Skip to main content

Post-Translationally Modified Proteins: Glycosylation and Disulfide Bond Formation

  • Chapter
  • First Online:
Book cover Characterization of Protein Therapeutics using Mass Spectrometry

Abstract

Even though most medicines have historically been small molecules, many newly approved drugs over the last two decades have been derived from proteins. For the past few years, protein therapeutics have been enjoying the fastest growth within the global pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEC:

Anion-Exchange Chromatography

BEMAD:

β-Elimination followed by Michael Addition with Dithiothreitol

CE:

Capillary Electrophoresis

CHO:

Chinese Hamster Ovary

CHO IL-4:

CHO-derived Interleukin-4

CDG:

Congenital Disorders of Glycosylation

CDT:

Carbohydrate-Deficient Transferrin

CID:

Collision-Induced Dissociation

ConA:

Concanavalin A

CFG:

Consortium for Functional Glycomics

CZE:

Capillary Zone Electrophoresis

CREB:

cAMP-responsive Element-Binding Factor

DHB:

2,5-Dihydroxybenzoic acid

ECD:

Electron-Capture Dissociation

ESI:

Electrospray Ionization

ETD:

Electron-Transfer Dissociation

FAB:

Fast Atom Bombardment

FT ICR:

Fourier Transform Ion Cyclotron Resonance

GCC:

Graphitized Carbon Columns

HILIC:

Hydrophilic Interaction Chromatography

HPA:

3-hydroxypicolinic acid

HPLC:

High-Performance Liquid Chromatography

HPV:

Human Papillomavirus

HRP:

Horseradish Peroxidase

IL-4:

Interleukin-4

IL-4R:

Interleukin-4 receptor

IL-5Rα:

Interleukin-5 receptor α-subunit

IA:

Immunoaffinity

IM:

Ion Mobility

IT:

Ion Trap

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LAC:

Lectin Affinity Chromatography

LC:

Liquid Chromatography

LC–MS:

Liquid Chromatography–Mass Spectrometry

LSI:

Liquid Secondary Ion

mAb:

Monoclonal Antibodies

MALDI:

Matrix-Assisted Laser Desorption/Ionization

M-LAC:

Multi-Lectin Affinity Chromatography

Mr :

Molecular Weight

MS:

Mass Spectrometry

MS/MS:

Tandem Mass Spectrometry

m/z:

Mass-to-charge ratio

nESI:

Nano-Electrospray Ionization

NMR:

Nuclear Magnetic Resonance

oTOF:

Orthogonal Time-of-Flight

PAS:

Periodate-acid-Schiff

PD:

Plasma Desorption

PGC:

Porous Graphitized Carbon Chromatography

PSA:

Pisum Sativum Agglutinin

PSD:

Post-Source Decay

PTMs:

Post-Translational Modifications

rHuEPO:

Recombinant Human Erythropoietin

r-RhCG:

Recombinant human Chorionic Gonadotrophin

rtPA:

Recombinant Tissue Plasminogen Activator

QTOF:

Quadrupole Time-of-Flight

sAPP:

Secreted Amyloid Precursor Protein

sDHB:

2,5-Dihydroxybenzoic acid (DHB) with a 10 % admixture of 2-hydroxy-5-methoxybenzoic acid (super DHB)

SEC:

Size-Exclusion Chromatography

SIM:

Selected Ion Monitoring

SLAC:

Serial Affinity Chromatography

SPE:

Solid-Phase Extraction

TAS:

Tagging-via-Substrate

Tf:

Human Transferrin Glycoprotein

TOF:

Time-of-Flight

uPAR:

Urokinase-type Plasminogen Activator Receptor

UPLC:

Ultra-Performance Liquid Chromatography

WGA:

Wheat Germ Agglutinin

References

  1. Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24(7):769–776

    CAS  Google Scholar 

  2. Aggarwal S (2007) What’s fueling the biotech engine? Nat Biotechnol 25(10):1097–1104

    CAS  Google Scholar 

  3. Roach P, Woodworth JR (2002) Clinical pharmacokinetics and pharmacodynamics of insulin lispro mixtures. Clin Pharmacokinet 41:1043–1057

    CAS  Google Scholar 

  4. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    CAS  Google Scholar 

  5. Collins MO, Yu L, Choudhary JS (2007) Analysis of protein phosphorylation on a proteome-scale. Proteomics 7:2751–2768

    CAS  Google Scholar 

  6. Wedemeyer WJ, Welker E, Narayan M et al (2000) Disulfide bonds and protein folding. Biochemistry 39:4207–4216

    CAS  Google Scholar 

  7. Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82:111–121

    CAS  Google Scholar 

  8. Hunter T (2000) Signaling-2000 and beyond. Cell 100:113–127

    CAS  Google Scholar 

  9. Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4:E127–E130

    CAS  Google Scholar 

  10. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    CAS  Google Scholar 

  11. Li H, d’Anjou M (2009) Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol 20:678–684

    CAS  Google Scholar 

  12. CPMP/ICH harmonised tripartite guideline Q6B (1999) Specifications: test procedures and acceptance criteria for biotechnological/biological products. March 1999 and EMA guideline (2010) requirements for quality documentation concerning biological investigational medicinal products in clinical trials. February 2010

    Google Scholar 

  13. Whitehouse CM, Dreyer RN, Yamashita M et al (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    CAS  Google Scholar 

