Skip to main content

Rrp6, Rrp47 and Cofactors of the Nuclear Exosome

  • Chapter
RNA Exosome

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 702))

Abstract

This chapter reviews the present state of knowledge on the activity of enzymes that function with the RNA exosome in the nucleus. In this compartment, the exosome interacts physically and functionally with the exoribonuclease Rrp6 and several cofactors, most prominently Rrp47 and the TRAMP complex. These interactions decide the fate of RNA precursors from transcription through the formation of mature ribonucleoprotein particles (RNPs) and the export of the RNPs to the cytoplasm. The nuclear exosome catalyzes the formation of the mature 3′ ends of many of these RNAs, but in other cases degrades the RNAs to mononucleotides. Cofactors such as Mpp6, TRAMP and the Nrd1/Nab3 complex play important roles in determining the outcome of the interaction of RNPs with the nuclear exosome. The details that govern the specificity of these decisions remain a rich source for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haile S, Estevez A, Clayton C. A role for the exosome in the in vivo degradation of unstable mRNAs. RNA 2003; 9:1491–1501.

    PubMed  CAS  Google Scholar 

  2. Lange H, Holec S, Cognat V et al. Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana. Mol Cell Biol 2008; 28:3038–3044.

    PubMed  CAS  Google Scholar 

  3. Lejeune F, Li X, Maquat L. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating and exonucleolytic activities. Mol Cell 2003; 12:675–687.

    PubMed  CAS  Google Scholar 

  4. Briggs M, Burkard K, Butler J. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J Biol Chem 1998; 273:13255–13263.

    PubMed  CAS  Google Scholar 

  5. Zuo Y, Deutscher M. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 2001; 29:1017–1026.

    PubMed  CAS  Google Scholar 

  6. Phillips S, Butler J. Contribution of domain structure to the RNA 3′ end processing and degradation functions of the nuclear exosome subunit Rrp6p. RNA 2003; 9:1098–1107.

    PubMed  CAS  Google Scholar 

  7. Midtgaard S, Assenholt J, Jonstrup A et al. Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain. Proc Natl Acad Sci USA 2006; 103:11898–11903.

    PubMed  CAS  Google Scholar 

  8. Liu Q, Greimann J, Lima C. Reconstitution, activities and structure of the eukaryotic RNA exosome. Cell 2006; 127:1223–1237.

    PubMed  CAS  Google Scholar 

  9. Zuo Y, Wang Y, Malhotra A. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Structure 2005; 13:973–984.

    PubMed  CAS  Google Scholar 

  10. Callahan K, Butler J. Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p. Nucleic Acids Res 2008; 36:6645–6655.

    PubMed  CAS  Google Scholar 

  11. Stead J, Costello J, Livingstone M et al. The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Res 2007; 35:5556–5567.

    PubMed  CAS  Google Scholar 

  12. Thomson E, Tollervey D. The final step in 5.8S rRNA processing is cytoplasmic in Saccharomyces cerevisiae. Mol Cell Biol 2010; 30:976–984.

    PubMed  CAS  Google Scholar 

  13. Mitchell P, Petfalski E, Houalla R et al. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol 2003; 23:6982–6992.

    PubMed  CAS  Google Scholar 

  14. Schilders G, van Dijk E, Pruijn G. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in prerRNA processing. Nucleic Acids Res 2007; 35:2564–2572.

    PubMed  CAS  Google Scholar 

  15. Allmang C, Petfalski E, Podtelejnikov A et al. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev 1999; 13:2148–2158.

    PubMed  CAS  Google Scholar 

  16. van Hoof A, Lennertz P, Parker R. Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 2000; 20:441–452.

    PubMed  Google Scholar 

  17. Allmang C, Kufel J, Chanfreau G et al. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 1999; 18:5399–5410.

    PubMed  CAS  Google Scholar 

  18. Callahan K, Butler J. The TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6. J Biol Chem 2009; 285:3540–3547.

    PubMed  Google Scholar 

  19. Egecioglu D, Henras A, Chanfreau G. Contributions of Trf4p-and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. RNA 2006; 12:26–32.

    PubMed  CAS  Google Scholar 

  20. Grzechnik P, Kufel J. Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast. Mol Cell 2008; 32:247–258.

    PubMed  CAS  Google Scholar 

  21. Lemay J, D’Amours A, Lemieux C et al. The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs. Mol Cell 2010; 37:34–45.

