Skip to main content

Effects of Hemodynamic Forces on the Vascular Differentiation of Stem Cells: Implications for Vascular Graft Engineering

  • Chapter
  • First Online:
Book cover Biophysical Regulation of Vascular Differentiation and Assembly

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 617 Accesses

Abstract

Although the field of vascular tissue engineering has made tremendous advances in the past decade, several complications have yet to be overcome in order to produce biocompatible small-diameter vascular conduits with long-term patency. Stem cells and progenitor cells represent potential cell sources in the development of autologous (or allogeneic), nonthrombogenic vascular grafts with mechanical properties comparable to native blood vessel. However, a better understanding of the effects of mechanical forces on stem cells and progenitor cells is needed to properly utilize these cells for tissue engineering applications. In this chapter, we discuss the current understanding of the effects of hemodynamic forces on the differentiation and function of adult stem cells, embryonic stem cells, and progenitor cells. We also review the use of stem cells and progenitor cells in vascular graft engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galambos B, Olah A, Banga P, Csonge L, Almasi J, Acsady G. (2009) Successful human vascular reconstructions with long-term refrigerated venous homografts. Eur Surg Res;43(3):256–261.

    Article  Google Scholar 

  2. Weinberg CB, Bell E. (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science;231(4736):397–400.

    Article  ADS  Google Scholar 

  3. Ranjan AK, Kumar U, Hardikar AA, Poddar P, Nair PD. (2009) Human blood vessel-derived endothelial progenitors for endothelialization of small diameter vascular prosthesis. PLoS ONE;4(11):e7718.

    Article  Google Scholar 

  4. Roh JD, Nelson GN, Brennan MP, Mirensky TL, Yi T, Hazlett TF, Tellides G, Sinusas AJ, Pober JS, Saltzman WM, Kyriakides TR, Breuer CK. (2008) Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials;29(10):1454–1463.

    Article  Google Scholar 

  5. Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M. (2010) Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg;51(1):155–164.

    Article  Google Scholar 

  6. Huang H, Nakayama Y, Qin K, Yamamoto K, Ando J, Yamashita J, Itoh H, Kanda K, Yaku H, Okamoto Y, Nemoto Y. (2005) Differentiation from embryonic stem cells to vascular wall cells under in vitro pulsatile flow loading. J Artif Organs;8(2):110–118.

    Article  Google Scholar 

  7. L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN. (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med;12(3):361–365.

    Article  Google Scholar 

  8. Lehoux S, Tedgui A. (2003) Cellular mechanics and gene expression in blood vessels. J Biomech;36(5):631–643.

    Article  Google Scholar 

  9. Park JS, Huang NF, Kurpinski KT, Patel S, Hsu S, Li S. (2007) Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair. Front Biosci;12:5098–5116.

    Article  Google Scholar 

  10. Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T, Asahara T, Ando J. (2009) Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol;106(1):203–211.

    Article  Google Scholar 

  11. Weinberg PD, Ross Ethier C. (2007) Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. J Biomech;40(7):1594–1598.

    Article  Google Scholar 

  12. Fung YC, Liu SQ. (1993) Elementary mechanics of the endothelium of blood vessels. J Biomech Eng;115(1):1–12.

    Article  Google Scholar 

  13. Wang DM, Tarbell JM. (1995) Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J Biomech Eng;117(3):358–363.

    Article  Google Scholar 

  14. Yang Z, Noll G, Luscher TF. (1993) Calcium antagonists differently inhibit proliferation of human coronary smooth muscle cells in response to pulsatile stretch and platelet-derived growth factor. Circulation;88(3):832–836.

    Google Scholar 

  15. Niklason LE. (1999) Techview: medical technology. Replacement arteries made to order. Science;286(5444):1493–1494.

    Article  Google Scholar 

  16. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. (1999) Functional arteries grown in vitro. Science;284(5413):489–493.

    Article  ADS  Google Scholar 

  17. L’Heureux N, Germain L, Labbe R, Auger FA. (1993) In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg;17(3):499–509.

