Skip to main content

The Exosome and 3′–5′ RNA Degradation in Plants

  • Chapter
RNA Exosome

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 702))

Abstract

One of the most versatile RNA degradation machines in eukaryotes is the 3′–5′ RNA exosome. It consists of nine conserved subunits forming the core complex, which associates with active ribonucleases, RNA binding proteins, helicases and additional co-factors. While yeast and human exosome core complexes are catalytically inactive, the plant core complex has probably retained a phosphorolytic activity. Intriguingly, the down-regulation of individual subunits of the plant core complex in Arabidopsis mutants led to distinct developmental defects, suggesting an unequal contribution of the core subunits to the in vivo activities of the plant exosome complex. In addition, some of the plant core subunits as well as some associated factors are encoded by duplicated genes, which may have both overlapping and specific functions. Together, these results suggest an unique and complex organisation of exosome-mediated RNA degradation processes in plants. This chapter reviews our current knowledge of plant exosomes and discusses the impact of 3′–5′ RNA degradation on the posttranscriptional control of plant genome expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hooker TS, Lam P, Zheng H et al. A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell 2007; 19(3):904–913.

    Article  PubMed  CAS  Google Scholar 

  2. Chekanova JA, Gregory BD, Reverdatto SV et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 2007; 131(7):1340–1353.

    Article  PubMed  CAS  Google Scholar 

  3. Mitchell P, Petfalski E, Shevchenko A et al. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′exoribonucleases. Cell 1997; 91(4):457–466.

    Article  PubMed  CAS  Google Scholar 

  4. Allmang C, Petfalski E, Podtelejnikov A et al. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev 1999; 13(16):2148–2158.

    Article  PubMed  CAS  Google Scholar 

  5. van Hoof A, Parker R. The Exosome: A Proteasome for RNA? Cell 1999; 99(4):347–350.

    Article  PubMed  Google Scholar 

  6. Liu Q, Greimann JC, Lima CD. Reconstitution, Activities and Structure of the Eukaryotic RNA Exosome. Cell 2006; 127(6):1223–1237.

    Article  PubMed  CAS  Google Scholar 

  7. Lykke-Andersen S, Brodersen DE, Jensen TH. Origins and activities of the eukaryotic exosome. J Cell Sci 2009; 122(Pt 10):1487–1494.

    Article  PubMed  CAS  Google Scholar 

  8. Estévez AM, Kempf T, Clayton C. The exosome of Trypanosoma brucei. EMBO J 2001; 20(14):3831–3839.

    Article  PubMed  Google Scholar 

  9. Estévez AM, Lehner B, Sanderson CM et al. The roles of intersubunit interactions in exosome stability. J Biol Chem 2003; 278(37):34943–34951.

    Article  PubMed  Google Scholar 

  10. Schaeffer D, Tsanova B, Barbas A et al. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 2009; 16(1):56–62.

    Article  PubMed  CAS  Google Scholar 

  11. Liu Q, Greimann JC, Lima CD. Reconstitution, Activities and Structure of the Eukaryotic RNA Exosome. Cell 2007; 131(1):188–189.

    Article  CAS  Google Scholar 

  12. Dziembowski A, Lorentzen E, Conti E et al. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2007; 14(1):15–22.

    Article  PubMed  CAS  Google Scholar 

  13. Chekanova JA, Shaw RJ, Wills MA et al. Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J Biol Chem 2000; 275(42):33158–33166.

    Article  PubMed  CAS  Google Scholar 

  14. Koornneef M, Hanhart CJ, Thiel F. A Genetic and Phenotypic Description of Eceriferum (cer) Mutants in Arabidopsis thaliana. J Hered 1989; 80(2):118–122.

    Google Scholar 

  15. Xi L, Moscou MJ, Meng Y et al. Transcript-based cloning of RRP46, a regulator of rRNA processing and R gene-independent cell death in barley-powdery mildew interactions. Plant Cell 2009; 21(10):3280–3295.