    PubMed  CAS  Google Scholar 

  22. Burkard K, Butler J. A nuclear 3′→5′ exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 2000; 20:604–616.

    PubMed  CAS  Google Scholar 

  23. Torchet C, Bousquet-Antonelli C, Milligan L et al. Processing of 3′-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell 2002; 9:1285–1296.

    PubMed  CAS  Google Scholar 

  24. Milligan L, Torchet C, Allmang C et al. A nuclear surveillance pathway for mRNAs with defective polyadenylation. Mol Cell Biol 2005; 25:9996–10004.

    PubMed  CAS  Google Scholar 

  25. Das B, Butler J, Sherman F. Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:5502–5515.

    PubMed  CAS  Google Scholar 

  26. Hilleren P, McCarthy T, Rosbash M et al. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 2001; 413:538–542.

    PubMed  CAS  Google Scholar 

  27. Libri D, Dower K, Boulay J et al. Interactions between mRNA export commitment, 3′-end quality control and nuclear degradation. Mol Cell Biol 2002; 22:8254–8266.

    PubMed  CAS  Google Scholar 

  28. Rougemaille M, Gudipati R, Olesen J et al. Dissecting mechanisms of nuclear mRNA surveillance in THO/ sub2 complex mutants. EMBO J 2007; 26:2317–2326.

    PubMed  CAS  Google Scholar 

  29. Saguez C, Schmid M, Olesen J et al. Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol Cell 2008; 31:91–103.

    PubMed  CAS  Google Scholar 

  30. Qu X, Lykke-Andersen S, Nasser T et al. Assembly of an export-competent mRNP is needed for efficient release of the 3′-end processing complex after polyadenylation. Mol Cell Biol 2009; 29:5327–5338.

    PubMed  CAS  Google Scholar 

  31. Lum P, Armour C, Stepaniants S et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 2004; 116:121–137.

    PubMed  CAS  Google Scholar 

  32. Fang F, Hoskins J, Butler J. 5-fluorouracil enhances exosome-dependent accumulation of polyadenylated rRNAs. Mol Cell Biol 2004; 24:10766–10776.

    PubMed  CAS  Google Scholar 

  33. Kammler S, Lykke-Andersen S, Jensen T. The RNA exosome component hRrp6 is a target for 5-fluorouracil in human cells. Mol Cancer Res 2008; 6:990–995.

    PubMed  CAS  Google Scholar 

  34. Hoskins J, Scott Butler J. Evidence for distinct DNA-and RNA-based mechanisms of 5-fluorouracil cytotoxicity in Saccharomyces cerevisiae. Yeast 2007; 24:861–870.

    PubMed  CAS  Google Scholar 

  35. Hoskins J, Butler J. RNA-based 5-fluorouracil toxicity requires the pseudouridylation activity of Cbf5p. Genetics 2008; 179:323–330.

    PubMed  CAS  Google Scholar 

  36. Roth K, Wolf M, Rossi M et al. The nuclear exosome contributes to autogenous control of NAB2 mRNA levels. Mol Cell Biol 2005; 25:1577–1585.

    PubMed  CAS  Google Scholar 

  37. Roth K, Byam J, Fang F et al. Regulation of NAB2 mRNA 3′-end formation requires the core exosome and the Trf4p component of the TRAMP complex. RNA 2009; 15:1045–1058.

    PubMed  CAS  Google Scholar 

  38. Ciais D, Bohnsack M, Tollervey D. The mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3′ processing pathway. Nucleic Acids Res 2008; 36:3075–3084.

    PubMed  CAS  Google Scholar 

  39. Reis C, Campbell J. Contribution of Trf4/5 and the nuclear exosome to genome stability through regulation of histone mRNA levels in Saccharomyces cerevisiae. Genetics 2007; 175:993–1010.

    PubMed  CAS  Google Scholar 

  40. Canavan R, Bond U. Deletion of the nuclear exosome component RRP6 leads to continued accumulation of the histone mRNA HTB1 in S-phase of the cell cycle in Saccharomyces cerevisiae. Nucleic Acids Res 2007; 35:6268–6279.

