Skip to main content

Current Standardization Activities of Measurement and Characterization for Industrial Applications

  • Chapter
  • First Online:
Nanotechnology Standards

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1351 Accesses

Abstract

This chapter briefly describes current standardization activities for measurement and characterization of nanotechnology in various standardization organizations, with emphasis on the activity of ISO (International Organization for Standardization). Since the establishment of the U.S. National Nanotechnology Initiative (NNI) in 2001, both industrial and developing countries have accelerated investment for research and development (R&D) of nanotechnology [1]. In accordance with the increase in attention to nanotechnology worldwide, the interest in standardization for nanotechnology became prominent in 2004 in a trilateral framework involving the U.S., Europe, and Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Section 1

  1. Roco, M.: Nanotechnology R&D in the Americas and the global context. In: 2nd International Dialogue on Responsible Research and Development of Nanotechnology, Tokyo, Japan, 27–28 June 2006

    Google Scholar 

  2. Proffitt, F.: Yellow light for nanotech, Science 305, 762 (2004)

    Article  CAS  Google Scholar 

  3. Maynard, A.D.: Safe handling of nanotechnology, Nature 444, 267–269 (2006)

    Article  CAS  Google Scholar 

  4. ETUC: http://www.etuc.org/a/5159?var_recherche=Nanotechnology

  5. Manna, S.K., Sarkar, S., Barr, J., Wise, K., Barrera, E.V., Jejelowo, O., Rice-Ficht, A.C., Ramesh, G.T.: Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kB in human keratinocytes, Nano Letters 5, 1676–1684 (2005)

    Article  CAS  Google Scholar 

  6. Takagi, A., Hirose, A., Nishimura, T., Fukumori, N., Ogata, A., Ohashi, N., Kitajima, S., Kanno, J.: Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube, J. Toxicol. Sci. 33, 105–116 (2008)

    Article  CAS  Google Scholar 

  7. Poland, C.A., Duffin, R., Kinolch, I., Maynard, A., Wallace, W.A.H., Seaton, A., Brown, V.S., MacNee, W., Donaldson, K.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nature Nanotechnology 3, 423–428 (2008)

    Article  CAS  Google Scholar 

  8. Hench, L.L.: In: Hench, L.L., Wilson, J. (eds.) An Introduction to Bioceramics, p. 319. World Scientific, Singapore (1993). Chapter 18: Characterization of Bioceramics

    Google Scholar 

  9. Hossain, K.: WG2 study group on strategy (2008), outline strategy for ISO TC 229 WG2 – nanotechnologies, ver. 8.0 (2008, unpublished)

    Google Scholar 

Section 2

  1. Committee to discuss protective actions for exposure to workers of chemical materials of which hazardous property to human body is not clearly identified, (Ministry of Health, Labor and Welfare, Nov. 26, 2011) Part 2 (in Japanese) http://www.mhlw.go.jp/shingi/2008/11/dl/s1126-6a.pdf (2009)

  2. Iijima, S.: Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  3. Collins, P.G., Avouric, Ph.: Nanotubes for electronics, Sci, Am. 283, 62–69 (2000)

    Article  CAS  Google Scholar 

  4. Terrones, M.: Science and technology of the twenty-first century: Synthesis, Properties, and Applications of Carbon Nanotubes, Ann. Rev. Mater. Res. 33, 419–501 (2003)

    Article  CAS  Google Scholar 

  5. Osawa, E.: Kagaku (in Japanese) 25, 854–863 (1970)

    CAS  Google Scholar 

  6. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60 Buckminsterfullerene, Nature 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  7. Chai, Y., Guo, T., Jin, C., Haufler, R.E., Chibante, L.P.F., Fure, J., Wang, L., Alford, J.M., Smalley, E.: Fullerenes with metals inside, J. Phys. Chem. 95, 7564–7568 (1991)

    Article  CAS  Google Scholar 

  8. Hinokuma, K., Ata, M.: Fullerene proton conductors, Chem. Phys. Lett. 341, 442–446 (2001)

    Article  CAS  Google Scholar 

  9. Hinokuma, K., Ata, M.: Proton conduction in polyhydroxy hydrogensulfated fullerenes, J. Electrochem. Soc. 150, A112–A116 (2003)

    Article  CAS  Google Scholar 

  10. Chikamatsu, M., Nagamatsu, S., Yoshida, Y., Saito, K., Yase, K., Kikuchi, K.: Solution-processed n-type organic thin-film transistors with high field-effect mobility, Appl. Phys. Lett. 87, 203504 (2005)

    Article  Google Scholar 

  11. Ichimura, S.: Current activities of ISO TC229/WG2 on purity evaluation and quality assurance standards for carbon nanotubes, Anal. Bioanal. Chem 396, 963–971 (2010)