    Article  PubMed  CAS  Google Scholar 

  16. Belostotsky D. Chapter 21 Transcriptome Targets of the Exosome Complex in Plants. In: RNA Turnover in Eukaryotes: Nucleases, Pathways and Analysis of mRNA Decay.Vol Volume 448. Academic Press; 2008:429–443. Available at: http://www.sciencedirect.com/science/article/B7CV2-4V6YK6M-X/2/6fb63929ba1147e1f00cca6d57080bc1 [Accessed 2010].

    Article  CAS  Google Scholar 

  17. Graham AC, Kiss DL, Andrulis ED. Differential distribution of exosome subunits at the nuclear lamina and in cytoplasmic foci. Mol Biol Cell 2006; 17(3):1399–1409.

    Article  PubMed  CAS  Google Scholar 

  18. Houseley J, LaCava J, Tollervey D. RNA-quality control by the exosome. Nat Rev Mol Cell Biol 2006; 7(7): 529–539.

    Article  PubMed  CAS  Google Scholar 

  19. Schmid M, Jensen TH. The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 2008; 33(10):501–510.

    Article  PubMed  CAS  Google Scholar 

  20. Andrulis ED, Werner J, Nazarian A et al. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 2002; 420(6917):837–841.

    Article  PubMed  CAS  Google Scholar 

  21. Lebreton A, Tomecki R, Dziembowski A et al. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 2008; 456(7224):993–996.

    Article  PubMed  CAS  Google Scholar 

  22. Schneider C, Leung E, Brown J et al. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 2009; 37(4):1127–1140.

    Article  PubMed  CAS  Google Scholar 

  23. Mamolen M, Andrulis ED. Characterization of the Drosophila melanogaster Dis3 ribonuclease. Biochem Biophys Res Commun 2009; 390(3): 529–534.

    Article  PubMed  CAS  Google Scholar 

  24. Lange H, Holec S, Cognat V et al. Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana. Mol Cell Biol 2008; 28(9):3038–3044.

    Article  PubMed  CAS  Google Scholar 

  25. Mitchell P, Petfalski E, Houalla R et al. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol 2003; 23(19):6982–6992.

    Article  PubMed  CAS  Google Scholar 

  26. Schilders G, Dijk EV, Pruijn GJM. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in prerRNA processing. Nucleic Acids Res 2007; 35(8):2564–2572.

    Article  PubMed  CAS  Google Scholar 

  27. Schilders G, Raijmakers R, Raats JMH et al. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 2005; 33(21):6795–6804.

    Article  PubMed  CAS  Google Scholar 

  28. Milligan L, Decourty L, Saveanu C et al. A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 2008; 28(17):5446–5457.

    Article  PubMed  CAS  Google Scholar 

  29. Cristodero M, Clayton CE. Trypanosome MTR4 is involved in rRNA processing. Nucleic Acids Res 2007; 35(20):7023–7030.

    Article  PubMed  CAS  Google Scholar 

  30. Brown JT, Bai X, Johnson AW. The yeast antiviral proteins Ski2p, Ski3p and Ski8p exist as a complex in vivo. RNA 2000; 6(3):449–457.

    Article  PubMed  CAS  Google Scholar 

  31. Hoof AV, Staples RR, Baker RE et al. Function of the ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA. Mol Cell Biol 2000; 20(21):8230–8243.

    Article  PubMed  Google Scholar 

  32. LaCava J, Houseley J, Saveanu C et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005; 121(5):713–724.

    Article  PubMed  CAS  Google Scholar 

  33. Vanacova S, Wolf J, Martin G et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 2005; 3(6):e189.

    Article  PubMed  Google Scholar 

  34. Wyers F, Rougemaille M, Badis G et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 2005; 121(5):725–737.

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi K, Otegui MS, Krishnakumar S et al. INCREASED SIZE EXCLUSION LIMIT 2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell 2007; 19(6): 1885–1897.

    Article  PubMed  CAS  Google Scholar 

  36. Western TL, Cheng Y, Liu J et al. HUA ENHANCER2, a putative DExH-box RNA helicase, maintains homeotic B and C gene expression in Arabidopsis. Development 2002; 129(7): 1569–1581.

    PubMed  CAS  Google Scholar 

  37. Lange H, Sement FM, Canaday J et al. Polyadenylation-assisted RNA degradation processes in plants. Trends Plant Sci 2009; 14(9):497–504.