    PubMed  CAS  Google Scholar 

  41. Graham A, Kiss D, Andrulis E. Core exosome-independent roles for Rrp6 in cell cycle progression. Mol Biol Cell 2009; 20:2242–2253.

    PubMed  CAS  Google Scholar 

  42. McPheeters D, Cremona N, Sunder S et al. A complex gene regulatory mechanism that operates at the nexus of multiple RNA processing decisions. Nat Struct Mol Biol 2009; 16:255–264.

    PubMed  CAS  Google Scholar 

  43. Harigaya Y, Tanaka H, Yamanaka S et al. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 2006; 442:45–50.

    PubMed  CAS  Google Scholar 

  44. Kuai L, Das B, Sherman F. A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2005; 102:13962–13967.

    PubMed  CAS  Google Scholar 

  45. Kuai L, Fang F, Butler J et al. Polyadenylation of rRNA in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2004; 101:8581–8586.

    PubMed  CAS  Google Scholar 

  46. Kadaba S, Krueger A, Trice T et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 2004; 18:1227–1240.

    PubMed  CAS  Google Scholar 

  47. Vanácová S, Wolf J, Martin G et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 2005; 3:e 189.

    Google Scholar 

  48. LaCava J, Houseley J, Saveanu C et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005; 121:713–724.

    PubMed  CAS  Google Scholar 

  49. Houseley J, Tollervey D. Yeast Trf5p is a nuclear poly(A) polymerase. EMBO Rep 2006; 7:205–211.

    PubMed  CAS  Google Scholar 

  50. Win T, Draper S, Read R et al. Requirement of fission yeast Cid14 in polyadenylation of rRNAs. Mol Cell Biol 2006; 26:1710–1721.

    PubMed  CAS  Google Scholar 

  51. Wyers F, Rougemaille M, Badis G et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 2005; 121:725–737.

    PubMed  CAS  Google Scholar 

  52. Belostotsky D. Exosome complex and pervasive transcription in eukaryotic genomes. Curr Opin Cell Biol 2009; 21:352–358.

    PubMed  CAS  Google Scholar 

  53. Jacquier A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 2009; 10:833–844.

    PubMed  CAS  Google Scholar 

  54. Kapranov P, Willingham A, Gingeras T. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 2007; 8:413–423.

    PubMed  CAS  Google Scholar 

  55. Neil H, Malabat C, d’Aubenton-Carafa Y et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 2009; 457:1038–1042.

    PubMed  CAS  Google Scholar 

  56. Xu Z, Wei W, Gagneur J et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 2009; 457:1033–1037.

    PubMed  CAS  Google Scholar 

  57. Uhler J, Hertel C, Svejstrup J. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc Natl Acad Sci USA 2007; 104:8011–8016.

    PubMed  CAS  Google Scholar 

  58. Houseley J, Rubbi L, Grunstein M et al. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell 2008; 32:685–695.

    PubMed  CAS  Google Scholar 

  59. Camblong J, Iglesias N, Fickentscher C et al. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 2007; 131:706–717.

    PubMed  CAS  Google Scholar 

  60. Chekanova J, Gregory B, Reverdatto S et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 2007; 131:1340–1353.

    PubMed  CAS  Google Scholar 

  61. Bühler M, Spies N, Bartel D et al. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat Struct Mol Biol 2008; 15:1015–1023.

    PubMed  Google Scholar 

  62. Wang S, Stevenson A, Kearsey S et al. Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing. Mol Cell Biol 2008; 28:656–665.

    PubMed  Google Scholar 

  63. Bühler M, Haas W, Gygi S et al. RNAi-dependent and-independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 2007; 129:707–721.

    PubMed  Google Scholar 

  64. Nehls P, Keck T, Greferath R et al cDNA cloning, recombinant expression and characterization of polypetides with exceptional DNA affinity. Nucleic Acids Res 1998; 26:1160–1166.

