Skip to main content

Nanomaterial Toxicity: Emerging Standards and Efforts to Support Standards Development

  • Chapter
  • First Online:
Nanotechnology Standards

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

For the first time in the history of industrialization, nanotechnology offers the unique opportunity to consider material safety concerns prior to widespread adoption and use by industry. Many scientists around the world have been motivated by this and are working on developing and applying nanotechnology as safely as ­possible, attempting to avoid the pitfalls of our earlier introductions of new chemicals and chemical processes into commerce. One key aspect of defining the safety of any chemical product, whether nano-sized or conventional, is toxicity testing and the determination of hazard potential during manufacturing and/or use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Research Council (U.S.) Committee on the Institutional Means for Assessment of Risks to Public Health: Risk Assessment in the Federal Government: Managing the Process. National Academy Press, Washington, DC (1983)

    Google Scholar 

  2. Kuzma, J.: Moving forward responsibly: Oversight for the nanotechnology-biology interface. J. Nanopart. Res. 9, 165–182 (2007)

    Article  Google Scholar 

  3. Vamanu, C.I., Høl, P.J., Allouni, Z.E., Elsayed, S., Gjerdet, N.R.: Formation of potential titanium antigens based on protein binding to titanium dioxide nanoparticles. Environ. Sci. Technol. 39, 9370–9376 (2005)

    Article  Google Scholar 

  4. Kim, H.W., Ahn, E.-K., Jee, B.K., Yoon, H.-K., Lee, K.H., Lim, Y.: Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo. J. Nanopart. Res. 11, 55–65 (2009)

    Article  CAS  Google Scholar 

  5. Falck, G.C.M., Lindberg, H.K., Suhonen, S., Vippola, M., Vanhala, E., Catalán, J., Savolainen, K., Norppa, H.: Genotoxic effects of nanosized and fine TiO2. Hum. Exp. Toxicol. 28, 339–352 (2009)

    Article  CAS  Google Scholar 

  6. Okuda-Shimazaki, J., Takaku, S., Kanehira, K., Sonezaki, S., Taniguchi, A.: Effects of titanium dioxide nanoparticle aggregate size on gene expression. Int. J. Mol. Sci. 11, 2383–2392 (2010)

    Article  CAS  Google Scholar 

  7. Zook, J.M., MacCuspie, R.I., Locascio, L.E., Elliott, J.E.: Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their sizes on hemolytic cytotoxicity. Nanotoxicology. doi:10.3109/17435390.2010.536615 (2010)

    Google Scholar 

  8. Lockman, P.R., Koziara, J.M., Mumper, R.J., Allen, D.D.: Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target. 12, 635–641 (2004)

    Article  CAS  Google Scholar 

  9. Grass, R.N., Stark, W.J.: Physico-chemical differences between particle- and molecule-derived toxicity: Can we make inherently safe nanoparticles? Chimia 63, 38–43 (2009)

    Article  Google Scholar 

  10. Limbach, L.K., Wick, P., Manser, P., Grass, R.N., Bruinink, A., Stark, W.: Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 41, 4158 (2007)

    Article  CAS  Google Scholar 

  11. Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y.F., Ohta, T., Yasuhara, M., Suzuki, K., Yamamoto, K.: Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4, 2163–2169 (2004)

    Article  CAS  Google Scholar 

  12. Hardman, R.: A toxicological review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006)

    Article  Google Scholar 

  13. Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Finkelstein, J., Oberdorster, G.: Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114, 1172–1178 (2006)

    Article  CAS  Google Scholar 

  14. Buzea, C., Pacheco, I.I., Robbie, K.: Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2, MR17–MR71 (2007)

    Article  Google Scholar 

  15. Nelsonrees, W.A., Daniels, D.W., Flandermeyer, R.R.: Cross-contamination of cells in ­culture. Science 212, 446–452 (1981)

    Article  CAS  Google Scholar 

  16. Lacroix, M.: Persistent use of “false” cell lines. Int. J. Cancer 122, 1–4 (2008)

    Article  CAS  Google Scholar 

  17. Organisation for Economic Co-operation and Development Environment Directorate: Manufactured nanomaterials: Work programme 2006–2008. http://www.olis.oecd.org/olis/2008doc.nsf/LinkTo/NT00000B76/$FILE/JT03240538.PDF (2008)

  18. Organisation for Economic Co-operation and Development Environment Directorate: List of manufactured nanomaterials and list of endpoints for phase one of the OECD testing programme. http://www.olis.oecd.org/olis/2008doc.nsf/LinkTo/NT00003282/$FILE/JT03246895.PDF (2008)

  19. Organization for Economic Co-operation and Development: Preliminary guidance notes on sample preparation and dosimetry for the safety testing of manufactured nanomaterials. http://www.olis.oecd.org/olis/2010doc.nsf/linkto/ENV-JM-MONO(2010)25 (2010)

  20. ISO TC 229 – Nanotechnologies. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=381983development=on

  21. Kroll, A., Pillukat, M.H., Hahn, D., Schnekenbutger, J.: Current in vitro methods in nanoparticle risk assessment – limitations and challenges. Eur. J. Pharm. Biopharm. 72, 370–377 (2009)

    Article  CAS  Google Scholar 

  22. Ferrari, M.: Beyond drug delivery. Nat. Nanotechnol. 3, 131–132 (2008)

    Article  CAS  Google Scholar 

  23. National Cancer Institute: Nanotechnology characterization laboratory business plan. http://www.ncl.cancer.gov/ncl_business_plan.pdf (2005)

  24. NIST – NCL Joint Assay Protocol PCC-1: Measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. http://www.ncl.cancer.gov/NCL_Method_NIST-NCL_PCC-1.pdf (2007)

  25. National Cancer Institute: Nanotechnology characterization laboratory assay cascade. http://www.ncl.cancer.gov/assay_cascade.asp (2009)

  26. International Alliance for NanoEHS Harmonization: Characterization of nanomaterial bio-interaction project plan. http://www.nanoehsalliance.org/sections/Projects (2009)

  27. International Alliance for NanoEHS Harmonization: Stage 3: In vitro nanoparticle interactions. http://www.nanoehsalliance.org/sections/Projects/Stage3InVitroNanoparticleInteractions (2009)

  28. Hackley, V.A., Fritts, M., Kelly, J.F., Patri, A.K., Rawle, A.F.: Informative Bulletin of the Interamerican Metrology System-OAS, Enabling Standards for Nanomaterial Characterization, pp. 24–29. NIST, Gaithersburg (2009). http://www.sim-metrologia.org.br/docs/revista_SIM_ago2009-c.pdf

  29. NanoImpact: http://www.nanoimpactnet.eu

  30. The European Network on the Health and Environmental Impact of Nanomaterials: Major information package: End of 1st year report. http://www.nanoimpactnet.eu/object_binary/o3043_MIP2_2009-07-07.pdf (2009)

  31. Worth, A.P., Balls, M.: The role of ECVAM in promoting the regulatory acceptance of alternative methods in the European Union. Altern. Lab. Anim. 29(5), 525–535 (2001)

    CAS  Google Scholar 

  32. NanoInteract: Objectives. http://www.nanointeract.net/sections/AboutNanoInteract/Objectives (2009)

  33. Cedervall, T., Lynch, I., Lindman, S., Berggård, T., Thulin, E., Nilsson, H., Linse, S., Dawson, K.A.: Understanding the nanoparticle protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007)

    Article  CAS  Google Scholar 

  34. Jiang, J.K., Oberdorster, G., Biswas, P.: Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11, 77–89 (2009)

    Article  CAS  Google Scholar 

  35. Organization for Economic Co-operation and Development: Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials. http://www.olis.oecd.org/olis/2009doc.nsf/LinkTo/NT000049AE/$FILE/JT03267900.PDF (2009)

  36. Sung, J.H., Shuler, M.L.: A micro cell culture analog (mu CCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9, 1385–1394 (2009)

    Article  CAS  Google Scholar 

  37. Baudoin, R., Corlu, A., Griscom, L., Legallais, C., Leclerc, E.: Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol. In Vitro 21, 535–544 (2007)

    Article  CAS  Google Scholar 

  38. Carraro, A., Hsu, W.M., Kulig, K.M., Cheung, W.S., Miller, M.L., Weinberg, E.J., Swart, E.F., Kaazempur-Mofrad, M., Borenstein, J.T., Vacanti, J.P., Neville, C.: In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed. Microdevices 10, 795–805 (2008)

    Article  Google Scholar 

  39. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., Ingber, D.E.: Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010)

    Article  CAS  Google Scholar 

  40. European Commission Scientific Committee on Emerging and Newly Identified Health Risks: Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. http://www.files.nanobio-raise.org/Downloads/scenihr.pdf (2005)

  41. Organisation for Economic Co-operation and Development Environment Directorate: Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials. http://www.olis.oecd.org/olis/2009doc.nsf/LinkTo/NT000049AE/$FILE/JT03267900.PDF (2009)

  42. Roco, M.C.: Coherence and divergence of megatrends in science and engineering. J. Nanopart. Res. 4, 9–19 (2002)

    Article  Google Scholar 

  43. Choi, J.Y., Ramachandran, G., Kandlikar, M.: The impact of toxicity testing costs on nanomaterial regulation. Environ. Sci. Technol. 43, 3030–3034 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie E. Locascio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Locascio, L.E., Reipa, V., Zook, J.M., Pleus, R.C. (2011). Nanomaterial Toxicity: Emerging Standards and Efforts to Support Standards Development. In: Murashov, V., Howard, J. (eds) Nanotechnology Standards. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7853-0_8

Download citation

Publish with us

Policies and ethics