  14. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    CAS  Google Scholar 

  15. Smith RD, Udseth H (1988) Capillary zone electrophoresis-MS. Nature 331:639–640

    CAS  Google Scholar 

  16. Kelly JF, Locke SJ, Ramaley L et al (1996) Development of electrophoretic conditions for the characterization of protein glycoforms by capillary electrophoresis-electrospray mass spectrometry. J Chromatogr A 720:409–427

    CAS  Google Scholar 

  17. Karas M, Bachmann D, Bahr U et al (1987) Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int J Mass Spectrom Ion Process 78:53–68

    CAS  Google Scholar 

  18. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    CAS  Google Scholar 

  19. Hancock WS, Wu SL, Shieh P (2002) The challenges of developing a sound proteomics strategy. Proteomics 2:352–359

    CAS  Google Scholar 

  20. Larsen MR, Trelle MB, Thingholm TE et al (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40:790–798

    CAS  Google Scholar 

  21. Covey T, Shushan B, Bonner R, Schröder W, Hucho F (1991) Methods in protein sequence analysis. In: Jörnvall H, Höög JO, Gustavsson AM (eds) LC/MS and LC/MS/MS screening of the sites of posttranslational modification in proteins. Birkhäuser Press, Basel

    Google Scholar 

  22. Dell A, Morris HR (2001) Glycoprotein structure determination by mass spectrometry. Science 291:2351–2356

    CAS  Google Scholar 

  23. Bateman RH, Carruthers R, Hoye JB et al (2002) A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom 13:792–803

    CAS  Google Scholar 

  24. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266

    CAS  Google Scholar 

  25. Syka JE, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533

    CAS  Google Scholar 

  26. Wu SL, Jiang H, Lu Q et al (2009) Mass spectrometric determination of disulfide linkages in recombinant therapeutic proteins using online LC-MS with electron-transfer dissociation. Anal Chem 81:112–122

    CAS  Google Scholar 

  27. Wang D, Hincapie M, Rejtar T et al (2011) Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry. Anal Chem 83(6):2029–2037

    CAS  Google Scholar 

  28. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    CAS  Google Scholar 

  29. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptides bonds. Glycobiology 12:43R–56R

    CAS  Google Scholar 

  30. Schachter H (2001) The clinical relevance of glycobiology. J Clin Invest 108:1579–1582

    CAS  Google Scholar 

  31. Dwek MV, Brooks SA (2004) Harnessing changes in cellular glycosylation in new cancer treatment strategies. Curr Cancer Drug Targets 4:425–442

    CAS  Google Scholar 

  32. Wuhrer M (2007) Glycosylation profiling in clinical proteomics: heading for glycan biomarkers. Expert Rev Proteomics 4:135–136

    CAS  Google Scholar 

  33. Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488

    CAS  Google Scholar 

  34. Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542

    CAS  Google Scholar 

  35. An HJ, Kronewitter SR, de Leoz ML et al (2009) Glycomics and disease markers. Curr Opin Chem Biol 13:601–607

    CAS  Google Scholar 

  36. Niwa T (2006) Mass spectrometry for the study of protein glycation in disease. Mass Spectrom Rev 25:713–723

    CAS  Google Scholar 

  37. Morelle W, Canis K, Chirat F et al (2006) The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 6:3993–4015

    CAS  Google Scholar 

  38. Bennett CS, Dean SM, Payne RJ et al (2008) Sugar-assisted glycopeptide ligation with complex oligosaccharides: scope and limitations. J Am Chem Soc 130:11945–11952

    CAS  Google Scholar 

  39. Novotny MV, Mechref Y (2005) New hyphenated methodologies in high sensitivity glycoprotein analysis. J Sep Sci 28:1956–1968

    CAS  Google Scholar 

  40. Wuhrer M, Deedler AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B 825:124–133

    CAS  Google Scholar 

  41. Geyer H, Geyer R (2006) Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 1764:1853–1869

    CAS  Google Scholar 

  42. Mariño K, Bones J, Kattla JJ et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol: 713–723

    Google Scholar 

  43. North SJ, Hitchen PG, Haslam SM et al (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 19:498–506

    CAS  Google Scholar 

  44. Axford J (2001) The impact of glycobiology on medicine. Trends Immunol 22:237–239

    CAS  Google Scholar 

  45. Mortz E, Sareneva T, Haebel S et al (1996) Mass spectrometric characterization of glycosylated interferon-gamma variants separated by gel electrophoresis. Electrophoresis 17:925–931

    CAS  Google Scholar 

  46. Nawarak J, Phutrakul S, Chen ST (2004) Analysis of lectin-bound glycoproteins in snake venom from the elapidae and viperidae families. J Proteom Res 3:383–392

    CAS  Google Scholar 

  47. Mechref Y, Novotny MV (2002) Structural investigations of glycoconjugates at high sensitivity. Chem Rev 102:321–369

    CAS  Google Scholar 

  48. Ramdani B, Nuyens V, Codden T et al (2003) Analyte comigrating with trisialotransferrin during capillary zone electrophoresis of sera from patients with cancer. Clin Chem 49:1854–1864

    CAS  Google Scholar 

  49. Smith RD, Loo JA, Edmonds CG et al (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 62:882–899

    CAS  Google Scholar 

  50. Tsarbopoulos A, Pramanik BN, Nagabhushan TL et al (1995) Structural analysis of the CHO-derived interleukin-4 by liquid-chromatography/electrospray ionization mass spectrometry. J Mass Spectrom 30:1752–1763