    Article  CAS  Google Scholar 

Section 3

  1. Ichimura, S., Itoh, H., Fujimoto, T.: Current standardization activities for the measurement and characterization of nanomaterials and structures, J. Phys. Conf. Ser. 159, 012001 (2009)

    Article  Google Scholar 

  2. Itoh, H., Fujimo, T., Ichimura, S.: Tip characterizer for atomic force microscopy, Rev. Sci. Instrum. 77, 103704 (2006)

    Article  Google Scholar 

  3. Homma, Y., Takenaka, H., Toujou, F., Takano, A., Hayashi, S., Shimizu, R.: Evaluation of the sputtering rate variation in SIMS ultra-shallow depth profiling using multiple short-period delta layers, Surf. Interface Anal. 35, 544–547 (2003)

    Article  CAS  Google Scholar 

  4. http://www.npl.co.uk/nanoscience/surface-nanoanalysis/surface-and-nanoanalysis-research

  5. Tougaard, S.: Surface nanostructure determination by x-ray photoemission spectroscopy peak shape analysis, J. Vac. Sci. Technol. A14, 1415–1423 (1996)

    Google Scholar 

  6. Hajati, S., Coultas, S., Blomfieldc, C., Tougaarda, S.: Nondestructive quantitative XPS imaging of depth distribution of atoms on the nanoscale, Surface Interface Anal. 40, 688–691 (2008)

    Article  CAS  Google Scholar 

  7. Baer, D., Amonette, J.E., Engelhard, M.H., Gaspar, D.J., Karakoti, A.S., Kuchibhatla, S., Nachimuthu, P., Nurmi, J.T., Qiang, Y., Sarathy, V., Seal, S., Sharma, A., Tratnyeke, P.G., Wang, C.-M.: Characterization challenges for nanomaterials, Surf. Interface Anal. 40, 529–537 (2008)

    Article  CAS  Google Scholar 

  8. Yacaman, M.J., Ascencio, J.A., Liu, H.B., Gardea-Torresdey, J.: Structure shape and stability of nanometric sized particles, J. Vac. Sci. Technol. B 19, 1091 (2001)

    Article  CAS  Google Scholar 

  9. Smith, D.J., Petfordlong, A.K., Wallenberg, L.R., Bovin, J.O.: Dynamic atomic-level rearrangements in small gold particles, Science 233, 872 (1986)

    Article  CAS  Google Scholar 

  10. Zhao, J.P., Chen, Z.Y., Cai, X.J., Rabalais, J.W.: Annealing effect on the surface plasmon resonance absorption of a Ti–SiO2 nanoparticle composite, J. Vac. Sci. Technol. B 24, 1104 (2006)

    Article  CAS  Google Scholar 

  11. Wang, C.M., Baer, D.R., Amonette, J.E., Engelhard, M.E., Antony, J.J., Qiang, Y.: Electron beam-induced thickening of the protective oxide layer around Fe nanoparticles, Ultramicros-copy 108, 43 (2007)

    Article  CAS  Google Scholar 

  12. Jurac, S., Johnson, R.E., Donn, B.: Monte Carlo calculations of the sputtering of grains: enhanced sputtering of small grains, Astrophys. J. 503, 247 (1998)

    Article  CAS  Google Scholar 

  13. Gaspar, D.J., Laskin, A., Wang, W., Hunt, S.W., Finlayson-Pitts, B.J.: TOF-SIMS analysis of sea salt particles: imaging and depth profiling in the discovery of an unrecognized mechanism for pH buffering, Appl. Surf. Sci. 231–232, 520 (2004)

    Article  Google Scholar 

  14. Chen, H.H., Urquidez, O.A., Ichimura, S., Rodriguez, L.H., Brenner, M.P., Aziz, M.J.: Shocks in ion sputtering sharpen steep surface features, Science 310, 294 (2005)

    Article  CAS  Google Scholar 

  15. Gaspar, D.J., Engelhard, M.H., Henry, M.C., Baer, D.R.: Erosion rate variations during XPS sputter depth profiling of nanoporous films, Surf. Interface Anal. 37, 417 (2005)

    Article  CAS  Google Scholar 

  16. Jung, Y.J., Homma, Y., Vajtai, R., Kobayashi, Y., Ogino, T., Ajayan, P.M.: Straightening suspended single walled carbon nanotubes by ion irradiation, Nano Lett. 4, 1109 (2004)

    Article  CAS  Google Scholar 

  17. Baer, D.R., Engelhard, M.H., Gaspar, D.J., Matson, D.W., Pecher, K., Williams, J.R., Wang, C.M.: Challenges in applying surface analysis methods to nanoparticles and nanostructured materials, J. Surf. Anal. 12, 101 (2005)