    Article  Google Scholar 

  18. Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C. (2005) Roles of hemodynamic forces in vascular cell differentiation. Ann Biomed Eng;33(6):772–779.

    Article  Google Scholar 

  19. Brown MA, Wallace CS, Angelos M, Truskey GA. (2009) Characterization of umbilical cord blood-derived late outgrowth endothelial progenitor cells exposed to laminar shear stress. Tissue Eng Part A;15(11):3575–3587.

    Article  Google Scholar 

  20. Allen J, Khan S, Lapidos KA, Ameer G. (2010) Toward engineering a human neoendothelium with circulating progenitor cells. Stem Cells;28(2):318–328

    Google Scholar 

  21. Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Bischoff J, Mayer JE, Jr. (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med;7(9):1035–1040.

    Article  Google Scholar 

  22. Rafii S, Lyden D. (2003) Therapeutic stem and progenitor cell transplantation for organ ­vascularization and regeneration. Nat Med;9(6):702–712.

    Article  Google Scholar 

  23. Urbich C, Dimmeler S. (2004) Endothelial progenitor cells: characterization and role in ­vascular biology. Circ Res;95(4):343–353.

    Article  Google Scholar 

  24. Watabe T, Miyazono K. (2009) Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res;19(1):103–115.

    Article  Google Scholar 

  25. Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H. (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells;22(4):617–624.

    Article  Google Scholar 

  26. Baksh D, Song L, Tuan RS. (2004) Adult mesenchymal stem cells: characterization, ­differentiation, and application in cell and gene therapy. J Cell Mol Med;8(3):301–316.

    Article  Google Scholar 

  27. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C. (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells;22(3):377–384.

    Article  Google Scholar 

  28. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol;31(10):890–896.

    Article  Google Scholar 

  29. Yu J, Thomson JA. (2008) Pluripotent stem cell lines. Genes Dev;22(15):1987–1997.

    Article  Google Scholar 

  30. Godier AF, Marolt D, Gerecht S, Tajnsek U, Martens TP, Vunjak-Novakovic G. (2008) Engineered microenvironments for human stem cells. Birth Defects Res C Embryo Today;84(4):335–347.

    Article  Google Scholar 

  31. Nichols J, Ying QL. (2006) Derivation and propagation of embryonic stem cells in serum- and feeder-free culture. Methods Mol Biol;329:91–98.

    Google Scholar 

  32. Grivennikov IA. (2008) Embryonic stem cells and the problem of directed differentiation. Biochemistry (Mosc);73(13):1438–1452.

    Article  Google Scholar 

  33. Zandstra PW, Le HV, Daley GQ, Griffith LG, Lauffenburger DA. (2000) Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation. Biotechnol Bioeng;69(6):607–617.

    Article  Google Scholar 

  34. Cormier JT, zur Nieden NI, Rancourt DE, Kallos MS. (2006) Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors. Tissue Eng;12(11):3233–3245.

    Article  Google Scholar 

  35. Doss MX, Sachinidis A, Hescheler J. (2008) Human ES cell derived cardiomyocytes for cell replacement therapy: a current update. Chin J Physiol;51(4):226–229.

    Google Scholar 

  36. McKiernan E, O’Driscoll L, Kasper M, Barron N, O’Sullivan F, Clynes M. (2007) Directed differentiation of mouse embryonic stem cells into pancreatic-like or neuronal- and glial-like phenotypes. Tissue Eng;13(10):2419–2430.

    Article  Google Scholar 

  37. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K. (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature;408(6808):92–96.

    Article  ADS  Google Scholar 

  38. Tarbell JM, Weinbaum S, Kamm RD. (2005) Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng;33(12):1719–1723.

    Article  Google Scholar 

  39. Janmey PA, Weitz DA. (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci;29(7):364–370.

    Article  Google Scholar 

  40. Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A, Ando J. (2003) Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol;95(5):2081–2088.

    Google Scholar 

  41. Ye C, Bai L, Yan ZQ, Wang YH, Jiang ZL. (2008) Shear stress and vascular smooth muscle cells promote endothelial differentiation of endothelial progenitor cells via activation of Akt. Clin Biomech (Bristol, Avon);23 Suppl 1:S118–S124.