    CAS  Google Scholar 

  51. Tsarbopoulos A, Bahr U, Karas M, Pramanik BN (2002) Structural analysis of glycoproteins by electrospray ionization mass spectrometry. In: Pramanik BN, Ganguly AK, Gross ML (eds) Applied electrospray mass spectrometry. Marcel Dekker, New York

    Google Scholar 

  52. Duffin KL, Welply JK, Huang E et al (1992) Characterization of N-linked oligosaccharides by electrospray and tandem mass spectrometry. Anal Chem 64:1440–1448

    CAS  Google Scholar 

  53. Rajan N, Tsarbopoulos A, Kumarasamy R et al (1995) Characterization of recombinant human interleukin-4 receptor from CHO cells: Role of N-linked oligosaccharides. Biochem Biophys Res Commun 206:694–702

    CAS  Google Scholar 

  54. Rush RS, Derby PL, Smith DM et al (1995) Microheterogeneity of erythropoietin carbohydrate structure. Anal Chem 67:1442–1452

    CAS  Google Scholar 

  55. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    CAS  Google Scholar 

  56. Verentchikov AN, Ens W, Standing KG (1994) Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction. Anal Chem 66:99–107

    Google Scholar 

  57. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162

    CAS  Google Scholar 

  58. Olivova P, Chen W, Chakraborty AB et al (2008) Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:29–40

    CAS  Google Scholar 

  59. Benesch JLP, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Current Opin Struct Biol 16:245–251

    CAS  Google Scholar 

  60. Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32:577–592

    CAS  Google Scholar 

  61. Carter P, Presta L, Gorman CM et al (1992) Humanization of an Anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289

    CAS  Google Scholar 

  62. Damen CWN, Chen W, Chakraborty AB et al (2009) Electrospray ionization quadrupole ion-Mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-Glycosylation profile of the therapeutic monoclonal antibody Trastuzumab. J Amer Soc Mass Spectrom 20:2021–2033

    CAS  Google Scholar 

  63. Dube S, Fisher JW, Powell JS (1988) Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion and biological function. J Biol Chem 263:17516–17521

    CAS  Google Scholar 

  64. Delorme E, Lorenzini T, Giffin J et al (1992) Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31:9871–9876

    CAS  Google Scholar 

  65. Ploug M, Rahbek-Nielsen H, Nielsen PF et al (1998) Glycosylation profile of a recombinant urokinase-type plasminogen activator receptor expressed in Chinese hamster ovary cells. J Biol Chem 273(22):13933–13943

    CAS  Google Scholar 

  66. Tsarbopoulos A, Prongay A, Baldwin S et al (1996) Mass spectrometric analysis of the Sf9 cell-derived interleukin-5 Receptor. In: Proceedings of the 44th ASMS conference on mass spectrometry and allied topics, Portland: 12–16 May

    Google Scholar 

  67. Karas M, Bahr U, Strupat K et al (1995) Matrix dependence of metastable fragmentation of glycoproteins in MALDI TOF mass spectrometry. Anal Chem 67:675–679

    CAS  Google Scholar 

  68. Giménez E, Benavente F, Barbosa J et al (2007) Towards a reliable molecular mass determination of intact glycoproteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21:2555–2563

    Google Scholar 

  69. Tsarbopoulos A, Pramanik BN, Karas M et al (1995) Factors affecting the choice of matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of glycoproteins. J Mass Spectrom: S207–S209

    Google Scholar 

  70. Liu CL, Bowers LD (1997) Mass spectrometric characterization of the β-subunit of human chorionic gonadotropin. J Mass Spectrom 32:33–42

    CAS  Google Scholar 

  71. Neusüb C, Demelbauer U, Pelzing M (2005) Glycoform characterization of intact erythropoietin by capillary electrophoresis-electrospray-time of flight-mass spectrometry. Electrophoresis 26:1442–1450

    Google Scholar 

  72. Demelbauer UM, Plematl A, Kremser L et al (2004) Characterization of glyco isoforms in plasma-derived human antithrombin by on-line capillary zone electrophoresis-electrospray ionization-quadrupole ion trap-mass spectrometry of the intact glycoproteins. Electrophoresis 25:2026–2032

    CAS  Google Scholar 

  73. Balaguer E, Demelbauer U, Pelzing M et al (2006) Glycoform characterization of erythropoietin combining glycan and intact protein analysis by capillary electrophoresis–electrospray–time-of-flight mass spectrometry. Electrophoresis 27:2638–2650

    CAS  Google Scholar 

  74. Balaguer E, Neususs C (2006) Glycoprotein characterization combining intact protein and glycan analysis by capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem 78:5384–5393

    CAS  Google Scholar 

  75. Thakur D, Rejtar T, Karger BL et al (2009) Profiling the glycoforms of the intact α subunit of recombinant human chorionic gonadotropin by high-resolution capillary electrophoresis-mass spectrometry. Anal Chem 81:8900–8907

    CAS  Google Scholar 

  76. Sanz-Nebot V, Balaguer E, Benavente F et al (2007) Characterization of transferrin glycoforms in human serum by CE-UV and CE-ESI-MS. Electrophoresis 28:1949–1957

    CAS  Google Scholar 

  77. Hang HC, Bertozzi CR (2005) The chemistry and biology of mucin-type Olinked glycosylation. Bioorg Med Chem 13:5021–5034