    Article  PubMed  CAS  Google Scholar 

  38. Pagnussat GC, Yu H, Ngo QA et al. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 2005; 132(3):603–614.

    Article  PubMed  CAS  Google Scholar 

  39. Callahan KP, Butler JS. Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p. Nucl Acids Res 2008:gkn743.

    Google Scholar 

  40. Graham AC, Kiss DL, Andrulis ED. Core Exosome-independent Roles for Rrp6 in Cell Cycle Progression. Mol Biol Cell 2009; 20(8):2242–2253.

    Article  PubMed  CAS  Google Scholar 

  41. Hoof AV, Frischmeyer PA, Dietz HC et al. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 2002; 295(5563):2262–2264.

    Article  PubMed  Google Scholar 

  42. Ibrahim F, Rohr J, Jeong W et al. Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science 2006; 314(5807):1893.

    Article  PubMed  CAS  Google Scholar 

  43. Orban TI, Izaurralde E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex and the exosome. RNA 2005; 11(4):459–469.

    Article  PubMed  CAS  Google Scholar 

  44. Belostotsky D. Exosome complex and pervasive transcription in eukaryotic genomes. Curr Opin Cell Biol 2009;21(3):352–358.

    Article  PubMed  CAS  Google Scholar 

  45. Preker P, Nielsen J, Kammler S et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 2008; 322(5909):1851–1854.

    Article  PubMed  CAS  Google Scholar 

  46. Neil H, Malabat C, d’Aubenton-Carafa Y et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 2009; 457(7232):1038–1042.

    Article  PubMed  CAS  Google Scholar 

  47. Xu Z, Wei W, Gagneur J et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 2009; 457(7232):1033–1037.

    Article  PubMed  CAS  Google Scholar 

  48. Kastenmayer JP, Johnson MA, Green PJ. Analysis of XRN orthologs by complementation of yeast mutants and localization of XRN-GFP fusion proteins. Meth Enzymol 2001; 342:269–282.

    Article  PubMed  CAS  Google Scholar 

  49. Souret FF, Kastenmayer JP, Green PJ. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 2004; 15(2): 173–183.

    Article  PubMed  CAS  Google Scholar 

  50. Gy I, Gasciolli V, Lauressergues D et al. Arabidopsis FIERY1, XRN2 and XRN3 are endogenous RNA silencing suppressors. Plant Cell 2007; 19(11):3451–3461.

    Article  PubMed  CAS  Google Scholar 

  51. Gregory BD, O’Malley RC, Lister R et al. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 2008; 14(6):854–866.

    Article  PubMed  CAS  Google Scholar 

  52. Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends in Plant Science 2008; 13(7):317–328.

    Article  PubMed  CAS  Google Scholar 

  53. Gazzani S, Lawrenson T, Woodward C et al. A link between mRNA turnover and RNA interference in Arabidopsis. Science 2004; 306(5698):1046–1048.

    Article  PubMed  CAS  Google Scholar 

  54. Bühler M, Spies N, Bartel DP et al. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat Struct Mol Biol 2008; 15(10): 1015–1023.

    Article  PubMed  Google Scholar 

  55. Schuster G, Stern D. RNA polyadenylation and decay in mitochondria and chloroplasts. Prog Mol Biol Transl Sci 2009; 85:393–422.

    Article  PubMed  CAS  Google Scholar 

  56. Holec S, Lange H, Kühn K et al. Relaxed transcription in Arabidopsis mitochondria is counterbalanced by RNA stability control mediated by polyadenylation and polynucleotide phosphorylase. Mol Cell Biol 2006; 26(7):2869–2876.

    Article  PubMed  CAS  Google Scholar 

  57. Walter M, Kilian J, Kudla J. PNPase activity determines the efficiency of mRNA 3′-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts. EMBO J 2002;21(24):6905–6914.

    Article  PubMed  CAS  Google Scholar 

  58. Komine Y, Kikis E, Schuster G et al. Evidence for in vivo modulation of chloroplast RNA stability by 3′-UTR homopolymeric tails in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 2002; 99(6):4085–4090.