    Article  Google Scholar 

  42. Yang Z, Tao J, Wang JM, Tu C, Xu MG, Wang Y, Pan SR. (2006) Shear stress contributes to t-PA mRNA expression in human endothelial progenitor cells and nonthrombogenic potential of small diameter artificial vessels. Biochem Biophys Res Commun;342(2):577–584.

    Article  Google Scholar 

  43. Yang Z, Wang JM, Wang LC, Chen L, Tu C, Luo CF, Tang AL, Wang SM, Tao J. (2007) In vitro shear stress modulates antithrombogenic potentials of human endothelial progenitor cells. J Thromb Thrombolysis;23(2):121–127.

    Article  Google Scholar 

  44. Grellier M, Bareille R, Bourget C, Amedee J. (2009) Responsiveness of human bone marrow stromal cells to shear stress. J Tissue Eng Regen Med;3(4):302–309.

    Article  Google Scholar 

  45. Li D, Tang T, Lu J, Dai K. (2009) Effects of flow shear stress and mass transport on the ­construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng Part A;15(10):2773–2783.

    Article  Google Scholar 

  46. Knippenberg M, Helder MN, Doulabi BZ, Semeins CM, Wuisman PI, Klein-Nulend J. (2005) Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng;11(11–12):1780–1788.

    Article  Google Scholar 

  47. Glossop JR, Cartmell SH. (2009) Effect of fluid flow-induced shear stress on human ­mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK ­signaling. Gene Expr Patterns;9(5):381–388.

    Article  Google Scholar 

  48. Bassaneze V, Barauna VG, Ramos CL, Kalil JE, Schettert IT, Miyakawa AA, Krieger JE. (2010) Shear stress induces nitric oxide-mediated VEGF production in human adipose tissue mesenchymal stem cells. Stem Cells Dev;19(3):371–378.

    Article  Google Scholar 

  49. Bai K, Huang Y, Jia X, Fan Y, Wang W. (2009) Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations. J Biomech;43(6):1176–1181.

    Article  Google Scholar 

  50. Dong JD, Gu YQ, Li CM, Wang CR, Feng ZG, Qiu RX, Chen B, Li JX, Zhang SW, Wang ZG, Zhang J. (2009) Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol Sin;30(5):530–536.

    Article  Google Scholar 

  51. Fischer L, Boland G, Tuan RS. (2002) Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem;277(34):30870–30878.

    Article  Google Scholar 

  52. Taylor SM, Jones PA. (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell;17(4):771–779.

    Article  Google Scholar 

  53. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. (2003) Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology;144(11):5081–5088.

    Article  Google Scholar 

  54. Wang H, Riha GM, Yan S, Li M, Chai H, Yang H, Yao Q, Chen C. (2005) Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol;25(9):1817–1823.

    Article  Google Scholar 

  55. Wang H, Li M, Lin PH, Yao Q, Chen C. (2008) Fluid shear stress regulates the expression of TGF-beta1 and its signaling molecules in mouse embryo mesenchymal progenitor cells. J Surg Res;150(2):266–270.

    Article  Google Scholar 

  56. McBride SH, Falls T, Knothe Tate ML. (2008) Modulation of stem cell shape and fate B: mechanical modulation of cell shape and gene expression. Tissue Eng Part A;14(9):1573–1580.

    Article  Google Scholar 

  57. Bai H, Wang ZZ. (2008) Directing human embryonic stem cells to generate vascular progenitor cells. Gene Ther;15(2):89–95.

    Article  Google Scholar 

  58. Shimizu N, Yamamoto K, Obi S, Kumagaya S, Masumura T, Shimano Y, Naruse K, Yamashita JK, Igarashi T, Ando J. (2008) Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta. J Appl Physiol;104(3):766–772.

    Article  Google Scholar 

  59. Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J. (2009) Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler Thromb Vasc Biol;29(12):2125–2131.

