz JL et al (1988) Peptide and protein mapping by 252Cf-Plasma desorption mass spectrometry. Anal Biochem 171:113–123Google Scholar
  204. 204.
    Robertson JG, Adams GW, Medzihradszky KF et al (1994) Complete assignment of disulfide bonds in bovine dopamine beta-hydroxylase. Biochemistry 33:11563–11575Google Scholar
  205. 205.
    Pramanik BN, Tsarbopoulos A, Labdon JE et al (1991) Structural analysis of biologically active peptides and recombinant proteins and their modified counterparts by mass spectrometry. J Chromatogr 562:377–389Google Scholar
  206. 206.
    Chen G, Liu YH, Pramanik BN (2007) LC/MS analysis of proteins and peptides in drug discovery. In: Kazakevich Y, LoBrutto R (eds) HPLC for pharmaceutical scientists. Wiley, New YorkGoogle Scholar
  207. 207.
    Tsarbopoulos A, Karas M, Strupat K et al (1994) Comparative mapping of recombinant proteins and glycoproteins by plasma desorption and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 66:2062–2070Google Scholar
  208. 208.
    Patterson SD, Katta V (1994) Prompt fragmentation of disulfide-linked peptides during matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 66:3727–3732Google Scholar
  209. 209.
    Sanger F (1953) A disulphide interchange reaction. Nature 171:1025–1026Google Scholar
  210. 210.
    Yazdanparast R, Andrews PC, Smith DL et al (1987) Assignment of disulfide bonds in proteins by fast atom bombardment mass spectrometry. J Biol Chem 262:2507–2513Google Scholar
  211. 211.
    Tsarbopoulos A, Varnerin J, Cannon-Carlson S et al (2000) Mass spectrometric mapping of disulfide bonds in recombinant human Interleukin-13. J Mass Spectrom 35:446–453Google Scholar
  212. 212.
    Sun Y, Bauer MD, Keough TW et al (1996) Disulfide bond location in proteins. Methods Mol Biol 61:181–210Google Scholar
  213. 213.
    Bauer M, Sun Y, Degenhardt C et al (1993) Assignment of all four disulfide bridges in echistatin. J Prot Chem 12:759–764Google Scholar
  214. 214.
    Bean MF, Carr SA (1992) Characterization of disulfide positions in proteins and sequence analysis of cystine-bridged peptides by tandem mass spectrometry. Anal Biochem 201:216–226Google Scholar
  215. 215.
    Pitt JJ, Da Silva E, Gorman JJ (2000) Determination of the disulfide bond arrangement of new castle disease virus hemagglutinin neuraminidase, correlation with a beta-sheet propeller structural fold predicted for paramyxoviridae attachment proteins. J Biol Chem 275:6469–6478Google Scholar
  216. 216.
    Gorman JJ, Ferguson BL, Speelman D et al (1997) Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci 6:1308–1315Google Scholar
  217. 217.
    Angal S, King DJ, Bodmer MW et al (1993) A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 30:105–108Google Scholar
  218. 218.
    Wang Y, Lu Q, Wu SL et al (2011) Characterization and comparison of disulfide linkages and scrambling patterns in therapeutic monoclonal antibodies: using LC-MS with electron transfer dissociation. Anal Chem 83:3133–3140Google Scholar
  219. 219.
    Wu SL, Jiang H, Hancock WS et al (2010) Identification of the unpaired cysteine status and complete mapping of the 17 disulfides of recombinant tissue plasminogen activator using LC-MS with Electron transfer dissociation/collision induced dissociation. Anal Chem 82:5296–5303Google Scholar
  220. 220.
    Bagal D, Valliere-Douglass JF, Balland A et al (2010) Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry. Anal Chem 82:6751–6755Google Scholar
  221. 221.
    Wallis TP, Pitt JJ, Gorman JJ (2001) Identification of disulfide-linked peptides by isotope profiles produced by peptic digestion of proteins in 50 % (18) O water. Protein Sci 10:2251–2271Google Scholar
  222. 222.
    Rose K, Savoy LA, Simona MG et al (1988) C-terminal peptide identification by fast atom bombardment mass spectrometry. Biochem J 250:253–259Google Scholar
  223. 223.
    Dwek MV, Ross HA, Leathem AJ (2001) Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer. Proteomics 1:756–762Google Scholar
  224. 224.
    Rudd PM, Elliott T, Cresswell P et al (2001) Glycosylation and the immune system. Science 291:2370–2376Google Scholar
  225. 225.
    Peracaula R, Tabares G, Royle L et al (2003) Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 13:457–470Google Scholar
  226. 226.
    Butler M, Quelhas D, Critchley AJ et al (2003) Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13:601–622Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of Athens Medical SchoolAthensGreece
  2. 2.Bioanalytical DepartmentThe Goulandris Natural History MuseumKifissiaGreece

Personalised recommendations