    Article  PubMed  CAS  Google Scholar 

  59. Lisitsky I, Klaff P, Schuster G. Addition of destabilizingpoly (A)-rich sequencesto endonuclease cleavage sites during the degradation of chloroplast mRNA. Proc Natl Acad Sci USA 1996; 93(23): 13398–13403.

    Article  PubMed  CAS  Google Scholar 

  60. Kudla J, Hayes R, Gruissem W. Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J 1996; 15(24):7137–7146.

    PubMed  CAS  Google Scholar 

  61. Mudd EA, Sullivan S, Gisby MF et al. A 125 kDa RNase E/G-like protein is present in plastids and is essential for chloroplast development and autotrophic growth in Arabidopsis. J Exp Bot 2008; 59(10):2597–2610.

    Article  PubMed  CAS  Google Scholar 

  62. Drager RG, Higgs DC, Kindle KL et al. 5′ to 3′ exoribonucleolytic activity is a normal component of chloroplast mRNA decay pathways. Plant J 1999; 19(5):521–531.

    Article  PubMed  CAS  Google Scholar 

  63. Loiselay C, Gumpel NJ, Girard-Bascou J et al. Molecular identification and function of cis-and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 2008; 28(17):5529–5542.

    Article  PubMed  CAS  Google Scholar 

  64. Pfalz J, Bayraktar OA, Prikryl J et al. Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J. 2009. Available at: http://www.ncbi.nlm.nih.gov/ pubmed/19424177 [Accessed 2009].

  65. Johnson X, Wostrikoff K, Finazzi G et al. MRL1, a Conserved Pentatricopeptide Repeat Protein, Is Required for Stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell 2010. Available at: http:// www.ncbi.nlm.nih.gov/pubmed/20097872 [Accessed 2010].

  66. Perrin R, Lange H, Grienenberger J et al. AtmtPNPase is required for multiple aspects of the 18S rRNA metabolism in Arabidopsis thaliana mitochondria. Nucleic Acids Res 2004; 32(17):5174–5182.

    Article  PubMed  CAS  Google Scholar 

  67. Perrin R, Meyer EH, Zaepfel M et al. Two exoribonucleases act sequentially to process mature 3′-ends of atp9 mRNAs in Arabidopsis mitochondria. J Biol Chem 2004; 279(24):25440–25446.

    Article  PubMed  CAS  Google Scholar 

  68. Holec S, Lange H, Canaday J et al. Coping with cryptic and defective transcripts in plant mitochondria. Biochim Biophys Acta 2008; 1779(9):566–573.

    PubMed  CAS  Google Scholar 

  69. Holec S, Lange H, Dietrich A et al. Polyadenylation-mediated RNA degradation in plant mitochondria. Methods Enzymol 2008; 447:439–461.

    Article  PubMed  Google Scholar 

  70. Vanacova S, Stefl R. The exosome and RNA quality control in the nucleus. EMBO Rep 2007; 8(7):651–657.

    Article  PubMed  CAS  Google Scholar 

  71. Lebreton A, Séraphin B. Exosome-mediated quality control: substrate recruitment and molecular activity. Biochim Biophys Acta 2008; 1779(9):558–565.

    PubMed  CAS  Google Scholar 

  72. Houseley J, Tollervey D. The many pathways of RNA degradation. Cell 2009; 136(4):763–776.

    Article  PubMed  CAS  Google Scholar 

  73. Houalla R, Devaux F, Fatica A et al. Microarray detection of novel nuclear RNA substrates for the exosome. Yeast 2006; 23(6):439–454.

    Article  PubMed  CAS  Google Scholar 

  74. Kiss DL, Andrulis ED. Genome-wide analysis reveals distinct substrate specificities of Rrp6, Dis3 and core exosome subunits. RNA 2010. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20185544 [Accessed 2010].

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lange, H., Gagliardi, D. (2010). The Exosome and 3′–5′ RNA Degradation in Plants. In: Jensen, T.H. (eds) RNA Exosome. Advances in Experimental Medicine and Biology, vol 702. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7841-7_5

Download citation

Publish with us

Policies and ethics