    Article  Google Scholar 

  60. Metallo CM, Vodyanik MA, de Pablo JJ, Slukvin, II, Palecek SP. (2008) The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol Bioeng;100(4):830–837.

    Article  Google Scholar 

  61. Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J. (2005) Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol;288(4):H1915–H1924.

    Article  Google Scholar 

  62. Zeng L, Xiao Q, Margariti A, Zhang Z, Zampetaki A, Patel S, Capogrossi MC, Hu Y, Xu Q. (2006) HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol;174(7):1059–1069.

    Article  Google Scholar 

  63. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, Garcia-Cardena G, Daley GQ. (2009) Biomechanical forces promote embryonic haematopoiesis. Nature;459(7250):1131–1135.

    Article  ADS  Google Scholar 

  64. Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA, Jr, Garcia-Cardena G. (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest;116(1):49–58.

    Article  Google Scholar 

  65. Illi B, Scopece A, Nanni S, Farsetti A, Morgante L, Biglioli P, Capogrossi MC, Gaetano C. (2005) Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res;96(5):501–508.

    Article  Google Scholar 

  66. Kobayashi N, Yasu T, Ueba H, Sata M, Hashimoto S, Kuroki M, Saito M, Kawakami M. (2004) Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol;32(12):1238–1245.

    Article  Google Scholar 

  67. Kurpinski K, Chu J, Hashi C, Li S. (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci USA;103(44):16095–16100.

    Article  ADS  Google Scholar 

  68. Liao SW, Hida K, Park JS, Li S. (2004) Mechanical regulation of matrix reorganization and phenotype of smooth muscle cells and mesenchymal stem cells in 3D matrix. Conf Proc IEEE Eng Med Biol Soc;7:5024–5027.

    Google Scholar 

  69. Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S. (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng;88(3):359–368.

    Article  Google Scholar 

  70. Riha GM, Wang X, Wang H, Chai H, Mu H, Lin PH, Lumsden AB, Yao Q, Chen C. (2007) Cyclic strain induces vascular smooth muscle cell differentiation from murine embryonic mesenchymal progenitor cells. Surgery;141(3):394–402.

    Article  Google Scholar 

  71. Song G, Ju Y, Shen X, Luo Q, Shi Y, Qin J. (2007) Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells. Colloids Surf B Biointerfaces;58(2):271–277.

    Article  Google Scholar 

  72. Song G, Ju Y, Soyama H, Ohashi T, Sato M. (2007) Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells. Mol Cell Biomech;4(4):201–210.

    Google Scholar 

  73. Pelaez D, Huang CY, Cheung HS. (2008) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev;18(1):93–102.

    Article  Google Scholar 

  74. McMahon LA, Reid AJ, Campbell VA, Prendergast PJ. (2008) Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis. Ann Biomed Eng;36(2):185–194.

    Article  Google Scholar 

  75. Campbell JJ, Lee DA, Bader DL. (2006) Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology;43(3–4):455–470.

    Google Scholar 

  76. Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS. (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells;22(3):313–323.

    Article  Google Scholar 

  77. Hamilton DW, Maul TM, Vorp DA. (2004) Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: implications for vascular tissue-engineering applications. Tissue Eng;10(3–4):361–369.

    Article  Google Scholar 

  78. Saha S, Ji L, de Pablo JJ, Palecek SP. (2006) Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol;206(1):126–137.

    Article  Google Scholar 

  79. Saha S, Ji L, de Pablo JJ, Palecek SP. (2008) TGFbeta/Activin/Nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain. Biophys J;94(10):4123–4133.

    Article  Google Scholar 

  80. Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H. (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J;20(8):1182–1184.

    Article  Google Scholar 

  81. Hashi CK, Zhu Y, Yang GY, Young WL, Hsiao BS, Wang K, Chu B, Li S. (2007) Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA;104(29):11915–11920.

    Article  ADS  Google Scholar 

  82. Mirza A, Hyvelin JM, Rochefort GY, Lermusiaux P, Antier D, Awede B, Bonnet P, Domenech J, Eder V. (2008) Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall. J Vasc Surg;47(6):1313–1321.