    PubMed  CAS  Google Scholar 

  65. Kumar A, Agarwal S, Heyman J et al. Subcellular localization of the yeast proteome. Genes Dev 2002; 16:707–719.

    PubMed  CAS  Google Scholar 

  66. Gavin A, Bösche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415:141–147.

    PubMed  CAS  Google Scholar 

  67. Peng W, Robinson M, Mnaimneh S et al. A panoramic view of yeast noncoding RNA processing. Cell 2003; 113:919–933.

    PubMed  CAS  Google Scholar 

  68. Vanacova S, Stefl R. The exosome and RNA quality control in the nucleus. EMBO Rep 2007; 8:651–657.

    PubMed  CAS  Google Scholar 

  69. Lebreton A, Séraphin B. Exosome-mediated quality control: substrate recruitment and molecular activity. Biochim Biophys Acta 2008; 1779:558–565.

    PubMed  CAS  Google Scholar 

  70. Schmid M, Jensen T. The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 2008; 33:501–510.

    PubMed  CAS  Google Scholar 

  71. Lykke-Andersen S, Brodersen D, Jensen T. Origins and activities of the eukaryotic exosome. J Cell Sci 2009; 122:1487–1494.

    PubMed  CAS  Google Scholar 

  72. Zamir I, Dawson J, Lavinsky R et al. Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. Proc Natl Acad Sci USA 1997; 94:14400–14405.

    PubMed  CAS  Google Scholar 

  73. Yavuzer U, Smith G, Bliss T et al. DNA end-independent activation of DNA-PK mediated via association with the DNA-binding protein C1D. Genes Dev 1998; 12:2188–2199.

    PubMed  CAS  Google Scholar 

  74. Erdemir T, Bilican B, Cagatay T et al. Saccharomyces cerevisiae C1D is implicated in both nonhomologous DNA end joining and homologous recombination. Mol Microbiol 2002; 46:947–957.

    PubMed  CAS  Google Scholar 

  75. Hieronymus H, Yu M, Silver P. Genome-wide mRNA surveillance is coupled to mRNA export. Genes Dev 2004; 18:2652–2662.

    PubMed  CAS  Google Scholar 

  76. Kelley L, Sternberg M. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009; 4:363–371.

    PubMed  CAS  Google Scholar 

  77. Spriggs R, Murakami Y, Nakamura H et al. Protein function annotation from sequence: prediction of residues interacting with RNA. Bioinformatics 2009; 25:1492–1497.

    PubMed  CAS  Google Scholar 

  78. Ptacek J, Devgan G, Michaud G et al. Global analysis of protein phosphorylation in yeast. Nature 2005; 438:679–684.

    PubMed  CAS  Google Scholar 

  79. Synowsky S, van den Heuvel R, Mohammed S et al. Probing genuine strong interactions and posttranslational modifications in the heterogeneous yeast exosome protein complex. Mol Cell Proteomics 2006; 5:1581–1592.

    PubMed  CAS  Google Scholar 

  80. Synowsky S, van Wijk M, Raijmakers R et al. Comparative Multiplexed Mass Spectrometric Analyses of Endogenously Expressed Yeast Nuclear and Cytoplasmic Exosomes. J Mol Biol 2008; 385:1300–1313.

    PubMed  Google Scholar 

  81. Finn R, Mistry J, Tate J et al. The Pfam protein families database. Nucleic Acids Res 2010; 38:D211–D222.

    PubMed  CAS  Google Scholar 

  82. Wiederkehr T, Prétôt R, Minvielle-Sebastia L. Synthetic lethal interactions with conditional poly(A) polymerase alleles identify LCP5, a gene involved in 18S rRNA maturation. RNA 1998; 4:1357–1372.

    PubMed  CAS  Google Scholar 

  83. Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403:623–627.

    PubMed  CAS  Google Scholar 

  84. Dragon F, Gallagher J, Compagnone-Post P et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 2002; 417:967–970.

    PubMed  CAS  Google Scholar 

  85. Hoang T, Peng W, Vanrobays E et al. Esf2p, a U3-associated factor required for small-subunit processome assembly and compaction. Mol Cell Biol 2005; 25:5523–5534.

    PubMed  CAS  Google Scholar 

  86. Krogan N, Cagney G, Yu H et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006; 440:637–643.

    PubMed  CAS  Google Scholar 

  87. Kamakaka R, Rine J. Sir-and silencer-independent disruption of silencing in Saccharomyces by Sas10p. Genetics 1998; 149:903–914.