    CAS  Google Scholar 

  78. Wopereis S, Lefeber DJ, Morava E et al (2006) Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 52:574–600

    CAS  Google Scholar 

  79. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    CAS  Google Scholar 

  80. Vance BA, Wu W, Ribaudo RK et al (1997) Multiple dimeric forms of human CD69 result from differential addition of Nglycans to typical (Asn–X–Ser/Thr) and atypical (Asn–X–Cys) glycosylation motifs. J Biol Chem 272:23117–23122

    CAS  Google Scholar 

  81. Kelleher NL, Lin H, Valaskovic G et al (1999) Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 121:806–812

    CAS  Google Scholar 

  82. Kelleher NL (2004) Top-down proteomics. Anal Chem 76:196A–203A

    CAS  Google Scholar 

  83. Reid GE, McLuckey SA (2002) ‘Top down’ protein characterization via tandem mass spectrometry. J Mass Spectrom 37:663–675

    CAS  Google Scholar 

  84. Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4:817–821

    CAS  Google Scholar 

  85. Ling V, Guzzetta AW, Canova-Davis E et al (1991) Characterization of the tryptic map of recombinant DNA derived tissue plasminogen activator by high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 63:2909–2915

    CAS  Google Scholar 

  86. Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884

    CAS  Google Scholar 

  87. Amon S, Alina D, Zamfir AD et al (2008) Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 29:2485–2507

    CAS  Google Scholar 

  88. Alving K, Körner R, Paulsen H et al (1998) Nanospray-ESI low-energy CID and MALDI post-source decay for determination of O-glycosylation sites in MUC4 peptides. J Mass Spectrom 33:1124–1133

    CAS  Google Scholar 

  89. Hunt DF, Shabanowitz J, Yates JR et al (1986) Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins. Proc Natl Acad Sci USA 83:6233–6237

    CAS  Google Scholar 

  90. Mechref Y, Madera M, Novotny MV (2009) Assigning glycosylation sites and microheterogeneities in glycoproteins by liquid chromatography/tandem mass spectrometry. Methods Mol Biol 492:161–180

    CAS  Google Scholar 

  91. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    CAS  Google Scholar 

  92. Temporini C, Calleri E, Massolini G et al (2008) Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. Mass Spectrom Rev 27:207–236

    CAS  Google Scholar 

  93. Drake RR, Schwegler EE, Malik G et al (2006) Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 5:1957–1967

    CAS  Google Scholar 

  94. Alvarez-Manilla G, Atwood J III, Guo Y et al (2006) Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 5:701–708

    CAS  Google Scholar 

  95. Tajiri M, Yoshida S, Wada Y (2005) Differential analysis of site-specific glycans on plasma and cellular fibronectins: Application of a hydrophilic affinity method for glycopeptides enrichment. Glycobiology 15(12):1332–1340

    CAS  Google Scholar 

  96. Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76:6560–6565

    CAS  Google Scholar 

  97. Hägglund P, Bunkenborg J, Elortza F et al (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566

    Google Scholar 

  98. Liu X, Li X, Chan K et al (2007) One- pot methylation in glycomics application: esterification of sialic acids and permanent charge construction. Anal Chem 79:3894–3900

    CAS  Google Scholar 

  99. Larsen MR, Højrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4:107–119

    CAS  Google Scholar 

  100. Brittain SM, Ficarro SB, Brock A et al (2005) Enrichment analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat Biotechnol 23:463–468

    CAS  Google Scholar 

  101. Mirzaei H, Regnier F (2005) Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry. Anal Chem 77:2386–2392

    CAS  Google Scholar 

  102. Zhang W, Zhou G, Zhao Y et al (2003) Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis 24:2855–2863

    CAS  Google Scholar 

  103. Zhang H, Yi EC, Li XJ (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 4:144–155

    CAS  Google Scholar 

  104. Zhao Y, Zhang W, Kho Y et al (2004) Proteomic analysis of integral plasma membrane proteins. Anal Chem 76:1817–1823

    CAS  Google Scholar 

  105. Bailey MJ, Hooker AD, Adams CS et al (2005) A platform for high-throughput molecular characterization of recombinant monoclonal antibodies. J Chromatogr B 826:177–187

    CAS  Google Scholar 

  106. Bundy JL, Fenselau C (2001) Lectin and carbohydrate affinity surfaces for mass spectrometric analysis of microorganisms. Anal Chem 73:751–757

    CAS  Google Scholar 

  107. Xiong L, Andrews D, Regnier F (2003) Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J Proteome Res 2:618–625

    CAS  Google Scholar 

  108. Madera M, Mechref Y, Novotny MV (2005) Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem 77:4081–4090

    CAS  Google Scholar 

  109. Bedair M, El Rassi Z (2005) Affinity chromatography with monolithic capillary columns II. Polymethacrylate monoliths with immobilized lectins for the separation of glycoconjugates by nano-liquid affinity chromatography. J Chromatogr A 1079:236–245

    CAS  Google Scholar 

  110. Okanda FM, El Rassi Z (2006) Affinity chromatography with monolithic capillary columns for glycomics/proteomics: 1. polymethacrylate monoliths with immobilized lectins for glycoprotein separation by affinity capillary electrochromatography and affinity nano-liquid chromatography in either a single column or columns coupled in series. Electrophoresis 27:1020–1030

    CAS  Google Scholar 

  111. Mao X, Luo Y, Dai Z et al (2004) Integrated lectin affinity microfluidic chip for glycoform separation. Anal Chem 76:6941–6947