    Article  Google Scholar 

  83. Brennan MP, Dardik A, Hibino N, Roh JD, Nelson GN, Papademitris X, Shinoka T, Breuer CK. (2008) Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg;248(3):370–377.

    Google Scholar 

  84. Gong Z, Niklason LE. (2008) Small-diameter human vessel wall engineered from bone ­marrow-derived mesenchymal stem cells (hMSCs). FASEB J;22(6):1635–1648.

    Article  Google Scholar 

  85. Harris LJ, Abdollahi H, Zhang P, McIlhenny S, Tulenko TN, Dimuzio PJ. (2009) Differentiation of Adult Stem Cells into Smooth Muscle for Vascular Tissue Engineering. J Surg Res;8:1–9.

    Google Scholar 

  86. Jarrell BE, Williams SK, Solomon L, Speicher L, Koolpe E, Radomski J, Carabasi RA, Greener D, Rosato FE. (1986) Use of an endothelial monolayer on a vascular graft prior to implantation. Temporal dynamics and compatibility with the operating room. Ann Surg;203(6):671–678.

    Article  Google Scholar 

  87. Clowes AW, Kirkman TR, Reidy MA. (1986) Mechanisms of arterial graft healing. Rapid transmural capillary ingrowth provides a source of intimal endothelium and smooth muscle in porous PTFE prostheses. Am J Pathol;123(2):220–230.

    Google Scholar 

  88. Pasic M, Muller-Glauser W, von Segesser L, Odermatt B, Lachat M, Turina M. (1996) Endothelial cell seeding improves patency of synthetic vascular grafts: manual versus automatized method. Eur J Cardiothorac Surg;10(5):372–379.

    Article  Google Scholar 

  89. Lamm P, Juchem G, Milz S, Schuffenhauer M, Reichart B. (2001) Autologous endothelialized vein allograft: a solution in the search for small-caliber grafts in coronary artery bypass graft operations. Circulation;104(12 Suppl 1):I108–I1114.

    Google Scholar 

  90. Zilla P, Deutsch M, Meinhart J, Puschmann R, Eberl T, Minar E, Dudczak R, Lugmaier H, Schmidt P, Noszian I, et al. (1994) Clinical in vitro endothelialization of femoropopliteal bypass grafts: an actuarial follow-up over three years. J Vasc Surg;19(3):540–548.

    Google Scholar 

  91. Zilla P, Fasol R, Preiss P, Kadletz M, Deutsch M, Schima H, Tsangaris S, Groscurth P. (1989) Use of fibrin glue as a substrate for in vitro endothelialization of PTFE vascular grafts. Surgery;105(4):515–522.

    Google Scholar 

  92. Isenberg BC, Williams C, Tranquillo RT. (2006) Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann Biomed Eng;34(6):971–985.

    Article  Google Scholar 

  93. Shirota T, He H, Yasui H, Matsuda T. (2003) Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng;9(1):127–136.

    Article  Google Scholar 

  94. Suuronen EJ, Veinot JP, Wong S, Kapila V, Price J, Griffith M, Mesana TG, Ruel M. (2006) Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation;114(1 Suppl):I138–I144.

    Google Scholar 

  95. Taite LJ, Yang P, Jun HW, West JL. (2008) Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J Biomed Mater Res B Appl Biomater;84(1):108–116.

    Google Scholar 

  96. Rossi ML, Zavalloni D, Gasparini GL, Mango R, Belli G, Presbitero P. (2009) The first report of late stent thrombosis leading to acute myocardial infarction in patient receiving the new endothelial progenitor cell capture stent. Int J Cardiol;141(1):e20–e22.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants HL083900 (S.L.) and 1F31HL087728 (R.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Diop, R., Li, S. (2011). Effects of Hemodynamic Forces on the Vascular Differentiation of Stem Cells: Implications for Vascular Graft Engineering. In: Gerecht, S. (eds) Biophysical Regulation of Vascular Differentiation and Assembly. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7835-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7835-6_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7834-9

  • Online ISBN: 978-1-4419-7835-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics