Skip to main content

Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Tumor angiogenesis is fundamental to tumor growth and metastasis, and antiangiogenic therapies have been developed to target this process. However, the clinical success of these treatments has been limited, which may be due, in part, to an incomplete understanding of cell–microenvironment interactions and their role in tumor angiogenesis. Traditionally, two-dimensional (2D) culture approaches have been used to study tumor progression in vitro, but these systems fail to faithfully recreate tumor microenvironmental conditions contributing to tumor angiogenesis in vivo. By integrating cancer biology with tissue engineering and drug delivery approaches, the development of biologically inspired tumor models has emerged. Such 3D model systems allow studying the specific role of soluble factor signaling, cell–extracellular matrix (ECM) interactions, cell–cell interactions, mechanical cues, and metabolic stress. This chapter discusses specific biological and engineering design considerations for tissue-engineered tumor models and highlights their application for defining the underpinnings of tumor angiogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57–70.

    Article  Google Scholar 

  2. Carmeliet, P. and R.K. Jain, Angiogenesis in cancer and other diseases. Nature, 2000. 407(6801): p. 249–57.

    Article  Google Scholar 

  3. Jain, R.K., Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer, 2008. 8(4): p. 309–16.

    Article  Google Scholar 

  4. Goldmann, E., The growth of malignant disease in man and the lower animals with special reference to the vascular system. Lancet, 1907. 170(4392): p. 1236–40.

    Article  Google Scholar 

  5. Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182–6.

    Article  Google Scholar 

  6. Kerbel, R.S., Tumor angiogenesis. N Engl J Med, 2008. 358(19): p. 2039–49.

    Article  Google Scholar 

  7. Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Nat Med, 2003. 9(6): p. 669–76.

    Article  Google Scholar 

  8. Coussens, L.M., B. Fingleton, and L.M. Matrisian, Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002. 295(5564): p. 2387–92.

    Article  ADS  Google Scholar 

  9. Hurwitz, H., et al., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 2004. 350(23): p. 2335–42.

    Article  Google Scholar 

  10. Sandler, A., et al., Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med, 2006. 355(24): p. 2542–50.

    Article  Google Scholar 

  11. Ferrara, N., et al., Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov, 2004. 3(5): p. 391–400.

    Article  Google Scholar 

  12. Ebos, J.M., et al., Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 2009. 15(3): p. 232–9.

    Article  Google Scholar 

  13. Paez-Ribes, M., et al., Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 2009. 15(3): p. 220–31.

    Article  Google Scholar 

  14. Eskens, F.A. and J. Verweij, The clinical toxicity profile of vascular endothelial growth ­factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer, 2006. 42(18): p. 3127–39.

    Article  Google Scholar 

  15. Jain, R.K., et al., Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol, 2006. 3(1): p. 24–40.

    Article  Google Scholar 

  16. Verheul, H.M. and H.M. Pinedo, Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer, 2007. 7(6): p. 475–85.

    Article  Google Scholar 

  17. Bissell, M.J. and D. Radisky, Putting tumours in context. Nat Rev Cancer, 2001. 1(1): p. 46–54.

    Article  Google Scholar 

  18. Eccles, S.A., et al., Preclinical models for the evaluation of targeted therapies of metastatic disease. Cell Biophys, 1994. 24–25: p. 279–91.

    Google Scholar 

  19. Fischbach, C., et al., Engineering tumors with 3D scaffolds. Nat Methods, 2007. 4(10): p. 855–60.

    Article  Google Scholar 

  20. Fischbach, C. and D.J. Mooney, Polymeric systems for bioinspired delivery of angiogenic molecules. Polymers for regenerative medicine. Adv Polym Sci, 2006. 203: p. 191–221.

    Article  Google Scholar 

  21. Zisch, A.H., M.P. Lutolf, and J.A. Hubbell, Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol, 2003. 12(6): p. 295–310.

    Article  Google Scholar 

  22. Fischbach, C. and D.J. Mooney, Polymers for pro- and anti-angiogenic therapy. Biomaterials, 2007. 28(12): p. 2069–76.

    Article  Google Scholar 

  23. Hubbell, J.A., Biomaterials in tissue engineering. Biotechnology (NY), 1995. 13(6): p. 565–76.

    Article  Google Scholar 

  24. Dang, J.M. and K.W. Leong, Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev, 2006. 58(4): p. 487–99.

    Article  Google Scholar 

  25. Hotary, K., et al., Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol, 2000. 149(6): p. 1309–23.

    Article  Google Scholar 

  26. van Amerongen, M.J., et al., The enzymatic degradation of scaffolds and their replacement by vascularized extracellular matrix in the murine myocardium. Biomaterials, 2006. 27(10): p. 2247–57.

    Article  Google Scholar 

  27. Vaalamo, M., et al., Distinct populations of stromal cells express collagenase-3 (MMP-13) and collagenase-1 (MMP-1) in chronic ulcers but not in normally healing wounds. J Invest Dermatol, 1997. 109(1): p. 96–101.

    Article  Google Scholar 

  28. Hall, H., T. Baechi, and J.A. Hubbell, Molecular properties of fibrin-based matrices for promotion of angiogenesis in vitro. Microvasc Res, 2001. 62(3): p. 315–26.

    Article  Google Scholar 

  29. Richardson, T.P., et al., Polymeric system for dual growth factor delivery. Nat Biotechnol, 2001. 19(11): p. 1029–34.

    Article  Google Scholar 

  30. Kubota, S., et al., Anti-alpha3 integrin antibody induces the activated form of matrix metalloprotease-2 (MMP-2) with concomitant stimulation of invasion through matrigel by human rhabdomyosarcoma cells. Int J Cancer, 1997. 70(1): p. 106–11.

    Article  Google Scholar 

  31. Jain, R., et al., Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm, 1998. 24(8): p. 703–27.

    Article  Google Scholar 

  32. Rhodes, C.T. and S.C. Porter, Coatings for controlled-release drug delivery systems. Drug Dev Ind Pharm, 1998. 24(12): p. 1139–54.

    Article  Google Scholar 

  33. Kuo, C.K. and P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001. 22(6): p. 511–21.

    Article  Google Scholar 

  34. Fischbach, C., et al., Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc Natl Acad Sci U S A, 2009. 106(2): p. 399–404.

    Article  ADS  Google Scholar 

  35. Pathi, S.P., et al., A novel 3-D mineralized tumor model to study breast cancer bone metastasis. PLoS One, 2010. 5(1): p. e8849.

    Article  ADS  Google Scholar 

  36. Zhang, R. and P.X. Ma, Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bonetissue engineering. I. Preparation and morphology. J Biomed Mater Res, 1999. 44(4): p. 446–55.

    Article  Google Scholar 

  37. Yeong, W.Y., et al., Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol, 2004. 22(12): p. 643–52.

    Article  Google Scholar 

  38. Huang, L., et al., Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Ed, 2001. 12(9): p. 979–93.

    Article  Google Scholar 

  39. Yoshimoto, H., et al., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003. 24(12): p. 2077–82.

    Article  Google Scholar 

  40. Shin, H.J., et al., Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed, 2006. 17(1–2): p. 103–19.

    Article  Google Scholar 

  41. Cuevas, I. and N. Boudreau, Managing tumor angiogenesis: lessons from VEGF-resistant tumors and wounds. Adv Cancer Res, 2009. 103: p. 25–42.

    Article  Google Scholar 

  42. Holash, J., S.J. Wiegand, and G.D. Yancopoulos, New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene, 1999. 18(38): p. 5356–62.

    Article  Google Scholar 

  43. Metheny-Barlow, L.J. and L.Y. Li, The enigmatic role of angiopoietin-1 in tumor angiogenesis. Cell Res, 2003. 13(5): p. 309–17.

    Article  Google Scholar 

  44. Ahn, G.O. and J.M. Brown, Role of endothelial progenitors and other bone marrow-derived cells in the development of the tumor vasculature. Angiogenesis, 2009. 12(2): p. 159–64.

    Article  Google Scholar 

  45. Mizukami, Y., et al., Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med, 2005. 11(9): p. 992–7.

    Google Scholar 

  46. Chen, A., et al., Endothelial cell migration and vascular endothelial growth factor expression are the result of loss of breast tissue polarity. Cancer Res, 2009. 69(16): p. 6721–9.

    Article  Google Scholar 

  47. Tan, C.P., et al., Parylene peel-off arrays to probe the role of cell–cell interactions in tumour angiogenesis. Integr Biol (Camb), 2009. 1(10): p. 587–94.