    CAS  Google Scholar 

  112. Budnik BA, Lee RS, Steen JA (2006) Review Global methods for protein glycosylation analysis by mass spectrometry. Biochim Biophys Acta 1764:1870–1880

    CAS  Google Scholar 

  113. Wang L, Li F, Sun W et al (2006) Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics 5:560–562

    CAS  Google Scholar 

  114. Kaji H, Saito H, Yamauchi Y et al (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21:667–672

    CAS  Google Scholar 

  115. Madera M, Mechref Y, Klouckova I et al (2007) High-sensitivity profiling of glycoproteins from human blood serum through multiple- lectin affinity chromatography and liquid chromatography/tandem mass spectrometry. J Chromatogr B 845:121–137

    CAS  Google Scholar 

  116. Cummings RD, Kornfeld S (1984) The distribution of repeating [Gal beta 1, 4GlcNAc beta 1, 3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. J Biol Chem 259:6253–6260

    CAS  Google Scholar 

  117. Yang Z, Hancock WS (2004) Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A 1053:79–88

    CAS  Google Scholar 

  118. Qiu R, Regnier FE (2005) Use of multidimensional lectin affinity chromatography in differential glycoroteomics. Anal Chem 77:2802–2809

    CAS  Google Scholar 

  119. Sumi S, Arai K, Kitahara S et al (1999) Serial lectin affinity chromatography demonstrates altered asparagine-linked sugar-chain structures of prostate-specific antigen in human prostate carcinoma. J Chromatogr B 727:9–14

    CAS  Google Scholar 

  120. Xiong L, Regnier FE (2002) Use of a lectin affinity selector in the search for unusual glycosylation in proteomics. J Chromatogr, B: Anal Technol Biomed Life Sci 782:405–418

    CAS  Google Scholar 

  121. Yang Z, Hancock WS (2005) Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. J Chromatogr A 1070:57–64

    CAS  Google Scholar 

  122. Wang Y, Wu S, Hancock WS (2006) Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap Fourier transform mass spectrometry. Glycobiology 16:514–523

    CAS  Google Scholar 

  123. Yue GE, Roper MG, Balchunas C et al (2006) Protein digestion and phosphopeptides enrichment on glass microchip. Anal Chim Acta 564:116–122

    CAS  Google Scholar 

  124. Madera M, Mechref Y, Klouckova I et al (2006) Semiautomated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry. J Proteome Res 5:2348–2363

    CAS  Google Scholar 

  125. Guzman NA, Phillips TM (2005) Immunoaffinity CE for proteomics studies. Anal Chem 77:60A–67A

    CAS  Google Scholar 

  126. Benavente F, Hernández E, Guzman NA et al (2007) Determination of human erythropoietin by on-line immunoaffinity capillary electrophoresis: a preliminary report. Anal Bioanal Chem 387:2633–2639

    CAS  Google Scholar 

  127. An HJ, Peavy TR, Hedrick JL et al (2003) Determination of N- glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 75:5628–5637

    CAS  Google Scholar 

  128. Temporini C, Perani E, Calleri E et al (2007) Pronase-immobilized enzyme reactor: an approach for automation in glycoprotein analysis by LC/LC-ESI/MSn. Anal Chem 79:355–363

    CAS  Google Scholar 

  129. Jebanathirajah J, Steen H, Roepstorff P (2003) Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J Am Soc Mass Spectrom 14:777–784

    CAS  Google Scholar 

  130. Zhang H, Li XJ, Martin DB et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    CAS  Google Scholar 

  131. Khidekel N, Arndt S, Lamarre-Vincent N et al (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125:16162–16163

    CAS  Google Scholar 

  132. Sprung R, Nandi A, Chen Y et al (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4:950–957

    CAS  Google Scholar 

  133. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    CAS  Google Scholar 

  134. Khidekel N, Ficarro SB, Peters EC et al (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci USA 101:13132–13137

    CAS  Google Scholar 

  135. Lamarre-Vincent N, Hsieh-Wilson LC (2003) Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J Am Chem Soc 125:6612–6613

    CAS  Google Scholar 

  136. Zhang Y, Wolf-Yadlin A, Ross PL et al (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250

    CAS  Google Scholar 

  137. Vocadlo DJ, Hang HC, Kim EJ et al (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci USA 100:9116–9121

    CAS  Google Scholar 

  138. Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430:873–877

    CAS  Google Scholar 

  139. Kho Y, Kim SC, Jiang C et al (2004) A tagging-via- substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci USA 101:12479–12484

    CAS  Google Scholar 

  140. Wells L, Vosseller K, Cole RN et al (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804

    CAS  Google Scholar 

  141. Vosseller K, Hansen KC, Chalkley RJ et al (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5:388–398

    CAS  Google Scholar 

  142. Wuhrer M, Catalina MI, Deelder AM et al (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128

    CAS  Google Scholar 

  143. Carr SA, Hemling ME, Bean MF et al (1991) Integration of mass spectrometry in analytical biotechnology. Anal Chem 63:2802–2824

    CAS  Google Scholar 

  144. Burlingame AL (1996) Characterization of protein glycosylation by mass spectrometry. Curr Opin Biotechnol 7:4–10

    CAS  Google Scholar 

  145. Carr SA, Roberts GD (1986) Carbohydrate mapping by mass spectrometry: a novel method for identifying attachment sites of Asn-linked sugars in glycoproteins. Anal Biochem 157:396–406