    PubMed  CAS  Google Scholar 

  88. Vasiljeva L, Kim M, Terzi N et al. Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol Cell 2008; 29:313–323.

    PubMed  CAS  Google Scholar 

  89. Houseley J, Kotovic K, El Hage A et al. Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO J 2007; 26:4996–5006.

    PubMed  CAS  Google Scholar 

  90. Jung M, Lorenz L, Richter J. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol 2006; 26:4277–4287.

    PubMed  CAS  Google Scholar 

  91. Staub E, Fiziev P, Rosenthal A et al. Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire. Bioessays 2004; 26:567–581.

    PubMed  CAS  Google Scholar 

  92. Ghaemmaghami S, Huh W, Bower K et al. Global analysis of protein expression in yeast. Nature 2003; 425:737–741.

    PubMed  CAS  Google Scholar 

  93. Yeh L, Lee J. Structural analysis of the internal transcribed spacer 2 of the precursor ribosomal RNA from Saccharomyces cerevisiae. J Mol Biol 1990; 211:699–712.

    PubMed  CAS  Google Scholar 

  94. Jorgensen P, Edgington N, Schneider B et al. The size of the nucleus increases as yeast cells grow. Mol Biol Cell 2007; 18:3523–3532.

    PubMed  CAS  Google Scholar 

  95. Rothbarth K, Spiess E, Juodka B et al. Induction of apoptosis by overexpression of the DNA-binding and DNA-PK-activating protein C1D. J Cell Sci 1999; 112:2223–2232.

    PubMed  CAS  Google Scholar 

  96. Houalla R, Devaux F, Fatica A et al. Microarray detection of novel nuclear RNA substrates for the exosome. Yeast 2006; 23:439–454.

    PubMed  CAS  Google Scholar 

  97. Vasiljeva L, Buratowski S. Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 2006; 21:239–248.

    PubMed  CAS  Google Scholar 

  98. Milligan L, Decourty L, Saveanu C et al. A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 2008; 28:5446–5457.

    PubMed  CAS  Google Scholar 

  99. Carroll K, Ghirlando R, Ames J et al. Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. RNA 2007; 13:361–373.

    PubMed  CAS  Google Scholar 

  100. Arigo J, Eyler D, Carroll K et al. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrdl and Nab3. Mol Cell 2006; 23:841–851.

    PubMed  CAS  Google Scholar 

  101. Houseley J, Tollervey D. The nuclear RNA surveillance machinery: The link between ncRNAs and genome structure in budding yeast? Biochim Biophys Acta 2008; 1779:239–246.

    PubMed  CAS  Google Scholar 

  102. Mirkin N, Fonseca D, Mohammed S et al. The 3′ processing factor CstF functions in the DNA repair response. Nucleic Acids Res 2008; 36:1792–1804.

    PubMed  CAS  Google Scholar 

  103. Schilders G, Raijmakers R, Raats J et al. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 2005; 33:6795–6804.

    PubMed  CAS  Google Scholar 

  104. Matsumoto-Taniura N, Pirollet F, Monroe R et al. Identification of novel M phase phosphoproteins by expression cloning. Mol Biol Cell 1996; 7:1455–1469.

    PubMed  CAS  Google Scholar 

  105. Chen C, Gherzi R, Ong S et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001; 107:451–464.

    PubMed  CAS  Google Scholar 

  106. Lehner B, Sanderson C. A protein interaction framework for human mRNA degradation. Genome Res 2004; 14:1315–1323.

    PubMed  CAS  Google Scholar 

  107. Fleischer T, Weaver C, McAfee K et al. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev 2006; 20:1294–1307.

    PubMed  CAS  Google Scholar 

  108. Bousquet-Antonelli C, Presutti C, Tollervey D. Identification of a regulated pathway for nuclear premRNA turnover. Cell 2000; 102:765–775.

    PubMed  CAS  Google Scholar 

  109. Wilmes G, Bergkessel M, Bandyopadhyay S et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 2008; 32:735–746.

    PubMed  CAS  Google Scholar 

  110. Preker P, Nielsen J, Kammler S et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 2008; 322:1851–1854.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Butler, J.S., Mitchell, P. (2010). Rrp6, Rrp47 and Cofactors of the Nuclear Exosome. In: Jensen, T.H. (eds) RNA Exosome. Advances in Experimental Medicine and Biology, vol 702. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7841-7_8

Download citation

Publish with us

Policies and ethics