    Article  Google Scholar 

  48. Dvorak, H.F., Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol, 2002. 20(21): p. 4368–80.

    Article  Google Scholar 

  49. Li, B., et al., VEGF and PIGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J, 2006. 20(9): p. 1495–7.

    Article  Google Scholar 

  50. Ferrara, N. and T. Davis-Smyth, The biology of vascular endothelial growth factor. Endocr Rev, 1997. 18(1): p. 4–25.

    Article  Google Scholar 

  51. Dallas, N.A., et al., Functional significance of vascular endothelial growth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev, 2007. 26(3–4): p. 433–41.

    Article  Google Scholar 

  52. Dong, X., Z.C. Han, and R. Yang, Angiogenesis and antiangiogenic therapy in hematologic malignancies. Crit Rev Oncol Hematol, 2007. 62(2): p. 105–18.

    Article  Google Scholar 

  53. Mercurio, A.M., E.A. Lipscomb, and R.E. Bachelder, Non-angiogenic functions of VEGF in breast cancer. J Mammary Gland Biol Neoplasia, 2005. 10(4): p. 283–90.

    Article  Google Scholar 

  54. Ono, M., et al., Biological implications of macrophage infiltration in human tumor angiogenesis. Cancer Chemother Pharmacol, 1999. 43(Suppl): p. S69–71.

    Article  Google Scholar 

  55. Zlotnik, A. and O. Yoshie, Chemokines: a new classification system and their role in immunity. Immunity, 2000. 12(2): p. 121–7.

    Article  Google Scholar 

  56. Mehrad, B., M.P. Keane, and R.M. Strieter, Chemokines as mediators of angiogenesis. Thromb Haemost, 2007. 97(5): p. 755–62.

    Google Scholar 

  57. Raman, D., et al., Role of chemokines in tumor growth. Cancer Lett, 2007. 256(2): p. 137–65.

    Article  Google Scholar 

  58. Singh, S., A. Sadanandam, and R.K. Singh, Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev, 2007. 26(3–4): p. 453–67.

    Article  Google Scholar 

  59. Strieter, R.M., et al., CXC chemokines in angiogenesis. Cytokine Growth Factor Rev, 2005. 16(6): p. 593–609.

    Article  Google Scholar 

  60. Belperio, J.A., et al., CXC chemokines in angiogenesis. J Leukoc Biol, 2000. 68(1): p. 1–8.

    Google Scholar 

  61. Strieter, R.M., et al., Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer, 2006. 42(6): p. 768–78.

    Article  Google Scholar 

  62. Koch, A.E., et al., Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 1992. 258(5089): p. 1798–801.

    Article  ADS  Google Scholar 

  63. Yoneda, J., et al., Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst, 1998. 90(6): p. 447–54.

    Article  Google Scholar 

  64. Strieter, R.M., et al., CXC chemokines in angiogenesis of cancer. Semin Cancer Biol, 2004. 14(3): p. 195–200.

    Article  Google Scholar 

  65. Mestas, J., et al., The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. J Immunol, 2005. 175(8): p. 5351–7.

    Google Scholar 

  66. Keane, M.P., et al., Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol, 2004. 172(5): p. 2853–60.

    Google Scholar 

  67. Holmes, W.E., et al., Structure and functional expression of a human interleukin-8 receptor. Science, 1991. 253(5025): p. 1278–80.

    Article  ADS  Google Scholar 

  68. Murphy, P.M. and H.L. Tiffany, Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science, 1991. 253(5025): p. 1280–3.

    Article  ADS  Google Scholar 

  69. Addison, C.L., et al., The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol, 2000. 165(9): p. 5269–77.

    Google Scholar 

  70. Heidemann, J., et al., Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem, 2003. 278(10): p. 8508–15.

    Article  Google Scholar 

  71. Li, A., et al., IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol, 2003. 170(6): p. 3369–76.

    Google Scholar 

  72. Inoue, K., et al., Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res, 2000. 6(5): p. 2104–19.

    Google Scholar 

  73. Li, A., et al., Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis, 2005. 8(1): p. 63–71.

    Article  Google Scholar 

  74. Luca, M., et al., Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol, 1997. 151(4): p. 1105–13.

    Google Scholar 

  75. De Larco, J.E., B.R. Wuertz, and L.T. Furcht, The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res, 2004. 10(15): p. 4895–900.