    CAS  Google Scholar 

  146. Küster B, Mann M (1999) 18O-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal Chem 71:1431–1440

    Google Scholar 

  147. Leonard CK, Spellman MW, Riddle L et al (1990) Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265:10373–10382

    CAS  Google Scholar 

  148. Carr SA, Roberts GD, Jurewicz A et al (1998) Structural fingerprinting of Asn-linked carbohydrates from specific attachment sites in glycoproteins by mass spectrometry: application to tissue plasminogen activator. Biochimie 70:1445–1454

    Google Scholar 

  149. Guzzetta AW, Basa LJ, Hancock WS et al (1993) Identification of carbohydrate structures in glycoprotein peptide maps by the use of LC/MS with selected ion extraction with special reference to tissue plasminogen activator and a glycosylation variant produced by site directed mutagenesis. Anal Chem 65:2953–2962

    CAS  Google Scholar 

  150. Jiang H, Wu SL, Karger BL et al (2010) Characterization of the glycosylation occupancy and the active site in the follow-on protein therapeutic: TNK-tissue plasminogen activator. Anal Chem 82:6154–6162

    CAS  Google Scholar 

  151. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    CAS  Google Scholar 

  152. Carr SA, Huddleston MJ, Bean MF (1993) Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 2:183–196

    CAS  Google Scholar 

  153. Harvey DJ, Bateman RH, Bordoli RS et al (2000) Ionization and fragmentation of complex glycans with a quadrupole time-of-flight mass spectrometer fitted with a matrix-assisted laser desorption/ionization ion source. Rapid Commun Mass Spectrom 14:2135–2142

    CAS  Google Scholar 

  154. Borisov OV, Field M, Ling VT et al (2009) Characterization of Oligosaccharides in recombinant tissue plasminogen activator produced in Chinese hamster ovary cells: Two decades of analytical technology development. Anal Chem 81:9744–9754

    CAS  Google Scholar 

  155. Demelbauer UM, Zehl M, Plematl A et al (2004) Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun Mass Spectrom 18(14):1575–1582

    CAS  Google Scholar 

  156. Bones J, McLoughlin N, Hilliard M et al (2011) 2D-LC Analysis of BRP 3 Erythropoietin N-Glycosylation using anion exchange fractionation and hydrophilic interaction UPLC reveals long Poly-N-Acetyl lactosamine extensions. Anal Chem 83:4154–4162

    CAS  Google Scholar 

  157. Harazono A, Kawasaki N, Itoh S et al (2006) Site-speciWc N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Biochem 348:259–268

    CAS  Google Scholar 

  158. Schmitt S, Glebe D, Alving K et al (1999) Analysis of the Pre-S2 N- and O-Linked Glycans of the M surface protein from human hepatitis B virus. J Biol Chem 274:11945–11957

    CAS  Google Scholar 

  159. Zubarev RA, Horn DM, Fridriksson EK et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573

    CAS  Google Scholar 

  160. Kjeldsen F, Haselmann KF, Budnik BA et al (2002) Dissociative capture of hot (3–13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chem Phys Lett 356:201–206

    CAS  Google Scholar 

  161. Kjeldsen F, Haselmann KF, Budnik BA et al (2003) Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. Anal Chem 75(10):2355–2361

    CAS  Google Scholar 

  162. Mikesh LM, Ueberheide B, Chi A et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764(12):1811–1822

    CAS  Google Scholar 

  163. Schroeder MJ, Webb DJ, Shabanowitz J et al (2005) Methods for the detection of paxillin post-translational modifications and interacting proteins by mass spectrometry. J Proteome Res 4(5):1832–1841

    CAS  Google Scholar 

  164. Hogan JM, Pitteri SJ, Chrisman PA et al (2005) Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 4(2):628–632

    CAS  Google Scholar 

  165. Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier Transform mass spectrometer. Anal Chem 71:4431–4436

    CAS  Google Scholar 

  166. Perdivara I, Petrovich R, Allinquant B et al (2009) Elucidation of O-Glycosylation structures of the β-Amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision-induced dissociation. J Proteom Res 8:631–642

    CAS  Google Scholar 

  167. Wu SL, Huhmer AF, Hao Z et al (2007) On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with posttranslational modifications. J Proteome Res 6(11):4230–4244

    CAS  Google Scholar 

  168. Tsarbopoulos A, Bahr U, Pramanik BN et al (1997) Glycoprotein Analysis by Delayed extraction and post-source decay MALDI TOF MS. Int J Mass Spectrom Ion Process 169(170):251–261

    Google Scholar 

  169. Wuhrer M, Hokke CH, Deelder AM (2004) Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation. Rapid Commun Mass Spectrom 18:1741–1748

    CAS  Google Scholar 

  170. Bykova NV, Rampitsch C, Krokhin O et al (2006) Determination and characterization of site-specific N-Glycosylation using MALDI-Qq-TOF tandem mass spectrometry: case study with a plant protease. Anal Chem 78:1093–1103

    CAS  Google Scholar 

  171. Kurogochi M, Matsushita T, Nishimura SI (2004) Post-translational modifications on proteins: facile and efficient procedure for the identification of O-Glycosylation sites by MALDI-LIFT-TOF/TOF mass spectrometry. Angew Chem Int Ed Engl 43:4071–4075

    CAS  Google Scholar 

  172. Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–451

    CAS  Google Scholar 

  173. Zaia J (2010) Mass spectrometry and glycomics. OMICS 14(4):401–418

    CAS  Google Scholar 

  174. Wormald MR, Petrescu AJ, Pao Y-L et al (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386

    CAS  Google Scholar 

  175. Koerner TA, Yu RK, Scarsdale JN et al (1988) Analysis of complex carbohydrate primary and secondary structure via two-dimensional proton nuclear magnetic resonance spectroscopy. Adv Exp Med Biol 228:759–784

    CAS  Google Scholar 

  176. Perez S, Mulloy B (2005) Prospects for glycoinformatics. Curr Opin Struct Biol 15:517–524

    CAS  Google Scholar 

  177. Aoki-Kinoshita KF (2008) An introduction to bioinformatics for glycomics research. PLoS Comput Biol. doi:10.1371/journal.pcbi.1000075

    Google Scholar 

  178. von der Lieth CW, Lütteke T, Frank M (2006) The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochim Biophys Acta 1760:568–577

    Google Scholar 

  179. Cooper CA, Gasteiger E, Packer NH (2001) GlycoMod-a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1:340–349

    CAS  Google Scholar 

  180. Go EP, Rebecchi KR, Dalpathado DS et al (2007) GlycoPep DB: a tool for glycopeptide analysis using a “smart search”. Anal Chem 79:1708–1713

    CAS  Google Scholar 

  181. Goldberg D, Sutton-Smith M, Paulson J et al (2005) Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. Proteomics 5:865–875

    CAS  Google Scholar 

  182. Goldberg D, Bern M, Parry S et al (2007) Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res 6:3995–4005

    CAS  Google Scholar 

  183. Ozohanics O, Krenyacz J, Ludanyi K et al (2008) GlycoMiner: a new software tool to elucidate glycopeptide composition. Rapid Commun Mass Spectrom 22:3245–3254

    CAS  Google Scholar 

  184. An HJ, Tillinghast JS, Woodruff DL et al (2006) A new computer program (GlycoX) to determine simultaneously the glycosylation sites and oligosaccharide heterogeneity of glycoproteins. J Proteome Res 5:2800–2808

    CAS  Google Scholar 

  185. Ren JM, Rejtar T, Li L et al (2007) N-Glycan structure annotation of glycopeptides using a linearized glycan structure database (GlyDB). J Proteome Res 6:3162–3173

    CAS  Google Scholar 

  186. Irungu J, Go EP, Dalpathado DS et al (2007) Simplification of mass spectral analysis of acidic glycopeptides using GlycoPep ID. Anal Chem 79:3065–3074

    CAS  Google Scholar 

  187. Hizukuri Y, Yamanishi Y, Nakamura O et al (2005) Extraction of leukemia specific glycan motifs in humans by computational glycomics. Carbohydr Res 340:2270–2278

    CAS  Google Scholar 

  188. Aoki K, Yamaguchi A, Ueda N et al (2004) KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Res 32:W267–W272

    CAS  Google Scholar 

  189. Aoki K, Mamitsuka H, Akutsu T et al (2005) A score matrix to reveal the hidden links in glycans. Bioinformatics 21:1457–1463

    CAS  Google Scholar 

  190. Hashimoto K, Goto S, Kawano S et al (2006) KEGG as a glycome informatics resource. Glycobiology 6:63R–70R

    Google Scholar 

  191. Creighton TE (1984) Disulfide bond formation in proteins. In: Wold F, Moldave K (eds) Methods in enzymology, vol 107. Academic Press, San Diego, p 305

    Google Scholar 

  192. Dranoff G (2009) Targets of protective tumor immunity. Ann NY Acad Sci 1174:74–80

    CAS  Google Scholar 

  193. Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468

    CAS  Google Scholar 

  194. Wess J, Han SJ, Kim SK et al (2008) Conformational changes involved in G-protein-coupled-receptor activation. Trends Pharmacol Sci 29:616–625

    CAS  Google Scholar 

  195. Thornton JM (1981) Disulphide bridges in globular proteins. J Mol Biol 151:261–287

    CAS  Google Scholar 

  196. Welker E, Raymond LD, Scheraga HA et al (2002) Intramolecular versus intermolecular disulfide bonds in prion proteins. J Biol Chem 277:33477–33481

    CAS  Google Scholar 

  197. Tsarbopoulos A, Pramanik B, Labdon J et al (1993) Isolation and characterization of a resistant core peptide of recombinant human Granulocyte-Macrophage colony-stimulating factor (GM-CSF); confirmation of the GM-CSF amino acid sequence by mass spectrometry. Protein Sci 2:1948–1958

    CAS  Google Scholar 

  198. Gorman JJ, Wallis TP, Pitt JJ (2002) Protein disulfide bond determination by mass spectrometry. Mass Spectrom Rev 21:183–216

    CAS  Google Scholar 

  199. Barber M, Bordoli RS, Sedgwick RD et al (1981) Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry. J Chem Soc, Chem Commun 7:325–327

    Google Scholar 

  200. Morris HR, Pucci P (1985) A new method for rapid assignment of S-S bridges in proteins. Biochem Biophys Res Commun 126:1122–1128

    CAS  Google Scholar 

  201. Smith DL, Zhou Z (1990) Strategies for locating disulfide bonds in proteins. In: McCloskey JA (ed) Methods in enzymology, vol 193. Academic Press, New York, p 374

    Google Scholar 

  202. Sundqvist B, Roepstorff P, Fohlman J et al (1984) Molecular weight determination of proteins by californium plasma desorption mass spectrometry. Science 226:696–698

    CAS  Google Scholar 

  203. Tsarbopoulos A, Becker GW, Occolowitz JL et al (1988) Peptide and protein mapping by 252Cf-Plasma desorption mass spectrometry. Anal Biochem 171:113–123

    CAS  Google Scholar 

  204. Robertson JG, Adams GW, Medzihradszky KF et al (1994) Complete assignment of disulfide bonds in bovine dopamine beta-hydroxylase. Biochemistry 33:11563–11575

    CAS  Google Scholar 

  205. Pramanik BN, Tsarbopoulos A, Labdon JE et al (1991) Structural analysis of biologically active peptides and recombinant proteins and their modified counterparts by mass spectrometry. J Chromatogr 562:377–389

    CAS  Google Scholar 

  206. Chen G, Liu YH, Pramanik BN (2007) LC/MS analysis of proteins and peptides in drug discovery. In: Kazakevich Y, LoBrutto R (eds) HPLC for pharmaceutical scientists. Wiley, New York

    Google Scholar 

  207. Tsarbopoulos A, Karas M, Strupat K et al (1994) Comparative mapping of recombinant proteins and glycoproteins by plasma desorption and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 66:2062–2070

    CAS  Google Scholar 

  208. Patterson SD, Katta V (1994) Prompt fragmentation of disulfide-linked peptides during matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 66:3727–3732

    CAS  Google Scholar 

  209. Sanger F (1953) A disulphide interchange reaction. Nature 171:1025–1026

    CAS  Google Scholar 

  210. Yazdanparast R, Andrews PC, Smith DL et al (1987) Assignment of disulfide bonds in proteins by fast atom bombardment mass spectrometry. J Biol Chem 262:2507–2513

    CAS  Google Scholar 

  211. Tsarbopoulos A, Varnerin J, Cannon-Carlson S et al (2000) Mass spectrometric mapping of disulfide bonds in recombinant human Interleukin-13. J Mass Spectrom 35:446–453

    CAS  Google Scholar 

  212. Sun Y, Bauer MD, Keough TW et al (1996) Disulfide bond location in proteins. Methods Mol Biol 61:181–210

    Google Scholar 

  213. Bauer M, Sun Y, Degenhardt C et al (1993) Assignment of all four disulfide bridges in echistatin. J Prot Chem 12:759–764

    CAS  Google Scholar 

  214. Bean MF, Carr SA (1992) Characterization of disulfide positions in proteins and sequence analysis of cystine-bridged peptides by tandem mass spectrometry. Anal Biochem 201:216–226

    CAS  Google Scholar 

  215. Pitt JJ, Da Silva E, Gorman JJ (2000) Determination of the disulfide bond arrangement of new castle disease virus hemagglutinin neuraminidase, correlation with a beta-sheet propeller structural fold predicted for paramyxoviridae attachment proteins. J Biol Chem 275:6469–6478

    CAS  Google Scholar 

  216. Gorman JJ, Ferguson BL, Speelman D et al (1997) Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci 6:1308–1315

    CAS  Google Scholar 

  217. Angal S, King DJ, Bodmer MW et al (1993) A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 30:105–108

    CAS  Google Scholar 

  218. Wang Y, Lu Q, Wu SL et al (2011) Characterization and comparison of disulfide linkages and scrambling patterns in therapeutic monoclonal antibodies: using LC-MS with electron transfer dissociation. Anal Chem 83:3133–3140

    CAS  Google Scholar 

  219. Wu SL, Jiang H, Hancock WS et al (2010) Identification of the unpaired cysteine status and complete mapping of the 17 disulfides of recombinant tissue plasminogen activator using LC-MS with Electron transfer dissociation/collision induced dissociation. Anal Chem 82:5296–5303

    CAS  Google Scholar 

  220. Bagal D, Valliere-Douglass JF, Balland A et al (2010) Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry. Anal Chem 82:6751–6755

    CAS  Google Scholar 

  221. Wallis TP, Pitt JJ, Gorman JJ (2001) Identification of disulfide-linked peptides by isotope profiles produced by peptic digestion of proteins in 50 % (18) O water. Protein Sci 10:2251–2271

    CAS  Google Scholar 

  222. Rose K, Savoy LA, Simona MG et al (1988) C-terminal peptide identification by fast atom bombardment mass spectrometry. Biochem J 250:253–259

    CAS  Google Scholar 

  223. Dwek MV, Ross HA, Leathem AJ (2001) Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer. Proteomics 1:756–762

    CAS  Google Scholar 

  224. Rudd PM, Elliott T, Cresswell P et al (2001) Glycosylation and the immune system. Science 291:2370–2376

    CAS  Google Scholar 

  225. Peracaula R, Tabares G, Royle L et al (2003) Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 13:457–470

    CAS  Google Scholar 

  226. Butler M, Quelhas D, Critchley AJ et al (2003) Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13:601–622

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the kind permission of the Schering-Plough Research Institute to reproduce previously reported, but unpublished data regarding the IL-5Rα.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Tsarbopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsarbopoulos, A., Bazoti, F.N. (2013). Post-Translationally Modified Proteins: Glycosylation and Disulfide Bond Formation. In: Chen, G. (eds) Characterization of Protein Therapeutics using Mass Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7862-2_4

Download citation

Publish with us

Policies and ethics