    CAS  Google Scholar 

  18. Zhang, H.Z., Gilbert, B., Huang, F., Banfield, J.F.: Water-driven structure transformation in nanoparticles at room temperature, Nature 424, 1025 (2003)

    Article  CAS  Google Scholar 

  19. Chernyshova, I.V., Hochella, M.F., Madden, A.S.: Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition, Phys. Chem. Chem. Phys. 9, 1736 (2007)

    Article  CAS  Google Scholar 

  20. Chen, W., Pan, X.L., Willinger, M.G., Su, D.S., Bao, X.H.: Facile Autoreduction of Iron Oxide/Carbon Nanotube Encapsulates, J. Am. Chem. Soc.128,3136(2006)

    Article  CAS  Google Scholar 

  21. Gliemann, H., Almeida, A.T., Petri, D.F.S., Schimmel, T.: Nanostructure formation in polymer thin films influenced by humidity, Surf. Interface Anal. 39, 1 (2007)

    Article  CAS  Google Scholar 

  22. Scher, E.C., Manna, L., Alivisatos, A.P.: Shape control and applications of nanocrystals, Philos. Trans. R. Soc. Lond. A 361, 241 (2003)

    Article  CAS  Google Scholar 

  23. Frankamp, B.L., Boal, A.K., Tuominen, M.T., Rotello, V.M.: Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly, J. Am. Chem. Soc. 127, 9731 (2005)

    Article  CAS  Google Scholar 

  24. Karakoti, A.S., Kuchibhatla, S., Babu, K.S., Seal, S.: Direct synthesis of nanoceria in aqueous polyhydroxyl solutions, J. Phys. Chem. C 111, 17232–17240 (2007)

    Article  CAS  Google Scholar 

  25. Kuchibhatla, S., Karakoti, A.S., Seal, S.: Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures – a true template-free self-assembly, Nanotechnology 18, (2007)

    Article  Google Scholar 

  26. Wertheim, G.K., Dicenzo, S.B.: Cluster growth and core-electron binding energies in supported metal clusters, Phys. Rev. B 37, 844 (1988)

    Article  CAS  Google Scholar 

  27. Dane, A., Demirok, U.K., Aydinli, A., Suzer, S.: X-ray photoelectron spectroscopic analysis of Si nanoclusters in SiO2 matrix, J. Phys. Chem. B 110, 1137 (2006)

    Article  CAS  Google Scholar 

  28. Norman, T.J., Grant, C.D., Magana, D., Zhang, J.Z., Liu, J., Cao, D.L., Bridges, F., Van Buuren, A.: Near infrared optical absorption of gold nanoparticle aggregates, J. Phys. Chem. B 106, 7005 (2002)

    Article  CAS  Google Scholar 

  29. Reinhard, B.M., Siu, M., Agarwal, H., Alivisatos, A.P., Liphardt, J.: Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles, Nano Lett. 5, 2246 (2005)

    Article  CAS  Google Scholar 

  30. Bayer, M., Hawrylak, P., Hinzer, K., Fafard, S., Korkusinski, M., Wasilewski, Z.R., Stern, O., Forchel, A.: Coupling and entangling of quantum states in quantum dot molecules, Science 291, 451 (2001)

    Article  CAS  Google Scholar 

  31. Schwartz, D.A., Norberg, N.S., Nguyen, Q.P., Parker, J.M., Gamelin, D.R.: Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-Doped ZnO nanocrystals, J. Am. Chem. Soc. 125, 13205 (2003)

    Article  CAS  Google Scholar 

  32. Liu, H., Brison, L.C.: A hybrid numerical-analytical method for modeling the viscoelastic properties of polymer nanocomposites, J. Appl. Mech. 73, 758 (2006)

    Article  CAS  Google Scholar 

  33. Glover, M., Meldrum, A.: Effect of “buffer layers” on the optical properties of silicon nanocrystal superlattices, Opt. Mater. 27, 977 (2005)

    Article  CAS  Google Scholar 

Section 4

  1. Lux research report 2004 on “sizing nanotechnology’s value chain”. http://www.luxresearchinc.com/pxn.php

  2. Fujimoto, T., CIRJE-F-182 (Center for Intrnational Research on the Japanese Economy, Faculty of Economics, The Univ. of Tokyo): Architecture, capability, and competitiveness of firms and industries (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Ichimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ichimura, S., Nonaka, H. (2011). Current Standardization Activities of Measurement and Characterization for Industrial Applications. In: Murashov, V., Howard, J. (eds) Nanotechnology Standards. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7853-0_6

Download citation

Publish with us

Policies and ethics