    Article  Google Scholar 

  76. Waugh, D.J. and C. Wilson, The interleukin-8 pathway in cancer. Clin Cancer Res, 2008. 14(21): p. 6735–41.

    Article  Google Scholar 

  77. Shono, T., et al., Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol, 1996. 16(8): p. 4231–9.

    Google Scholar 

  78. Nor, J.E., et al., Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res, 2001. 61(5): p. 2183–8.

    Google Scholar 

  79. Yancopoulos, G.D., et al., Vascular-specific growth factors and blood vessel formation. Nature, 2000. 407(6801): p. 242–8.

    Article  Google Scholar 

  80. Shireman, P.K., et al., Modulation of vascular cell growth kinetics by local cytokine delivery from fibrin glue suspensions. J Vasc Surg, 1999. 29(5): p. 852–61; discussion 862.

    Article  Google Scholar 

  81. Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chem Rev, 2001. 101(7): p. 1869–79.

    Article  Google Scholar 

  82. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337–51.

    Article  Google Scholar 

  83. Jain, R.A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000. 21(23): p. 2475–90.

    Article  Google Scholar 

  84. Makino, K., et al., Pulsatile drug release from poly (lactide-co-glycolide) microspheres: how does the composition of the polymer matrices affect the time interval between the initial burst and the pulsatile release of drugs? Colloids Surf B Biointerfaces, 2000. 19(2): p. 173–9.

    Article  Google Scholar 

  85. Sheridan, M.H., et al., Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release, 2000. 64(1–3): p. 91–102.

    Article  Google Scholar 

  86. Shea, L.D., et al., DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol, 1999. 17(6): p. 551–4.

    Article  Google Scholar 

  87. Chen, R.R., et al., Integrated approach to designing growth factor delivery systems. FASEB J, 2007. 21(14): p. 3896–903.

    Article  Google Scholar 

  88. Choi, N.W., et al., Microfluidic scaffolds for tissue engineering. Nat Mater, 2007. 6(11): p. 908–15.

    Article  ADS  Google Scholar 

  89. Silva, E.A. and D.J. Mooney, Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials, 2010. 31(6): p. 1235–41.

    Article  Google Scholar 

  90. Silva, E.A., et al., Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci U S A, 2008. 105(38): p. 14347–52.

    Article  ADS  Google Scholar 

  91. Ehrbar, M., et al., Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res, 2004. 94(8): p. 1124–32.

    Article  Google Scholar 

  92. Ehrbar, M., et al., The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials, 2008. 29(11): p. 1720–9.

    Article  Google Scholar 

  93. Zisch, A.H., et al., Covalently conjugated VEGF–fibrin matrices for endothelialization. J Control Release, 2001. 72(1–3): p. 101–13.

    Article  Google Scholar 

  94. Simmons, C.A., et al., Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone, 2004. 35(2): p. 562–9.

    Article  Google Scholar 

  95. Kalluri, R., Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer, 2003. 3(6): p. 422–33.

    Article  Google Scholar 

  96. Timpl, R. and J.C. Brown, Supramolecular assembly of basement membranes. Bioessays, 1996. 18(2): p. 123–32.

    Article  Google Scholar 

  97. Xu, J., et al., Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol, 2001. 154(5): p. 1069–79.

    Article  Google Scholar 

  98. Ingber, D.E., Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res, 2002. 91(10): p. 877–87.

    Article  Google Scholar 

  99. Rak, J., et al., Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res, 1995. 55(20): p. 4575–80.

    Google Scholar 

  100. Mueller, M.M. and N.E. Fusenig, Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer, 2004. 4(11): p. 839–49.

    Article  Google Scholar 

  101. Yuan, F., et al., Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res, 1995. 55(17): p. 3752–6.

    Google Scholar 

  102. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11–25.

    Article  Google Scholar 

  103. Alghisi, G.C. and C. Ruegg, Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium, 2006. 13(2): p. 113–35.

    Article  Google Scholar 

  104. Kim, S., et al., Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest, 2002. 110(7): p. 933–41.

    Google Scholar 

  105. Stupack, D.G., et al., Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol, 2001. 155(3): p. 459–70.

    Article  Google Scholar 

  106. Kim, S., et al., Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol, 2000. 156(4): p. 1345–62.

    Article  Google Scholar 

  107. Kim, S., M. Harris, and J.A. Varner, Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem, 2000. 275(43): p. 33920–8.

    Article  Google Scholar 

  108. Clark, E.A. and J.S. Brugge, Integrins and signal transduction pathways: the road taken. Science, 1995. 268(5208): p. 233–9.

    Article  ADS  Google Scholar 

  109. Soldi, R., et al., Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J, 1999. 18(4): p. 882–92.

    Article  Google Scholar 

  110. Voest, E.E., Inhibitors of angiogenesis in a clinical perspective. Anticancer Drugs, 1996. 7(7): p. 723–7.

    Article  Google Scholar 

  111. Gladson, C.L., Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol, 1996. 55(11): p. 1143–9.

    Article  Google Scholar 

  112. Overall, C.M. and C. Lopez-Otin, Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer, 2002. 2(9): p. 657–72.

    Article  Google Scholar 

  113. Ii, M., et al., Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood), 2006. 231(1): p. 20–7.

    MathSciNet  Google Scholar 

  114. Deryugina, E.I. and J.P. Quigley, Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta, 2010. 1803(1): p. 103–20.

    Article  Google Scholar 

  115. Bergers, G., et al., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2000. 2(10): p. 737–44.

    Article  Google Scholar 

  116. Deryugina, E.I., et al., Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem, 2002. 277(12): p. 9749–56.

    Article  Google Scholar 

  117. Ghajar, C.M., S.C. George, and A.J. Putnam, Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr, 2008. 18(3): p. 251–78.

    Google Scholar 

  118. Lee, G.Y., et al., Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods, 2007. 4(4): p. 359–65.

    Article  Google Scholar 

  119. Kratzke, R.A., et al., RB-mediated tumor suppression of a lung cancer cell line is abrogated by an extract enriched in extracellular matrix. Cell Growth Differ, 1993. 4(8): p. 629–35.

    Google Scholar 

  120. Zimrin, A.B., B. Villeponteau, and T. Maciag, Models of in vitro angiogenesis: endothelial cell differentiation on fibrin but not matrigel is transcriptionally dependent. Biochem Biophys Res Commun, 1995. 213(2): p. 630–8.

    Article  Google Scholar 

  121. Sun, G., et al., Functional groups affect physical and biological properties of dextran-based hydrogels. J Biomed Mater Res A, 2010. 93(3): p. 1080–90.

    Google Scholar 

  122. Baier Leach, J., et al., Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng, 2003. 82(5): p. 578–89.

    Article  Google Scholar 

  123. Khetan, S. and J. Burdick, Cellular encapsulation in 3D hydrogels for tissue engineering. J Vis Exp, 2009. (32).

    Google Scholar 

  124. Baldwin, A.D. and K.L. Kiick, Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers, 2010. 94(1): p. 128–40.

    Article  Google Scholar 

  125. Hersel, U., C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003. 24(24): p. 4385–415.

    Article  Google Scholar 

  126. Maheshwari, G., et al., Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci, 2000. 113(Pt 10): p. 1677–86.

    Google Scholar 

  127. Miranti, C.K. and J.S. Brugge, Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol, 2002. 4(4): p. E83–90.

    Article  Google Scholar 

  128. Kong, H.J., S. Hsiong, and D.J. Mooney, Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. Nano Lett, 2007. 7(1): p. 161–6.

    Article  ADS  Google Scholar 

  129. Guarnieri, D., et al., Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater, 2010. 6(7): p. 2532–9.

    Article  Google Scholar 

  130. Jadhav, U., et al., Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int J Oncol, 2004. 25(5): p. 1407–14.

    Google Scholar 

  131. Seliktar, D., et al., MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A, 2004. 68(4): p. 704–16.

    Article  Google Scholar 

  132. Pompe, T., M. Markowski, and C. Werner, Modulated fibronectin anchorage at polymer substrates controls angiogenesis. Tissue Eng, 2004. 10(5–6): p. 841–8.

    Article  Google Scholar 

  133. Wierzbicka-Patynowski, I., Y. Mao, and J.E. Schwarzbauer, Continuous requirement for pp60-Src and phospho-paxillin during fibronectin matrix assembly by transformed cells. J Cell Physiol, 2007. 210(3): p. 750–6.

    Article  Google Scholar 

  134. Ingber, D.E. and J. Folkman, Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol, 1989. 109(1): p. 317–30.

    Article  Google Scholar 

  135. Meyer, C.J., et al., Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol, 2000. 2(9): p. 666–8.

    Article  Google Scholar 

  136. Ausprunk, D.H. and J. Folkman, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res, 1977. 14(1): p. 53–65.

    Article  Google Scholar 

  137. Paszek, M.J., et al., Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005. 8(3): p. 241–54.

    Article  MathSciNet  Google Scholar 

  138. Levental, K.R., et al., Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009. 139(5): p. 891–906.

    Article  Google Scholar 

  139. Reinhart-King, C.A., M. Dembo, and D.A. Hammer, Cell–cell mechanical communication through compliant substrates. Biophys J, 2008. 95(12): p. 6044–51.

    Article  Google Scholar 

  140. Mammoto, A., et al., A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature, 2009. 457(7233): p. 1103–8.

    Article  ADS  Google Scholar 

  141. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677–89.

    Article  Google Scholar 

  142. Lee, K.Y., et al., Controlled growth factor release from synthetic extracellular matrices. Nature, 2000. 408(6815): p. 998–1000.

    Article  ADS  Google Scholar 

  143. Netti, P.A., et al., Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res, 2000. 60(9): p. 2497–503.

    Google Scholar 

  144. Boucher, Y., M. Leunig, and R.K. Jain, Tumor angiogenesis and interstitial hypertension. Cancer Res, 1996. 56(18): p. 4264–6.

    Google Scholar 

  145. Shimamoto, K., et al., Intratumoral blood flow: evaluation with color Doppler echography. Radiology, 1987. 165(3): p. 683–5.

    Google Scholar 

  146. Davies, P.F., et al., Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A, 1986. 83(7): p. 2114–7.

    Article  ADS  Google Scholar 

  147. Resnick, N. and M.A. Gimbrone, Jr., Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J, 1995. 9(10): p. 874–82.

    Google Scholar 

  148. West, E.R., et al., Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials, 2007. 28(30): p. 4439–48.

    Article  Google Scholar 

  149. Jeon, O., et al., Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials, 2009. 30(14): p. 2724–34.

    Article  Google Scholar 

  150. Pelham, R.J., Jr. and Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13661–5.

    Article  ADS  Google Scholar 

  151. Ghajar, C.M., et al., Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng, 2006. 12(10): p. 2875–88.

    Article  Google Scholar 

  152. Hsiong, S.X., et al., Integrin-adhesion ligand bond formation of preosteoblasts and stem cells in three-dimensional RGD presenting matrices. Biomacromolecules, 2008. 9(7): p. 1843–51.

    Article  Google Scholar 

  153. Helm, C.L., et al., Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci U S A, 2005. 102(44): p. 15779–84.

    Article  ADS  Google Scholar 

  154. Greenberg, A.W., W.G. Kerr, and D.A. Hammer, Relationship between selectin-mediated rolling of hematopoietic stem and progenitor cells and progression in hematopoietic development. Blood, 2000. 95(2): p. 478–86.

    Google Scholar 

  155. Figallo, E., et al., Micro-bioreactor array for controlling cellular microenvironments. Lab Chip, 2007. 7(6): p. 710–9.

    Article  Google Scholar 

  156. Finger, A.R., et al., Differential effects on messenger ribonucleic acid expression by bone marrow derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng, 2007. 13(6): p. 1151–8.

    Article  Google Scholar 

  157. Wagner, D.R., et al., Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann Biomed Eng, 2008. 36(5): p. 813–20.

    Article  Google Scholar 

  158. Yang, Y., et al., Effect of cyclic loading on in vitro degradation of poly( l -lactide-co-glycolide) scaffolds. J Biomater Sci Polym Ed, 2010. 21(1): p. 53–66.

    Article  Google Scholar 

  159. Ebnet, K., Organization of multiprotein complexes at cell–cell junctions. Histochem Cell Biol, 2008. 130(1): p. 1–20.

    Article  Google Scholar 

  160. Hazan, R.B., et al., Cadherin switch in tumor progression. Ann N Y Acad Sci, 2004. 1014: p. 155–63.

    Article  ADS  Google Scholar 

  161. Orr, F.W., et al., Interactions between cancer cells and the endothelium in metastasis. J Pathol, 2000. 190(3): p. 310–29.

    Article  Google Scholar 

  162. Cavallaro, U., S. Liebner, and E. Dejana, Endothelial cadherins and tumor angiogenesis. Exp Cell Res, 2006. 312(5): p. 659–67.

    Article  Google Scholar 

  163. Voura, E.B., M. Sandig, and C.H. Siu, Cell–cell interactions during transendothelial migration of tumor cells. Microsc Res Tech, 1998. 43(3): p. 265–75.

    Article  Google Scholar 

  164. Leek, R.D. and A.L. Harris, Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia, 2002. 7(2): p. 177–89.

    Article  Google Scholar 

  165. Liotta, L.A. and E.C. Kohn, The microenvironment of the tumour–host interface. Nature, 2001. 411(6835): p. 375–9.

    Article  ADS  Google Scholar 

  166. Bhowmick, N.A. and H.L. Moses, Tumor–stroma interactions. Curr Opin Genet Dev, 2005. 15(1): p. 97–101.

    Article  Google Scholar 

  167. Rasmussen, A.A. and K.J. Cullen, Paracrine/autocrine regulation of breast cancer by the insulin like growth factors. Breast Cancer Res Treat, 1998. 47(3): p. 219–33.

    Article  Google Scholar 

  168. Orimo, A., et al., Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005. 121(3): p. 335–48.

    Article  Google Scholar 

  169. Lewis, M.P., et al., Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer, 2004. 90(4): p. 822–32.

    Article  Google Scholar 

  170. Chen, J.J., et al., Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol, 2005. 23(5): p. 953–64.

    Article  ADS  Google Scholar 

  171. Lewis, C.E., et al., Cytokine regulation of angiogenesis in breast cancer: the role of tumor associated macrophages. J Leukoc Biol, 1995. 57(5): p. 747–51.

    Google Scholar 

  172. Leek, R.D., et al., Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer, 1999. 79(5–6): p. 991–5.

    Article  Google Scholar 

  173. Orre, M. and P.A. Rogers, Macrophages and microvessel density in tumors of the ovary. Gynecol Oncol, 1999. 73(1): p. 47–50.

    Article  Google Scholar 

  174. Nelson, C.M. and C.S. Chen, Cell–cell signaling by direct contact increases cell proliferation via a P13K-dependent signal. FEBS Lett, 2002. 514(2–3): p. 238–42.

    Article  ADS  Google Scholar 

  175. Hui, E.E. and S.N. Bhatia, Micromechanical control of cell–cell interactions. Proc Natl Acad Sci U S A, 2007. 104(14): p. 5722–6.

    Article  ADS  Google Scholar 

  176. Albrecht, D.R., et al., Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods, 2006. 3(5): p. 369–75.

    Article  Google Scholar 

  177. Nelson, C.M., J.L. Inman, and M.J. Bissell, Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat Protoc, 2008. 3(4): p. 674–8.

    Article  Google Scholar 

  178. Karp, J.M., et al., Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip, 2007. 7(6): p. 786–94.

    Article  Google Scholar 

  179. Janvier, R., et al., Stromal fibroblasts are required for PC-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res, 1997. 17(3A): p. 1551–7.

    Google Scholar 

  180. Serebriiskii, I., et al., Fibroblast-derived 3D matrix differentially regulates the growth and drugresponsiveness of human cancer cells. Matrix Biol, 2008. 27(6): p. 573–85.

    Article  Google Scholar 

  181. Amatangelo, M.D., et al., Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol, 2005. 167(2): p. 475–88.

    Article  Google Scholar 

  182. Ott, H.C., et al., Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med, 2008. 14(2): p. 213–21.

    Article  Google Scholar 

  183. Bertout, J.A., S.A. Patel, and M.C. Simon, The impact of O 2 availability on human cancer. Nat Rev Cancer, 2008. 8(12): p. 967–75.

    Article  Google Scholar 

  184. Abaci, H.E., et al., Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. Am J Physiol Cell Physiol, 2010. 298(6): 1527–37.

    Article  Google Scholar 

  185. Pugh, C.W. and P.J. Ratcliffe, Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med, 2003. 9(6): p. 677–84.

    Article  Google Scholar 

  186. Ivan, M., et al., HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O 2 sensing. Science, 2001. 292(5516): p. 464–8.

    Article  ADS  Google Scholar 

  187. Jaakkola, P., et al., Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O 2 -regulated prolyl hydroxylation. Science, 2001. 292(5516): p. 468–72.

    Article  ADS  Google Scholar 

  188. Kumar, R., et al., Spatial and temporal expression of angiogenic molecules during tumor growth and progression. Oncol Res, 1998. 10(6): p. 301–11.

    Google Scholar 

  189. Verbridge, S.S., et al., Oxygen-controlled 3-D cultures to analyze tumor angiogenesis. Tissue Eng Part A, 2010. 16(7): p. 2133–41.

    Article  Google Scholar 

  190. Chan, D.A., et al., Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. J Biol Chem, 2002. 277(42): p. 40112–7.

    Article  Google Scholar 

  191. Le, N.T. and D.R. Richardson, The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta, 2002. 1603(1): p. 31–46.

    Google Scholar 

  192. Maxwell, P.H., C.W. Pugh, and P.J. Ratcliffe, Activation of the HIF pathway in cancer. Curr Opin Genet Dev, 2001. 11(3): p. 293–9.

    Article  Google Scholar 

  193. Boucher, Y., L.T. Baxter, and R.K. Jain, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res, 1990. 50(15): p. 4478–84.

    Google Scholar 

  194. Vaupel, P., F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res, 1989. 49(23): p. 6449–65.

    Google Scholar 

  195. Tannock, I.F., Treatment of cancer with radiation and drugs. J Clin Oncol, 1996. 14(12): p. 3156–74.

    Google Scholar 

  196. Gillies, R.J., et al., Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiological conditions. Proc Natl Acad Sci U S A, 1990. 87(19): p. 7414–8.

    Article  ADS  Google Scholar 

  197. Stubbs, M., et al., Metabolic consequences of a reversed pH gradient in rat tumors. Cancer Res, 1994. 54(15): p. 4011–6.

    Google Scholar 

  198. Shi, Q., et al., Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene, 2001. 20(28): p. 3751–6.

    Article  Google Scholar 

  199. Elias, A.P. and S. Dias, Microenvironment changes (in pH) affect VEGF alternative splicing. Cancer Microenviron, 2008. 1(1): p. 131–9.

    Article  Google Scholar 

  200. Fukumura, D., et al., Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res, 2001. 61(16): p. 6020–4.

    Google Scholar 

  201. Oppegard, S.C., et al., Modulating temporal and spatial oxygenation over adherent cellular cultures. PLoS One, 2009. 4(9): p. e6891.

    Article  ADS  Google Scholar 

  202. Derda, R., et al., Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci U S A, 2009. 106(44): p. 18457–62.

    Article  Google Scholar 

  203. Bruzewicz, D.A., A.P. McGuigan, and G.M. Whitesides, Fabrication of a modular tissue construct in a microfluidic chip. Lab Chip, 2008. 8(5): p. 663–71.

    Article  Google Scholar 

  204. Fischbach-Teschl, C. and A. Stroock, Microfluidic culture models of tumor angiogenesis. Tissue Eng Part A, 2010. 16(7): p. 2143–6.

    Article  Google Scholar 

  205. Chrobak, K.M., D.R. Potter, and J. Tien, Formation of perfused, functional microvascular tubes in vitro. Microvasc Res, 2006. 71(3): p. 185–96.

    Article  Google Scholar 

  206. Braun, R.D., et al., Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol Heart Circ Physiol, 2001. 280(6): p. H2533–44.

    Google Scholar 

  207. Nordsmark, M., et al., Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother Oncol, 2003. 67(1): p. 35–44.

    Article  Google Scholar 

  208. Rumsey, W.L., J.M. Vanderkooi, and D.F. Wilson, Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science, 1988. 241(4873): p. 1649–51.

    Article  ADS  Google Scholar 

  209. Acosta, M.A., et al., Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds. Biomaterials, 2009. 30(17): p. 3068–74.

    Article  Google Scholar 

  210. Calabrese, C., et al., A perivascular niche for brain tumor stem cells. Cancer Cell, 2007. 11(1): p. 69–82.

    Article  Google Scholar 

  211. Sung, J.H., C. Kam, and M.L. Shuler, A microfluidic device for a pharmacokinetic-­pharmacodynamic (PK-PD) model on a chip. Lab Chip, 2010. 10(4): p. 446–55.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Emily Brooks and Daniel Brooks from Cornell University for their help with the editing of this chapter and acknowledge funding from the Cornell Nanobiotechnology Center (supported by the STC Program of the National Science Foundation under Agreement No. ECS-9876771), the Morgan Fund for Tissue Engineering, NIH (RC1 CA146065, 1U54 CA143876-01), and NSF (graduate research fellowship for SPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Fischbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Infanger, D.W., Pathi, S.P., Fischbach, C. (2011). Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations. In: Gerecht, S. (eds) Biophysical Regulation of Vascular Differentiation and Assembly. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7835-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7835-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7834-9

  • Online ISBN: 978-1-4419-7835-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics